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Abstract

Coalition formation is a central concern in multiagent systems. A common
desideratum for coalition structures is stability, defined by the absence of benefi-
cial deviations of single agents. Such deviations require an agent to improve her
utility by joining another coalition. On top of that, the feasibility of deviations
may also be restricted by demanding consent of agents in the welcoming and/or
the abandoned coalition. While most of the literature focuses on deviations
constrained by unanimous consent, we also study consent decided by majority
vote and introduce two new stability notions that can be seen as local variants of
another solution concept called popularity. We investigate stability in additively
separable hedonic games by pinpointing boundaries to computational complexity
depending on the type of consent and friend-oriented utility restrictions. The
latter restrictions shed new light on well-studied classes of games based on
the appreciation of friends or the aversion to enemies. Many of our positive
results follow from a new combinatorial observation that we call the Deviation
Lemma and that we leverage to prove the convergence of simple and natural
single-agent dynamics under fairly general conditions. Our negative results, in
particular, resolve the complexity of contractual Nash stability in additively
separable hedonic games.
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1. Introduction

Coalition formation is a central topic in multi-agent systems. It is concerned
with the question of grouping a set of agents, e.g., humans or machines, into
coalitions such as teams, clubs, or societies. A prominent framework for studying
coalition formation is that of hedonic games, where agents’ utilities are solely
based on the coalition they are part of, and which thus disregards inter-coalitional
relationships (Drèze and Greenberg, 1980). Hedonic games have been successfully
applied to model problems from operations research and the mathematical
social sciences, such as research team formation (Alcalde and Revilla, 2004),
task allocation (Saad et al., 2011), or community detection (Aziz et al., 2019).
Moreover, these games have been used in the context of clustering, an important
task in machine learning (Feldman et al., 2015; Ahmadi et al., 2022). Identifying
desirable coalition structures is often based on the prospect of coalitions staying
together. To this end, various notions of stability have been introduced and
studied. A coalition structure (henceforth partition) is stable when no individual
or group of agents benefits by joining another coalition or forming a new one.

In this paper, we focus on deviations by single agents who leave their current
coalition to join another coalition or to form a new coalition on their own.
Whenever such a deviation is not possible, we speak of single-agent stability.
The simplest example of a single-agent deviation is a Nash deviation, where
some agent unilaterally decides to leave her current coalition in order to join
another coalition. Nash stability then captures partitions that do not admit
Nash deviations. Consider a scenario with two agents, say, Alice and Bob, where
Alice prefers to be in a coalition of her own, but Bob wants to be together with
Alice. Then, in the partition where Alice and Bob both form singleton coalitions,
Bob has an incentive to perform a Nash deviation to join the coalition of Alice.
However, in the partition where Alice and Bob are in a joint coalition, Alice has
an incentive to perform a Nash deviation to be in a coalition of her own. This
describes a simple run-and-chase situation which can occur in most reasonable
classes of hedonic games (and in all classes of hedonic games considered in this
paper), but it already shows a defect of Nash stability: Nash-stable outcomes
need not exist. Moreover, while a Nash deviation clearly captures the incentive of
single agents to perform deviations, it completely ignores other agents’ opinions
about the deviation.

To overcome the shortcomings of Nash stability, various restrictions of Nash
deviations have been proposed. This has motivated stability notions, such as
individual stability or contractual Nash stability, which consider the unanimous
consent of some or all of the coalitions directly affected by the deviation. This
is certainly reasonable in high-stakes coalition formation scenarios like joining
the partners of a firm (Drèze and Greenberg, 1980; Meade, 1972). Moreover,
unanimous consent is used in the formation process of international bodies like
the EU or the NATO (see, e.g., Brandt et al., 2023). Still, it might be impractical
and even undesirable in small- or medium-scale coalition formation problems,
such as joining a music group or sports club. As a compromise, we also study
intermediate notions of stability based on majority votes among the involved
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coalitions. This setting has received little attention so far,1 and we will also
define new majority-based stability notions. Since a majority consent is equal to
unanimous consent when joining a coalition of only one agent, this is already
sufficient to circumvent the nonexistence of stable outcomes in the run-and-chase
example described above: majority consent suggests that a reasonable outcome
is that both players will end up in singleton coalitions.

Since the number of coalitions an agent can be part of is not polynomially
bounded, a lot of effort has been put into identifying reasonable and succinct
classes of hedonic games (see, e.g., Aziz et al., 2019; Ballester, 2004; Bogomolnaia
and Jackson, 2002; Elkind and Wooldridge, 2009). In many such classes, agents
extract cardinal preferences from a weighted graph by some aggregation method.
Perhaps the most natural and thoroughly studied way to aggregate preferences
is by taking the sum of the weights of edges towards agents in one’s own
coalition. This leads to the class of additively separable hedonic games (ASHGs)
(Bogomolnaia and Jackson, 2002). ASHGs allow the modeling of settings where
agents have friends and enemies, and their goal is to simultaneously maximize
the number of friends and minimize the number of enemies, while one of these
goals can have higher priority than the other one (Dimitrov et al., 2006). Our
work provides a computational analysis of single-agent stability, focusing on
friend-oriented utility restrictions.

1.1. Contribution
A recent line of research on stability notions focuses on the dynamical aspects

leading to the formation of stable outcomes (see, e.g., Bilò et al., 2018; Hoefer
et al., 2018; Carosi et al., 2019; Brandt et al., 2023). This yields a critical
distributed perspective on the coalition formation process. The value of some
positive computational results in the context of hedonic games is diminished
because they implicitly assume that a central authority has the means to collect
all individual preferences, compute a stable partition, and enforce this partition
on the agents. In contrast, simple dynamics based on single-agent deviations
provide a much more plausible explanation for the formation of stable partitions.
A versatile tool to prove the convergence of dynamics are potential functions,
which guide dynamics towards stable states (see, e.g., Bogomolnaia and Jackson,
2002; Suksompong, 2015; Brandt et al., 2023; Bullinger and Suksompong, 2024).

We extend the applicability of this approach by considering nonmonotonic
potential functions, i.e., potential functions that might decrease in some rounds
of the dynamic process. This is possible because the total number of rounds
can be bounded by observing the potential function from a global perspective
using a new general combinatorial insight that we call the Deviation Lemma.
We demonstrate the power of this lemma via three applications, which in
particular yield polynomial running time of dynamics in friend-oriented games
for various stability concepts. The Deviation Lemma is not restricted to additively
separable utilities or the specific type of single-agent deviations. For instance,

1The paper by Gairing and Savani (2019) is a notable exception.
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the combinatorial relationship of the lemma also arises naturally in the analysis
of deviation dynamics in classes of games beyond the scope of this paper, such as
anonymous hedonic games (Bogomolnaia and Jackson, 2002). In fact, the lemma
holds for every sequence of partitions such that each partition evolves from its
predecessor by having one element move to another partition class. It establishes
a relationship between the development of the sizes of coalitions involved in
deviations to information solely based on the starting partition and the terminal
partition of the sequence.

For the special case of symmetric utility functions, additively separable hedo-
nic games are well understood: the standard notion of utilitarian social welfare
represents an increasing potential function for the dynamics induced by Nash
stability (Bogomolnaia and Jackson, 2002), but finding stable states (even under
unanimous consent of the welcoming coalition) leads to PLS-complete problems
(Gairing and Savani, 2019). As we will see, this implies an exponential worst-
case running time of the dynamics. By contrast, our results hold for restricted
sets of nonsymmetric utility functions, and our computational boundaries lie
between polynomial-time computability and NP-completeness. In fact, whenever
we identify a potential function guaranteeing the existence of stable outcomes,
we are also able to prove that, from any starting partition, the corresponding
simple dynamics of single-agent deviations converges to a stable partition in a
polynomial number of rounds.

In contrast to the positive results obtained by means of the Deviation Lemma,
we also find strong computational boundaries. In the conclusion, Table 2
summarizes our and related complexity results. We obtain NP-hardness of the
existence problem for Nash stability in severely restricted ASHGs as well as the
existence problem of contractually Nash-stable coalition structures in general
ASHGs. Despite knowing that additively separable hedonic games that do not
admit a contractually Nash-stable coalition structure exist (Sung and Dimitrov,
2007), previous investigations of single-agent stability have left the complexity
of the associated existence problem open (Sung and Dimitrov, 2010). Hence, we
complete the picture of the complexity of unanimity-based single-agent stability
concepts in ASHGs.

In addition, we also find computational boundaries for majority-based stability
concepts. This complements the results obtained by the Deviation Lemma. Our
results thus completely pinpoint the complexity of majority-based stability
notions in appreciation-of-friends games, aversion-to-enemies games, and friends-
and-enemies games. Notably, a major step towards these hardness results is the
construction of No-instances, which can then be leveraged in hardness reductions.

Our results are in line with a repeatedly observed theme in hedonic games: the
existence of counterexamples is the key to computational intractability (see, e.g.,
Dimitrov et al., 2006; Sung and Dimitrov, 2010; Aziz et al., 2013; Brandt et al.,
2023).2 On the other hand, we demonstrate that the observed intractabilities

2A notable exception is that partitions in the core of aversion-to-enemies games always
exist but are hard to compute (Dimitrov et al., 2006). Bullinger and Kober (2021) also identify
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lie at the computational boundary by carving out further weak restrictions that
lead to the existence and efficient computability of stable states.

1.2. Related Work
The study of hedonic games was initiated by Drèze and Greenberg (1980)

but was only popularized two decades later by Banerjee et al. (2001), Cechlárová
and Romero-Medina (2001), and Bogomolnaia and Jackson (2002). Aziz and
Savani (2016) provide an overview of many important concepts. Two important
research questions concern the design of reasonable computationally manageable
subclasses of hedonic games and the detailed investigation of their computational
properties. The former has led to a broad landscape of game representations.
Some of these representations are ordinal and fully expressive, i.e., they can,
in principle, express every preference relation over coalitions (Ballester, 2004;
Elkind and Wooldridge, 2009). Still, representing certain preference relations
requires exponential space. These representations are contrasted by cardinal
representations based on weighted graphs (Aziz et al., 2019; Bogomolnaia and
Jackson, 2002; Olsen, 2012), which are not fully expressive but only require
polynomial space (except when weights are disproportionately large). Apart from
the already discussed additively separable hedonic games, important aggregation
methods consider the average of weights leading to the classes of fractional
hedonic games (Aziz et al., 2019) and modified fractional hedonic games (Olsen,
2012).

Computational properties of hedonic games have been studied extensively
and we focus on literature related to additively separable hedonic games. Various
versions of stability have been investigated (Dimitrov et al., 2006; Sung and
Dimitrov, 2010; Aziz and Brandl, 2012; Aziz et al., 2013; Gairing and Savani,
2019). In particular, Sung and Dimitrov (2010) perform a detailed computational
study of single-agent stability and Gairing and Savani (2019) settle the complexity
of single-agent stability for symmetric input graphs. Apart from stability, other
desirable axioms concern efficiency and fairness. Aziz et al. (2013) cover a wide
range of axioms, whereas Elkind et al. (2020) and Bullinger (2020) focus on
Pareto optimality, and Brandt and Bullinger (2022) investigate popularity, an
axiom combining ideas from stability and efficiency, which is also related to a
majority-based stability notion that we will introduce.

The dynamical aspects of the coalition formation process have been studied
in a series of very recent papers (Bilò et al., 2018; Hoefer et al., 2018; Carosi
et al., 2019; Fanelli et al., 2021; Brandt et al., 2023; Boehmer et al., 2023;
Bullinger and Suksompong, 2024). Most related is the work by Bilò et al. (2018),
who consider Nash stability in fractional hedonic games, and by Brandt et al.
(2023), who consider dynamics based on individual stability in several classes of
hedonic games. Bullinger and Suksompong (2024) consider a generalization of
additively separable hedonic games and a stability concept analogous to Nash
stability. Hoefer et al. (2018); Carosi et al. (2019), and Fanelli et al. (2021)

a class of hedonic games with this property.
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consider dynamics based on group deviations. Finally, Boehmer et al. (2023)
propose a dynamical version of hedonic games where utilities are modified based
on the history of the performed deviations. They study both single-agent and
group stability. Similar dynamic processes have been studied in the domain of
matchings (see, e.g., Roth and Vande Vate, 1990; Abeledo and Rothblum, 1995;
Brandt and Wilczynski, 2019). Moreover, another dynamic aspect of hedonic
games is captured by online hedonic games, where agents arrive in sequence,
and have to be added to existing coalitions at their arrival. Online additively
separable hedonic games have been introduced by Flammini et al. (2021) and
subsequently been studied by Bullinger and Romen (2023, 2024). In particular,
Bullinger and Romen (2024) study stability in the online model of additively
separable hedonic games.

2. Preliminaries and Model

In this section, we introduce hedonic games and stability concepts. In the
final part, we outline our general strategy to obtain computational hardness
results. We use the notation [k] = {1, . . . , k} for any positive integer k.

2.1. Hedonic Games
Throughout the paper, we consider settings with a set N of n agents. The

goal of coalition formation is to find a partition of the agents into different
disjoint coalitions according to their preferences. A partition of N is a subset
π ⊆ 2N such that

⋃
C∈π C = N , and for every pair C,D ∈ π, it holds that

C = D or C ∩ D = ∅. A nonempty subset of N is called a coalition. Hence,
every element of a partition is a coalition, and given a partition π, we denote
by π(i) the coalition containing agent i. We refer to the partition π given by
π(i) = {i} for every agent i ∈ N as the singleton partition, and to π = {N} as
the grand coalition.

Let Ni denote all possible coalitions containing agent i, i.e., Ni = {C ⊆ N :
i ∈ C}. A hedonic game is defined by a tuple (N,≿), where N is an agent
set and ≿ = (≿i)i∈N is a tuple of weak orders ≿i over Ni which represent the
preferences of the respective agent i. Hence, agents express preferences only
over the coalitions which they are part of without considering externalities. The
strict part of an order ≿i is denoted by ≻i, i.e., C ≻i D if and only if C ≿i D
and not D ≿i C.

The generality of the definition of hedonic games gives rise to many interesting
subclasses of games that have been proposed in the literature. Many of these
classes rely on cardinal utility functions vi : N → R for every agent i. Following
Bogomolnaia and Jackson (2002), an additively separable hedonic game (ASHG)
(N, v) consists of an agent set N and a tuple v = (vi)i∈N of utility functions
vi : N → R such that π(i) ≿i π

′(i) if and only if
∑

j∈π(i) vi(j) ≥
∑

j∈π′(i) vi(j).
Clearly, ASHGs are a subclass of hedonic games, and we can assume without
loss of generality that vi(i) = 0 (or set the utility of an agent for herself to an
arbitrary constant).

6



Every ASHG can be naturally represented by a complete directed graph
G = (N,E) with weight vi(j) on arc (i, j). An ASHG is called symmetric if
vi(j) = vj(i) for every pair of agents i and j, and it can then be represented by
a complete undirected graph with weight vi(j) on edge {i, j}. There are various
subclasses of ASHGs that allow a natural interpretation in terms of friends
and enemies. An agent j ∈ N is called a friend (or enemy) of agent i ∈ N if
vi(j) > 0 (or vi(j) < 0). An ASHG is called a friends-and-enemies game (FEG)
if vi(j) ∈ {−1, 1} for every pair of agents i, j ∈ N . Further, following Dimitrov
et al. (2006), an ASHG is called an appreciation-of-friends game (AFG) (or an
aversion-to-enemies game (AEG)) if vi(j) ∈ {−1, n} (or vi(j) ∈ {−n, 1}). In all
of these games, agents aim to maximize their number of friends while minimizing
their number of enemies. In the case of an FEG, these two goals have equal
priority, while there is a strict priority for one of the goals in AFGs and AEGs.
Based on the friendship of agents, we define the friendship relation (or enemy
relation) as the subset R ⊆ N ×N where (i, j) ∈ R if and only if vi(j) > 0 (or
vi(j) < 0).

2.2. Stability Based on Single-Agent Deviations
We focus on stability notions that are concerned with the incentives of single

agents to deviate. A single-agent deviation performed by agent i transforms a
partition π into a partition π′ where π(i) ̸= π′(i) and, for all agents j ̸= i, it
holds that π(j) \ {i} = π′(j) \ {i}. We write π

i−→ π′ to denote a single-agent
deviation performed by agent i transforming partition π to partition π′.

We consider myopic agents whose rationale is to only engage in a deviation
if it immediately makes them better off. A Nash deviation is a single-agent
deviation performed by agent i making her better off, i.e., π′(i) ≻i π(i). Any
partition in which no Nash deviation is possible is said to be Nash-stable (NS).

This concept of stability is very strong and comes with the drawback that
only the preferences of the deviating agent are considered. Therefore, various
refinements have been proposed which additionally require the consent of the
abandoned and the welcoming coalition. For a compact representation, we
introduce them via the notion of favor sets. Let C ⊆ N be a coalition and
i ∈ N an agent. The favor-in set of C with respect to i is the set of agents
in C (excluding i) that strictly favor having i inside C rather than outside, i.e.,
Fin(C, i) = {j ∈ C \ {i} : C ∪ {i} ≻j C \ {i}}. The favor-out set of C with
respect to i is the set of agents in C (excluding i) that strictly favor having i
outside C rather than inside, i.e., Fout(C, i) = {j ∈ C \ {i} : C \ {i} ≻j C ∪ {i}}.

An individual deviation (or contractual deviation) is a Nash deviation π
i−→ π′

such that Fout(π
′(i), i) = ∅ (or Fin(π(i), i) = ∅). Then, a partition is said to be

individually stable (IS) or contractually Nash-stable (CNS) if it allows for no
individual or contractual deviation, respectively. A related weakening of both
stability concepts is contractual individual stability (CIS), based on deviations
that are both individual and contractual deviations (Bogomolnaia and Jackson,
2002; Dimitrov and Sung, 2007).
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While these stability concepts include agents affected by the deviation, they
require unanimous consent, which might be unnecessarily strong in some settings.
Based on this observation, we define several hybrid stability concepts where
the possibility of a deviation by some agent is decided via majority votes of
the involved agents. A Nash deviation π

i−→ π′ is called a majority-in deviation
(or majority-out deviation) if |Fin(π

′(i), i)| ≥ |Fout(π
′(i), i)| (or |Fout(π(i), i)| ≥

|Fin(π(i), i)|). A single-agent deviation that is both a majority-in deviation and a
majority-out deviation is called separate-majorities deviation. Similar to before,
a partition is said to be majority-in stable (MIS), majority-out stable (MOS),
or separate-majorities stable (SMS) if it allows for no majority-in, majority-out,
or separate-majorities deviation, respectively. Majority-in and majority-out
stability are special cases of the voting-based stability notions by Gairing and
Savani (2019) for a threshold of 1/2.

Finally, it is possible to relax separate-majorities stability by performing one
joint vote instead of two separate votes. A Nash deviation π

i−→ π′ is called a joint-
majority deviation if |Fout(π(i), i)|+|Fin(π

′(i), i)| ≥ |Fin(π(i), i)|+|Fout(π
′(i), i)|.

A partition is then called joint-majority stable (JMS) if it allows for no joint-
majority deviations. Joint-majority stability is particularly interesting as it is a
natural local version of popularity, an axiom recently studied in the context of
hedonic games (Gärdenfors, 1975; Cseh, 2017; Brandt and Bullinger, 2022).3

Also note that while contractual individual stability is a refinement of Pareto
optimality, there is no logical relationship between other (majority-based) stabil-
ity concepts and Pareto optimality. For simple terminology, we use abbreviations
like NS or IS both as an adjective or a noun to refer to the stability concept. In
addition, we denote the set of stability concepts based on single-agent deviations
by C, i.e., C = {NS, IS,CNS,CIS,MIS,MOS,SMS, JMS}. A taxonomy of our
and related solution concepts is provided in Figure 1. We refer to deviations
with respect to stability concept α ∈ C as α deviations, e.g., IS deviations for
α = IS. Similarly, we speak of α partitions if a partition satisfies α.

All these stability concepts naturally induce dynamics where we choose some
starting partition and obtain a successor partition by having some agent perform
a deviation from the current partition. More precisely, given a stability concept
α ∈ C, an execution of α dynamics is an infinite or finite sequence (πj)j≥0 of
partitions and a corresponding sequence (ij)j≥1 of (deviating) agents such that

πj−1
ij−→ πj is an α deviation for every j. The partition π0 is then called the

starting partition. Given a hedonic game G, and a stability concept α ∈ C, we
say that the dynamics converges for starting partition π0 if every execution of
the α dynamics on G with starting partition π0 is finite. Additionally, the α
dynamics converges on G if it converges for every starting partition.

Proving convergence of dynamics is a very natural way to prove the exis-

3Informally speaking, a partition is popular if there is no other partition preferred by a
majority of all agents. By contrast, partitions can only be challenged by other partitions
evolving through Nash deviations under joint-majority stability.
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Popularity

Pareto Optimality

Figure 1: Logical relationships between stability notions and other solutions concepts. An
arrow from concept α to concept β indicates that if a partition satisfies α, it also satisfies β.
Majority-based stability notions are highlighted in blue, other single-agent based stability
notions in black.

tence of stable states and underlines the robustness of the stability concept. It
complements a static solution concept with a decentralized process to reach a
solution.

2.3. Computational Complexity
Our central question is to answer the following decision question regarding

stable partitions for some stability concept α ∈ C.

Given an additively separable hedonic game, possibly restricted to
be from some subclass, does this game admit an α partition?

In this paper, we will derive a complete picture concerning the computational
complexity of this question in all game classes introduced in Section 2.1 and all
stability concepts in C. In many cases, we will obtain computational intractabili-
ties in the sense of NP-completeness. In this section, we want to describe the
general scheme of our proof technique for these results.

First, note that for all of our stability notions, a stable partition is a
polynomial-time verifiable certificate: one can simply check whether some agent
can perform a deviation, and if no one can, then the partition is stable. Therefore,
we omit the proof of membership in NP in all of our NP-completeness proofs.

For the NP-hardness of our problems, all our reductions are from the same NP-
complete source problem, namely Exact Cover by 3-Sets (Karp, 1972). An
instance of Exact Cover by 3-Sets (E3C) consists of a tuple (R,S), where R
is a ground set together with a set S of 3-element subsets of R. A Yes-instance
is an instance such that there exists a subset S ′ ⊆ S that partitions R. Given
an instance (R,S) of E3C, for every r ∈ R, we define Sr = {S ∈ S : r ∈ S}, i.e.,
Sr comprises the elements of S containing r, and nr = |Sr|.
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While each of our reductions employs different ideas and gadgets specific to
the considered subclass of ASHGs and stability concept, the reductions share
the following central steps.4

1. Find a No-instance.

2. Encode the combinatorial structure of E3C.

3. Use the No-instance as a gadget.

4. Prove a correspondence of Yes-instances.

Of course, a reduction is a correspondence of Yes-instances and No-instances
of the source problem and reduced problem, so finding No-instances is a vital
step for making reductions work. In some cases, very easy No-instances exist.
Consider, for instance, Nash stability, for which the run-and-chase example in the
introduction can be reproduced in all of our considered game classes. However,
this can become a nontrivial task for more restrictive solution concepts and game
classes. For example, we have to put a large effort into designing FEGs without
an MOS or MIS partition. The games that we construct in Propositions 6 and 8
contain a large number of agents, and it requires extensive arguments to verify
that these games are, in fact, No-instances.

The second step usually consists of defining set gadgets for the 3-elementary
subsets in S of a given instance (R,S) of E3C. There are various models for this
step (Sung and Dimitrov, 2010; Aziz et al., 2013; Brandt et al., 2023). Usually,
within the gadget for a set S ∈ S, there exist agents representing each of the
elements in S. Still, the actual gadgets usually need additional auxiliary agents.

Using No-instances for the design of gadgets is useful to mimic a covering of the
ground set R of the source instance. One can introduce a gadget corresponding
to a No-instance for each element in R, and it is then required that one agent
from each of these gadgets forms a coalition with some agent outside of the
gadget. With a clever design, one can enforce that this can only happen in very
specific cases, namely when a coalition is formed with the agents representing
corresponding sets in S. We follow this idea in all reductions with complicated
No-instances, but simpler ideas work for Nash stability in Theorems 1 and 2.

After coming up with the construction, a large part of the proofs is showing
their correctness. The goal is to come up with a simple and concise structure
of potentially stable partitions that combine the ideas of the gadget design
discussed above. We manage to argue about large sets of possible partitions by
proving structural properties of stable partitions.

3. Computational Boundaries for Nash and Contractual Nash Stability

In the next sections, we present our results. We start with new computational
boundaries for classical solution concepts.

4We refer to the PhD thesis by Bullinger (2023, Chapter 4.3) for a more in-depth discussion
of general ideas of hardness reductions for hedonic games.
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First, we consider the notion of Nash stability. In the absence of negative
utility values, the partition consisting solely of the grand coalition is Nash-stable.
Conversely, in the absence of positive utility values, the singleton partition is
Nash-stable. It is, therefore, necessary for an ASHG to have both positive and
negative utility values in order to admit a nontrivial Nash-stable partition (see
also Gairing and Savani, 2019).

Sung and Dimitrov (2010) showed that deciding whether an ASHG has an
NS partition is NP-hard. Their reduction produces ASHGs with four distinct
positive utility values and one negative utility value. We improve upon this result
by showing that a reduction is possible with only one positive and one negative
utility value. Moreover, it is possible for any choice of these two utility values,
as long as the absolute value of the negative utility value is at least as large as
the positive utility value. We state the theorem in a general way allowing the
positive and negative utility value to be dependent on the number of agents of
the particular instance. In this way, we additionally cover other important cases.
For instance, the hardness holds for utility values as in FEGs or AEGs.

Theorem 1. Let f+ : N → Q>0 and f− : N → Q<0 be two polynomial-time
computable functions satisfying |f−(m)| ≥ f+(m) for all m ∈ N. Then, the prob-
lem of deciding whether an ASHG with utility values restricted to {f−(n), f+(n)}
has an NS partition is NP-complete.

Proof. Let f+, f− be two functions as defined above and consider the class of
ASHGs with utility values restricted to {f−(n), f+(n)}. We provide a reduction
from the NP-complete problem E3C as introduced in Section 2.3.

Now, let (R,S) be an instance of E3C. We produce an ASHG (N, v) satisfying
vi(j) ∈ {f−(n), f+(n)} for all i, j ∈ N such that (R,S) has an exact cover if
and only if (N, v) has an NS partition. The reduction is illustrated in Figure 2.

Define the agent set as N =
⋃

r∈R{bri : i ∈ [nr − 1]} ∪
⋃

S∈S NS ∪ {c}, where
NS =

{
aSr1 , a

S
r2 , a

S
r3 , a

S
}

for S = {r1, r2, r3} ∈ S. Hence, the agent set consists
of copies of the elements in R according to the frequency with which they occur
in the sets of S minus 1, copies for the elements in sets of S together with
one specific agent for each such set, and an auxiliary agent c. Now, define the
following valuations v:

• For each S ∈ S, a ̸= a′ ∈ NS : va(a
′) = f+(n).

• For each r ∈ R,S ∈ Sr, i ∈ [nr − 1] : vaS
r
(bri ) = vbri (a

S
r ) = vbri (c) = f+(n).

• All other valuations are f−(n).

This reduction can be performed in polynomial time, as there are at most
4|S|+ |R||S|+ 1 agents, and f+, f− can be computed in polynomial time. We
claim that (R,S) admits an exact cover S ′ ⊆ S if and only if (N, v) has an NS
partition.

=⇒ Suppose (R,S) has an exact cover S ′ ⊆ S. We construct an NS partition π.

• First, we create coalitions corresponding to the cover. For each S ∈ S, we
take NS ∈ π if and only if S ∈ S ′.
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Figure 2: The reduction from the proof of Theorem 1 for the Yes-instance of E3C ({S, T, U})
with S = {1, 2, 3}, T = {2, 3, 4} and U = {4, 5, 6}. Drawn edges have weight f+(n), omitted
edges have weight f−(n). The partition corresponding to the exact cover {S,U} is highlighted.

• This leaves for each r ∈ R exactly nr − 1 sets S ∈ Sr such that NS ̸∈ π.
Arbitrarily number these sets S1, . . . , Snr−1 and define for each i ∈ [nr − 1]
the coalition

{
aSi
r , bri

}
.

• All agents aS with NS ̸∈ π are in a singleton: π(aS) =
{
aS

}
.

• Agent c is also in a singleton: π(c) = {c}.

To see that this partition is Nash-stable, we perform a case analysis for the
various types of agents in order to show that no agent has an incentive to deviate.

• An agent a with π(a) = NS has va(π) = 3f+(n), whereas every other
coalition contains at most one agent she likes. So she has no incentive to
deviate.

• An agent aSr with π(aSr ) ̸= NS is in a pair with an agent bri , and so are the
other two agents aSr′ from NS . Thus, vaS

r
(π) = f+(n), whereas every other

coalition contains at most one agent she likes. So she has no incentive to
deviate.

• An agent aS with π(aS) ̸= NS is alone, but all other agents aSr ∈ NS are
in a pair with an agent bri that she dislikes, and as f+(n) + f−(n) ≤ 0, she
has no incentive to deviate.

• An agent bri is in a pair with an agent aSr , so she has vbri (π) = f+(n). The
best alternative would be joining c, which does not yield an improvement
in utility, so she has no incentive to deviate.

12



• Finally, c has vc(π) = 0, which is her most desired outcome, as she dislikes
all other agents.

Together, we conclude that π is Nash-stable.

⇐= Suppose now that (N, v) contains an NS partition π. We show that there
exists an exact cover S ′ ⊆ S of R. We begin with some observations:

1. Agent c must be in a singleton coalition, otherwise she would deviate to a
singleton coalition.

2. Agents bri must have utility vbri (π) ≥ f+(n), otherwise they would join {c}.

3. Coalitions of agents aS satisfy π(aS) ∩NS′ = ∅ for S′ ≠ S. Suppose for
contradiction that there is an agent a ∈ π(aS) ∩NS′ . Consider the sets
A =

{
i ∈ π(aS) : va(i) = f+(n)

}
and A′ =

{
i ∈ π(aS) : vaS (i) = f+(n)

}
.

Then, we have A∩A′ = ∅. If |A| ≤ |A′|, then a has an incentive to deviate
to a singleton as she dislikes all agents from A′ as well as aS . Similarly, if
|A′| ≤ |A|, then aS has an incentive to form a singleton coalition as she
dislikes all agents from A as well as a.

4. Using Observation 3, we must have π(aS) ̸= π(bri ), as otherwise vbri (π) ≤ 0,
contradicting Observation 2. Hence, we have π(aS) ⊆ NS for all S ∈ S.

5. Now, consider an agent bri . Define the sets A =
{
aSr : S ∈ Sr

}
and

B =
{
brj : j ∈ [nr − 1]

}
. By Observation 2, we must have |A ∩ π(bri )| ≥

|π(bri ) \A|. We show that we must have |A ∩ π(bri )| = |π(bri ) \A|. Sup-
pose for contradiction that |A ∩ π(bri )| > |π(bri ) \A|. Then, each agent
aSr ∈ A∩π(bri ) has vaS

r
(π) ≤ 0 and would, by Observation 4, rather deviate

to π(aS). Moreover, we show that we must have π(bri ) \A ⊆ B. Suppose
for contradiction that this is not true. Then there are two cases. In the
first case, there is an agent br

′

j ∈ π(bri ) \A with r ̸= r′. This agent dislikes
all agents in A, and so would rather deviate to join {c}. In the second
case, there is an agent aSr′ ∈ π(bri ) \A with r ̸= r′. This agent dislikes all
but one agent from A as well as bri , so would rather deviate to join π(aS).

Observation 5 shows that coalitions of agents bri are of the form A ⊎B, where
A ⊆

{
aSr : S ∈ Sr

}
, B ⊆

{
brj : j ∈ [nr − 1]

}
and |A| = |B|. This leaves for each

r ∈ R exactly one agent aSr that is not in such a coalition. For these agents we
have π(aSr ) = NS , yielding a cover S ′ = {S ∈ S : NS ∈ π}.

Theorem 1 requires the negative utility value to be at least as large in absolute
value as the positive utility value. While we leave open the computational
complexity for completely arbitrary pairs of negative and positive values, we can
show that the problem is also hard when the positive utility value is significantly
larger than the absolute value of the negative utility value. The reduction is a
variant of the reduction in Theorem 1. The essential difference is that we now
represent every element in the ground set of an E3C instance by a pair of agents.
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Figure 3: The reduction from the proof of Theorem 2 for the Yes-instance of E3C
({1, . . . , 6}, {S, T, U}) with S = {1, 2, 3}, T = {2, 3, 4} and U = {4, 5, 6}. Drawn edges have
weight n, and omitted edges have weight −1. The partition corresponding to the exact cover
{S,U} is highlighted.

Theorem 2. Deciding whether an AFG has an NS partition is NP-complete.

Proof. We provide another reduction from E3C. The reduction is illustrated in
Figure 3. Let (R,S) be an instance of E3C. We produce an AFG (N, v) such
that (R,S) has an exact cover if and only if (N, v) has an NS partition. Define
the agent set N = {d} ∪

⋃
S∈S NS ∪

⋃
r∈R({cr1, cr2} ∪ {bri : i ∈ [nr − 1]), where

NS =
{
aSr : r ∈ S

}
for S ∈ S.

Also, define the following valuations v:

• For each S ∈ S, a ̸= a′ ∈ NS : va(a
′) = n.

• For each r ∈ R,S ∈ Sr, i ∈ [nr − 1] : vaS
r
(bri ) = vbri (a

S
r ) = vbri (d) = n.

• For each r ∈ R,S ∈ Sr : vcr1(a
S
r ) = vcr1(c

r
2) = vcr2(c

r
1) = vcr2(d) = n.

• All other valuations are −1.

This reduction can be performed in polynomial time, as there are only polyno-
mially many agents. We now claim that (R,S) has an exact cover S ′ ⊆ S if and
only if (N, v) has an NS partition.

=⇒ Suppose (R,S) has an exact cover S ′ ⊆ S. We construct an NS partition π.

• First, we create coalitions corresponding to the cover, i.e., for each S ∈ S :
NS ∈ π if and only if S ∈ S ′.
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• This leaves for each r ∈ R exactly nr − 1 sets S ∈ Sr such that NS ̸∈ π.
Arbitrarily number these sets S1, . . . , Snr−1 and define for each i ∈ [nr − 1]
the coalition

{
aSi
r , bri

}
.

• For each r ∈ R, the agents cr1 and cr2 are in a pair {cr1, cr2}.

• Agent d is in a singleton {d}.

In this partition, each agent (except d who has no friends) is together with some
number of friends and no enemies. Every alternative coalition has at most as
many friends as the current coalition, so no agent has an incentive to deviate.

⇐= Conversely, assume that (N, v) has an NS partition π. We show that there
exists an exact cover S ′ ⊆ S of R. We begin with some observations:

1. Agent d must be in a singleton coalition because her value for any other
agent is negative.

2. An agent cr2 must be in a pair with cr1, otherwise she would join {d}.

3. An agent bri must be in a coalition with at least one agent aSr , otherwise
she would join {d}.

4. Agents aSr and aS
′

r with S ̸= S′ must be in distinct coalitions, otherwise cr1
would join them.

5. Combining Observations 3 and 4, we get that each agent bri must be in a
pair with exactly one agent aSr .

Define S ′ = {S ∈ S : π(aSr ) ∩ {bri : i ∈ [nr − 1]} = ∅ for some r ∈ S}. We
claim that S ′ partitions R. First, we know that, for each r ∈ R, exactly nr − 1
of the agents aSr must be in pairs with agents bri . This leaves exactly one
agent aSr not in a pair, and therefore not in a coalition with any agent from
{bri : i ∈ [nr − 1]}. Hence, every agent in R is covered by S.

Now, assume for contradiction that there are S1, S2 ∈ S with S1 ∩ S2 ̸= ∅.
Let j ∈ [2]. Then, there exists rj ∈ Sj with π(a

Sj
rj ) ∩

{
b
rj
i : i ∈ [nr − 1]

}
= ∅.

Since π is Nash-stable, it must be the case that π(a
Sj
rj ) contains at least one

friend of aSj
rj and therefore |π(aSj

rj )∩NSj | ≥ 2. Now, every agent in NSj \ π(a
Sj
rj )

can have at most one friend and would therefore perform an NS deviation to join
π(a

Sj
rj ). Hence, there can be no such agent and therefore ASj ⊆ π(a

Sj
rj ). Hence,

for r ∈ S1 ∩ S2, at most nr − 2 agents can be in pairs with agents bri . This is a
contradiction. Thus, the sets in S ′ are disjoint and therefore S ′ partitions R.

Our next result settles the computational complexity of contractual Nash
stability in ASHGs. Generally, we follow the proof scheme described in Section 2.3.
Still, since this is the first time that we see the entire scheme in practice, we
start by describing how it works in this specific case.

Given an instance (R,S) of E3C, the reduced instance consists of several
gadgets. First, every element in R is represented by a subgame that does not
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contain a CNS partition. In principle, any such game can be used for a reduction,
and we use a simple game identified by Sung and Dimitrov (2007). Moreover,
we have further auxiliary gadgets that also consist of the same No-instance. The
number of these auxiliary gadgets is equal to the number of sets in S that would
remain after removing an exact cover of R, i.e., there are |S|−|R|/3 such gadgets.
By design, the agents in the subgames corresponding to No-instances have to
form coalitions with agents outside of their subgame in every CNS partition.
The only agents that can achieve this are agents in gadgets corresponding to
elements in S. A gadget corresponding to an element S ∈ S can either prevent
nonstability caused by exactly one auxiliary gadget, or by the three gadgets
corresponding to the elements r ∈ R with r ∈ S. Hence, the only possibility to
deal with all No-instances simultaneously is if there exists an exact cover of R
by sets in S. Then, the gadgets corresponding to elements in R can be dealt
with by the cover, and there are just enough elements in S to additionally deal
with the other auxiliary gadgets.

Theorem 3. Deciding whether an ASHG contains a CNS partition is NP-
complete.

Proof. We provide a reduction from E3C. Let (R,S) be an instance of E3C and
set a = |S| − |R|/3 (this is the number of additional sets in S if removing some
exact cover). Without loss of generality, a ≥ 0. We define an ASHG (N, v) as
follows. Let N = NS ∪ N̄S ∪NR ∪NA where

• NS = ∪S∈SNS with NS = {aSr : r ∈ S} for S ∈ S,

• N̄S = ∪S∈SN̄S with N̄S = {āSr : r ∈ S} for S ∈ S, and

• NR = ∪r∈RNr with Nr = {bri : i ∈ [4]} for r ∈ R,

• NA = ∪1≤j≤aN
j with N j = {xj

i : i ∈ [4]} for 1 ≤ j ≤ a.

We define valuations v as follows:

• For each r ∈ R, i ∈ [3]: vbri (b
r
4) = 1.

• For each r ∈ R, (i, j) ∈ {(1, 2), (2, 3), (3, 1)}: vbri (b
r
j) = 0.

• For each 1 ≤ j ≤ a, i ∈ [3]: vxj
i
(xj

4) = 1.

• For each 1 ≤ j ≤ a, (i, k) ∈ {(1, 2), (2, 3), (3, 1)}: vxj
i
(xj

k) = 0.

• For each S ∈ S, r ∈ S: vaS
r
(br4) = 1.

• For each S ∈ S, r ∈ S, 1 ≤ j ≤ a: vaS
r
(xj

4) = vxj
4
(aSr ) = 0.

• For each S ∈ S, r, r′ ∈ S: vaS
r
(aSr′) = 0.

• For each S ∈ S, r, r′ ∈ S, r ̸= r′, z ∈ (NS ∪ NA) \ NS : vāS
r
(aSr ) = 3,

vāS
r
(aSr′) = −2, and vāS

r
(z) = 0.
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Figure 4: Schematic of the reduction from the proof of Theorem 3. We depict the reduced
instance for the instance (R,S) of E3C where R = {1, 2, 3, 4, 5, 6}, and S = {S, T, U}, with
S = {1, 2, 3}, T = {2, 3, 4}, and U = {4, 5, 6}. Fully drawn edges mean a positive utility, which
is usually 1 except between agents of the types āSr and aSr , where vāS

r
(aSr ) = 3. Dashed edges

represent a utility of 0. For agents in N̄S , only the single positive utility is displayed, but not
the 0-utilities and negative utility of −2 to other agents in Nr. Other omitted edges represent
a negative utility of −4.

• All other valuations are −4.

An illustration of the game is given in Figure 4. The agents in NR in the
reduced instance form gadgets consisting of a subgame without a CNS partition
for every element in R. The agents in NA constitute further such gadgets. The
agents in NS consist of triangles for every set in S and are the only agents who
can bind agents in the gadgets in any CNS partition. Finally, agents in N̄S avoid
having agents in NS in separate coalitions to bind agents in NA.

We claim that (R,S) is a Yes-instance if and only if (N, v) contains a CNS
partition.

=⇒ Suppose first that S ′ ⊆ S partitions R. Consider any bijection ϕ : S \S ′ →
[a]. Define a partition π by taking the union of the following coalitions:

• For every r ∈ R, i ∈ [3], form {bri }.

• For S ∈ S ′, r ∈ S, form {aSr , br4}.

• For S ∈ S \ S ′, form {aSr : r ∈ S} ∪ {xϕ(s)
4 }.

• For S ∈ S, r ∈ S, form {āSr }.

• For 1 ≤ j ≤ a, i ∈ [3], form {xj
i}.

We claim that π is contractually Nash-stable. We will show that no agent
can perform a deviation.
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• For r ∈ R, i ∈ [3], it holds that vbri (π) = 0 and joining any other coalition
results in a negative utility. In particular, vbri (π(b

r
4) ∪ {bri }) = −3.

• For r ∈ R, br4 is not allowed to leave her coalition.

• For S ∈ S ′, r ∈ S, it holds that vaS
r
(π) = 1 and joining any other coalition

results in a negative utility. The agent aSr is in a most preferred coalition.

• For S ∈ S \ S ′, r ∈ S, it holds that vaS
r
(π) = 0 and joining any other

coalition results in a negative utility. In particular, vaS
r
(π(br4)∪{aSr }) = −3.

• For S ∈ S ′, r ∈ S, the agent āSr obtains a nonpositive utility by joining
any other coalition. In particular, vāS

r
(π(aSr ) ∪ {āSr }) = −1.

• For S ∈ S \ S ′, r ∈ S, the agent āSr obtains a nonpositive utility by joining
any other coalition. In particular, vāS

r
(π(aSr ) ∪ {āSr }) = −1.

• For 1 ≤ j ≤ a, i ∈ [3], it holds that vxj
i
(π) = 0 and joining any other

coalition results in a negative utility. In particular, vxj
i
(π(xj

4)∪{x
j
i}) = −11.

• For 1 ≤ j ≤ a, xj
4 is in a best possible coalition (achieving utility 0).

⇐= Conversely, assume that (N, v) contains a CNS partition π. Define
S ′ = {S ∈ S : π(aSr )∩NR ̸= ∅ for some r ∈ S}. We will show first that S ′ covers
all elements in R and then show that |S ′| = |R|/3.

Let r ∈ R. Then, for all i ∈ [3], π(bri ) ⊆ Nr. This follows because there is no
agent who favors bri in her coalition. Therefore, she would leave any coalition
with an agent outside Nr to receive nonnegative utility in a singleton coalition.
Further, if there is no S ∈ S with r ∈ S such that br4 ∈ π(brS), then π(br4) ⊆ Nr.
Indeed, if br4 forms any coalition except a singleton coalition, she will receive
negative utility, and then there must exist an agent who favors her in the coalition.
Consequently, if br4 /∈ π(brS) for all S ∈ S with r ∈ S, then br4 is in a singleton
coalition, or there exists i ∈ [3] with br4 ∈ π(bri ), for which we already know that
π(bri ) ⊆ Nr.

Assume now that π(br4) ⊆ Nr. For i, i′ ∈ [3], bri /∈ π(bri′) because then one
of them would receive a negative utility and could perform a CNS deviation
to form a singleton coalition. If {br4} ∈ π, then br1 would deviate to join her.
Hence, there exists exactly one i ∈ [3] with {bri , br4} ∈ π. Suppose without loss
of generality that {br1, br4} ∈ π. But then, br3 would perform a CNS deviation to
join them, a contradiction. We can conclude that there exists S ∈ S with r ∈ S
such that br4 ∈ π(brS). Hence, S ∈ S ′ and we have shown that S ′ covers R.

To bound the cardinality of S ′, we will show that, for every 1 ≤ j ≤ a, there
exists S ∈ S \ S ′ with NS ⊆ π(xj

4). Let therefore 1 ≤ j ≤ a and let C = π(xj
4).

Similar to the considerations about agents in Nr, we know that π(xj
i ) ⊆ Xj for

i ∈ [3], and that it cannot happen that C ⊆ Xj , and therefore C ∩Xj = {xj
4}.

In particular, there must be an agent y ∈ N \Xj with y ∈ C. Since no agent
in C favors xj

4 to be in her coalition, we know that vxj
4
(π) ≥ 0 and therefore
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C ⊆ {xj
4} ∪ NS . Let S ∈ S and r ∈ S with aSr ∈ C. As we already know

that āSr /∈ C, it must hold that NS ⊆ C to prevent her from joining. It follows
that S /∈ S ′. Since π(xj

4) ∩ π(xj′

4 ) = ∅ for 1 ≤ j′ ≤ a with j′ ̸= j, we find an
injective mapping ϕ : [a] → S \ S ′ such that, for every 1 ≤ j ≤ a, Nϕ(j) ⊆ π(xj

4).
Consequently, |S ′| ≤ |S| − |ϕ([a])| ≤ |S| − a = |R|/3. Hence, S ′ covers all
elements from R with (at most) |R|/3 sets and therefore is an exact cover.

The reduction in the previous proof only uses a very limited number of
different weights, namely the weights in the set {3, 1, 0,−2,−4}, where the
weight −4 may be replaced by an arbitrary smaller weight. By contrast, we will
see in the next section that CNS partitions always exist if the utility functions of
an ASHG assume at most one nonpositive value, and can be computed efficiently
in this case (cf. Theorem 5). This encompasses, for instance, FEGs, AFGs, and
AEGs. Hence, the hardness result is close to the boundary of computational
feasibility.

4. Deviation Lemma and Applications

In this section, we will present a unified approach for proving the existence
of stable partitions. Even more, our technique allows us to prove convergence
of dynamics. The goal is to apply a potential function argument that crucially
hinges on the following general observation.

Lemma 1 (Deviation Lemma). Let π0
i1−→ π1

i2−→ . . .
ik−→ πk be a sequence of k

single-agent deviations. Then, the following identity holds:∑
j∈[k]

|πj(ij)| − |πj−1(ij)| =
1

2

∑
i∈N

|πk(i)| − |π0(i)|. (1)

Proof. Let π0
i1−→ π1

i2−→ . . .
ik−→ πk be a sequence of k single-agent deviations

and fix some j ∈ [k]. Then, the following facts hold:

|πj(ij)| =

 ∑
i∈πj(ij)\{ij}

|πj(i)| − |πj−1(i)|

+ 1,

|πj−1(ij)| =

 ∑
i∈πj−1(ij)\{ij}

|πj−1(i)| − |πj(i)|

+ 1,

πj(i) = πj−1(i) ∀i ∈ N \ (πj(ij) ∪ πj−1(ij)) .

Combining these facts allows us to express the difference of the deviator’s
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coalition sizes as follows:

|πj(ij)| − |πj−1(ij)| =

 ∑
i∈πj(ij)\{ij}

|πj(i)| − |πj−1(i)|


−

 ∑
i∈πj−1(ij)\{ij}

|πj−1(i)| − |πj(i)|


+

∑
i∈N\(πj(ij)∪πj−1(ij))

|πj(i)| − |πj−1(i)|

=
∑

i∈N\{ij}

|πj(i)| − |πj−1(i)|.

Adding |πj(ij)| − |πj−1(ij)| to both sides yields

2 (|πj(ij)| − |πj−1(ij)|) =
∑
i∈N

|πj(i)| − |πj−1(i)|.

Summing these terms for all j ∈ [k], interchanging summation order, and
telescoping gives∑

j∈[k]

2 (|πj(ij)| − |πj−1(ij)|) =
∑
j∈[k]

∑
i∈N

|πj(i)| − |πj−1(i)|

2
∑
j∈[k]

|πj(ij)| − |πj−1(ij)| =
∑
i∈N

∑
j∈[k]

|πj(i)| − |πj−1(i)|

2
∑
j∈[k]

|πj(ij)| − |πj−1(ij)| =
∑
i∈N

|πk(i)| − |π0(i)|.

Dividing both sides by 2 completes the proof.

The Deviation Lemma is especially useful as the sum on the right-hand side
of Equation (1) does not depend on k, and we can, therefore, also find bounds
for its left-hand side solely depending on the number of players n.

Lemma 2. Consider a sequence of k successive single-agent deviations

π0
i1−→ π1

i2−→ . . .
ik−→ πk.

Then, the following bounds hold:

−n(n− 1)

2
≤

∑
j∈[k]

|πj(ij)| − |πj−1(ij)| ≤
n(n− 1)

2
.

Proof. Observe that for all i ∈ N and all partitions π, we have

1 ≤ |π(i)| ≤ n.
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Thus, we can find the bounds

−n(n− 1) ≤
∑
i∈N

|πk(i)| − |π0(i)| ≤ n(n− 1).

Applying Lemma 1 yields the desired result.

We demonstrate the power of the Deviation Lemma by proving convergence
of the dynamics for a variety of deviation types and classes of ASHGs.

Theorem 4. The IS dynamics converges in ASHGs with at most one nonnegative
utility value.

Proof. Let (N, v) be an ASHG such that the vi take on at most one nonnegative
value. If there are no nonnegative valuations, then all IS deviations are singleton
formations. Hence, after at most n deviations, we reach a stable partition.

Now, suppose that there is exactly one nonnegative utility value x ≥ 0. If
there are no negative valuations, then in case x = 0 we terminate immediately,
and in case x > 0 the grand coalition will form after at most n2 deviations.
The latter holds because every deviation increases the number of pairs of agents
which are part of the same coalition. Thus, we will now assume that in addition
to the single nonnegative utility value x, there is at least one negative utility
value, and we denote the largest absolute value of a negative utility value by
y. Further, define ∆ = min{vi(C)− vi(C

′) : i ∈ N, C,C ′ ∈ Ni, vi(C) > vi(C
′)}.

Intuitively, ∆ > 0 is the minimum improvement any agent is guaranteed to
have when making an NS deviation. Further, consider the potential function Φ
defined by the social welfare of a partition as Φ(π) =

∑
i∈N vi(π).

Let us investigate how this potential changes for a single IS deviation π
i−→ π′.

Φ(π′)− Φ(π) = vi(π
′)− vi(π)︸ ︷︷ ︸

deviator

+
∑

j∈π′(i)\{i}

vj(π
′)− vj(π)︸ ︷︷ ︸

welcoming coalition

+
∑

j∈π(i)\{i}

vj(π
′)− vj(π)︸ ︷︷ ︸

abandoned coalition

= vi(π
′)− vi(π) +

∑
j∈π′(i)\{i}

vj(i)−
∑

j∈π(i)\{i}

vj(i)

= vi(π
′)− vi(π) + x (|π′(i)| − 1)−

∑
j∈π(i)\{i}

vj(i)

≥ ∆+ x (|π′(i)| − 1)− x (|π(i)| − 1)

= ∆+ x (|π′(i)| − |π(i)|) .

The third equality comes from the fact that i performs an IS deviation, so all
agents j ∈ π′(i) \ {i} must accept i, which means they must have vj(i) = x.
Now, let π0 be any initial partition and consider any sequence of k successive IS
deviations

π0
i1−→ π1

i2−→ . . .
ik−→ πk.
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Telescoping and termwise application of the above inequality yields Φ(πk) −
Φ(π0) =

∑
j∈[k] Φ(πj) − Φ(πj−1) ≥

∑
j∈[k] ∆+ x (|πj(ij)| − |πj−1(ij)|) = k∆+

x
∑

j∈[k]|πj(ij)| − |πj−1(ij)|. We recognize the sum from the Deviation Lemma,
which can be bounded from below using Lemma 2:

Φ(πk)− Φ(π0) ≥ k∆− x
n(n− 1)

2
. (2)

As the right-hand side is unbounded in k, the sequence must be finite. To be
precise, we can bound the potentials of the initial and final partitions by

Φ(π0) ≥ −n(n− 1)y, Φ(πk) ≤ n(n− 1)x.

Substituting in these bounds and rearranging for k gives

k ≤ (2y + 3x)n(n− 1)

2∆
. (3)

There are a few important insights gained by the previous proof. First, the
bound obtained via the Deviation Lemma does not mean that the potential
function Φ is increasing in every round. In fact, since utilities are not necessarily
symmetric, the deviating agent might move from a rather large coalition to a
smaller coalition, only improving her utility by ∆, whereas the utility of all
agents in the abandoned coalition is decreased by x. In fact, the Deviation
Lemma does not give us control of the potential function in a single round. Also,
it does not control the utility changes caused by the deviator. We apply it to
control the utility changes of agents involved in deviations except for the deviator
to obtain Equation (2). Hence, we can bound their utility changes by a global
constant solely depending on input data. The utility changes caused by the
deviator will then eventually lead to the potential reaching a local maximum.

Second, we can easily obtain polynomial bounds on the running time of the
dynamics. If x and y are polynomially bounded in n and all valuations are
integer, polynomial running time is directly obtained from Equation (3). In
particular, this is the case for FEGs, AFGs, and AEGs, so individually stable
partitions can be found in polynomial time for these games. After showing two
more applications of the Deviation Lemma for other types of deviations, we will
capture this observation in Corollary 1.

Third, the previous theorem is tight in the sense that the dynamics can
cycle if we have two nonnegative utility values. Indeed, consider the instance
with agent set N = [5] and utility values vi(j) = 1, vj(i) = 0 for (i, j) ∈
{(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}. All other values are −2. In this example, no
IS partition exists (see also Bogomolnaia and Jackson, 2002, Example 5), and
therefore, the dynamics is doomed to cycle. Notably, the example still works
when replacing 0 and 1 by any two different nonnegative utility values x and y,
and replacing the negative utility value by −x− y − 1.

Our next application of the Deviation Lemma considers contractual Nash
stability, where we obtain a similar result if we allow at most one nonpositive
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value. The proof is completely analogous and is therefore omitted. Note that
this result also breaks down if we simultaneously allow the utility values −1
and 0 by constructing a similar cycle as in the previous example.

Theorem 5. The CNS dynamics converges in ASHGs with at most one nonpos-
itive utility value.

Theorems 4 and 5 use the Deviation Lemma to derive positive results for
individual stability and contractual Nash stability, which only involve either the
welcoming or the abandoned coalition. In a third application of the lemma, we
show that this technique is also applicable for majority-based stability notions,
at least when we involve both the welcoming and the abandoned coalition in
the vote. The key idea is a suitable arrangement of the terms occurring in the
difference of the potential with respect to the agents affected by a deviation.

Theorem 6. The JMS dynamics converges in ASHGs with at most two distinct
utility values.

Proof. Let (N, v) be an ASHG such that the vi take on at most two distinct
values, and consider once again the potential

Φ(π) =
∑
i∈N

vi(π).

If the vi take on only one value or both values are nonnegative (resp., nonpositive),
convergence is clear, as Φ increases with every JMS deviation. So suppose that
the vi are restricted to {−y, x} with y > 0 and x > 0. As in the proof of
Theorem 4, set ∆ = min{vi(C)− vi(C

′) : i ∈ N, C,C ′ ∈ Ni, vi(C) > vi(C
′)}.

Let us now investigate a single JMS deviation π
i−→ π′. To reduce notational

clutter, set Fin = Fin(π(i), i), Fout = Fout(π(i), i), F
′
in = Fin(π

′(i), i), and F ′
out =

Fout(π
′(i), i). Note that, by definition of a JMS deviation, we have |F ′

in|+|Fout| ≥
|F ′

out|+ |Fin|, from which we can conclude

|F ′
in| − |Fin| ≥

|F ′
in| − |Fin|+ |F ′

out| − |Fout|
2

≥ |F ′
out| − |Fout|.

Further, note that due to the restriction of the utility values to {−y, x}, we have

∀j ∈ Fin ∪ F ′
in : vj(i) = x,∀j ∈ Fout ∪ F ′

out : vj(i) = −y

and
|Fin|+ |Fout| = |π(i)| − 1, |F ′

in|+ |F ′
out| = |π′(i)| − 1.

Combining with our inequality from above, we obtain

|F ′
in| − |Fin| ≥

|π′(i)| − |π(i)|
2

≥ |F ′
out| − |Fout|.
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The change in Φ through the JMS deviation can then be bounded as

Φ(π′)− Φ(π) = vi(π
′)− vi(π)︸ ︷︷ ︸

deviator

+
∑

j∈π′(i)\{i}

vj(π
′)− vj(π)︸ ︷︷ ︸

welcoming coalition

+
∑

j∈π(i)\{i}

vj(π
′)− vj(π)︸ ︷︷ ︸

abandoned coalition

= vi(π
′)− vi(π) +

∑
j∈π′(i)\{i}

vj(i)−
∑

j∈π(i)\{i}

vj(i)

= vi(π
′)− vi(π) + x|F ′

in| − y|F ′
out| − x|Fin|+ y|Fout|

= vi(π
′)− vi(π) + x (|F ′

in| − |Fin|)− y (|F ′
out| − |Fout|)

≥ ∆+ x
|π′(i)| − |π(i)|

2
− y

|π′(i)| − |π(i)|
2

.

Now, let π0 be any initial partition and consider any sequence of k successive
JMS deviations

π0
i1−→ π1

i2−→ . . .
ik−→ πk.

Telescoping and termwise application of the above inequality gives

Φ(πk)− Φ(π0) =
∑
j∈[k]

Φ(πj)− Φ(πj−1)

≥
∑
j∈[k]

∆+ x
|πj(ij)| − |πj−1(ij)|

2
− y

|πj(ij)| − |πj−1(ij)|
2

= k∆+
x− y

2

∑
j∈[k]

|πj(ij)| − |πj−1(ij)|.

The sum from Lemma 1 appears for prefactors of different sign, and can be
bounded using Lemma 2:

Φ(πk)− Φ(π0) ≥ k∆− x+ y

2

n(n− 1)

2

= k∆− (x+ y)n(n− 1)

4
.

As the right-hand side is unbounded in k, the sequence must be finite. To be
precise, we can bound the potentials of the initial and final partitions by

Φ(π0) ≥ −n(n− 1)y, Φ(πk) ≤ n(n− 1)x.

Substituting in these bounds and rearranging for k gives

k ≤ (5x+ 5y)n(n− 1)

4∆
. (4)
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Note that since every JMS deviation is also an SMS deviation, the previous
result holds for SMS as well. As in the discussion after Theorem 4, we obtain a
polynomial running time of the dynamics for appropriate restrictions of the cases.
We collect important consequences in the following corollary. In particular, we
extend results by Dimitrov et al. (2006) and Aziz and Brandl (2012) who proved
the existence of IS partitions for AFGs and AEGs, respectively.5

Corollary 1. The IS, CNS, and JMS dynamics converge in polynomial time in
AFGs, AEGs, and FEGs.

Inspecting Equations (3) and (4), one can immediately obtain a running time
of O(n3) for AFGs and AEGs, and of O(n2) for FEGs. We conjecture that the
former bound can be improved with a more refined analysis. We would, however,
like to stress that convergence of the dynamics does not guarantee a polynomial
running time in general. An example is the case of symmetric utility values in
ASHGs. For NS this can be directly inferred from the PLS reduction by Gairing
and Savani (2019), which satisfies tightness, a property of reductions defined by
Schäffer and Yannakakis (1991).

Proposition 1. The NS dynamics in symmetric ASHGs may require exponen-
tially many rounds before converging to an NS partition.

Proof. It is easy to verify that the PLS reduction from PartyAffiliation under
the Flip neighborhood by Gairing and Savani (2019, Observation 2) is tight.
Schäffer and Yannakakis (1991, Lemma 3.3) showed that tight reductions preserve
the existence of exponentially long running times of the standard local search
algorithm, i.e., the NS dynamics in our case. Note that the standard local search
algorithm of the source problem can have an exponential running time, because
PartyAffiliation is a generalization of MaxCut whose standard local search
algorithm can run in exponential time with respect to the flip neighborhood
(Schäffer and Yannakakis, 1991, Theorem 5.15).6

While the previous proposition uses a nonconstructive argument and, there-
fore, does not identify an explicit example with an exponential running time,
it is possible to construct such an example even in the more restricted case of
IS dynamics. To this end, we modify an example for MaxCut provided by
Monien and Tscheuschner (2010) by essentially reverting the sequence of flips
for MaxCut to obtain an execution of the IS dynamics. Thus, we generalize
the previous proposition via a constructive proof.

Proposition 2. The IS dynamics in symmetric ASHGs may require exponentially
many rounds before converging to an IS partition.

5Their work even shows the existence of partitions satisfying properties stronger than IS.
6We refer to the respective references for formal definitions of the involved combinatorial

problems.
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N0 N1 N2 Nk

Figure 5: Exponential length IS dynamics inspired by Monien and Tscheuschner (2010). The
starting partition into two coalitions is indicated by the coloring of the vertices.
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Figure 6: Utilities in the subgame induced by Ni

Proof. We define a class of ASHGs parametrized by k ∈ N. Define the agent
set as N = N0 ∪

⋃k
i=1 Ni with N0 = {a1, a2, b0} and for 1 ≤ i ≤ k, define

Ni = {bi, ai,1, ai,2, ai,3, ai,4}. Consider the symmetric ASHG on this set of
agents with utility values induced by the graph presented in Figure 5, where the
weights of the game restricted to Ni are depicted in Figure 6.7 More precisely,
the weight function is given by f i

k(j) = j+5(2k−i+1−1).8 All weights on missing
edges are 0.

The underlying combinatorial structure consists of a short path induced by
N0 together with k copies of the same graph with exponentially growing weights.
The agent sets Ni−1 and Ni are connected by a positive utility between bi−1 and
ai,1.

Consider the partition of N indicated by the blue and green vertices and
defined by π = {{a1, b0} ∪

⋃n
i=1{bi, ai,2, ai,4}, {a2} ∪

⋃n
i=1{ai,1, ai,3}}. We claim

7Note that it is necessary in this example that the edge weights grow exponentially. If they
were polynomially bounded, then the IS dynamics would run in polynomial time because every
deviation increases the social welfare.

8Note that there is a typo in the weight function by Monien and Tscheuschner (2010). They
probably meant to use a similar weight function as the one used here.
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that there is an execution of the IS dynamics starting with π where agent bi
performs 2i+1 deviations for i ∈ {0, 1, . . . , k}.

We will recursively construct a sequence of deviating agents. These deviating
agents perform deviations by joining the nonempty coalition which they are
not part of. In the ith step of the recursion, agent bi will already perform 2i+1

deviations, and no agent in Nj will performs a deviation for j > i. Then, we
will insert appropriate subsequences propagating through the graph. These
insertions change the coalition agent ai+1,1 was part of when bi performs an IS
deviation. However, this is not a problem, because the IS deviations of bi are
valid independently of the coalition that ai+1,1 is part of. For i = 0, consider
the sequence of deviations performed by (b0, a2, b0), where b0 performs 2 = 20+1

deviations.
Now, let i ≥ 1 and assume that the sequence is constructed for i − 1. We

extend the sequence of deviations by inserting suitable subsequences. Right
before bi−1 performs her mth deviation, we insert{

(bi, ai,3, bi, ai,2, ai,3, bi, ai,1) if m odd
(ai,2, bi, ai,1) if m even

By the choice of the utility values and the initial partition, this sequence
consists of NS deviations. Since all edge utility values are nonnegative, the
sequence consists indeed of IS deviations. The most interesting deviations
to check are the ones performed by agents ai,1. Whenever they perform a
deviation, they leave the coalition of ai,2 and bi to join the coalition of bi−1.
Indeed, this yields an improvement in utility because f i−1

k (0) = 5(2k−i+2 − 1) >
4+10(2k−i+1−1) = f i

k(3)+f i
k(1). Note that after every even m, the subpartition

of agents in Nk is the same as in the initial partition π. Moreover, the agent bi
performs 2i+1 deviations.

In particular, for i = k, we have found an ASHG with a number of agents
linear in k and (exponential) utility values which also require polynomial space.
However, the constructed execution of the IS dynamics takes exponentially many
rounds with respect to k.

An interesting follow-up question is whether NS or IS dynamics may neces-
sarily require exponential running time, i.e., take an exponential number of steps
regardless of the sequence of deviations. We conjecture that such examples can be
obtained by adapting similar examples for MaxCut (Monien and Tscheuschner,
2010; Michel and Scott, 2024).

5. Complexity of Stability under Majority Consent

In this section, we study stability under majority consent.

5.1. Aversion-To-Enemies Games
First, we contrast the existential results of Theorem 4 and Theorem 5 with the

nonexistence of stable partitions in AEGs under the majority-based relaxations
of the respective stability concepts.
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c1 c2

c3 c4

−n

−n

(a) AEG without MIS partition.

d1 d2

d3 d4
−n

−n

−n

−n

−n−n

(b) AEG without MOS partition.

Figure 7: Aversion-to-enemies games without MIS and MOS partitions from the proof ofPropo-
sition 3. Omitted edges have weight 1.

Proposition 3. There exists an AEG which contains no MIS (or MOS) partition.

Proof. First, we provide an AEG with no MIS partition. Let N = {c1, c2, c3, c4},
i.e., there are n = 4 agents, and valuations defined as vc1(c2) = vc3(c4) = −n
and all other valuations set to 1. The AEG is illustrated in Figure 7a.

Assume for contradiction that there exists an MIS partition π. Then, c1 /∈
π(c2) and c3 /∈ π(c4). Also, |π(c1)| ≤ 1 (and |π(c3)| ≤ 1), because otherwise, c2
(or c4) would join via an MIS deviation. But then π(c1) = {c1} and π(c3) = {c3},
and c1 could deviate to join π(c3), a contradiction.

Second, we provide an AEG without MOS partition. Let N = {d1, d2, d3, d4},
and define valuations for all i, j ∈ [4] with i < j as vdi

(dj) = 1 and vdj
(di) = −4.

An illustration is provided in Figure 7b.
Assume for contradiction that there exists an MOS partition π. Then, every

coalition C ∈ π must fulfill |C| ≤ 2. Otherwise, the agent of C with the second
smallest index would form a singleton via an MOS deviation. In addition, there
cannot be a singleton, because if some agent is in a singleton, there must be a
second such agent, and then the one with the smaller index would join the other
one. Hence, π consists of two pairs. But then d1 would deviate to the pair not
containing her, a contradiction.

We can leverage the AEGs provided in the previous proposition as gadgets
in reductions to show NP-hardness of the associated decision problems. This
can be interpreted as a more exact boundary (compared to Theorem 1) of the
tractabilities encountered in Theorem 4 and Theorem 5 for the special case of
AEGs. We start with majority-in stability.

Theorem 7. It is NP-complete to decide if there exists an MIS partition in
AEGs.

Proof. We perform another reduction from E3C. It is illustrated in Figure 8.
Let (R,S) be an instance of E3C. We produce an AEG (N, v) such that (R,S)
admits an exact cover if and only if (N, v) contains an MIS partition. Define
N = NR ∪NS where

• NR =
⋃

r∈R Nr where Nr =
⋃nr−1

i=1 Br
i with Br

i =
{
bri,j : j ∈ [4]

}
for

r ∈ R, i ∈ [nr − 1], and

• NS =
⋃

S∈S NS with NS =
{
aSr1 , a

S
r2 , a

S
r3 , a

S
}

for S = {r1, r2, r3} ∈ S.
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aS2

aS1 aS3

aS

aT2

aT3 aT4
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aU5

aU4 aU6
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b21,1

b31,1 b41,1

b21,2

b21,3 b21,4

b31,2

b31,3 b31,4

b41,2

b41,3 b41,4

Figure 8: The reduction from the proof of Theorem 7 for the Yes-instance of E3C ({S, T, U})
with S = {1, 2, 3}, T = {2, 3, 4} and U = {4, 5, 6}. Drawn edges have weight 1, omitted edges
have weight −n. The partition corresponding to the exact cover {S,U} is highlighted.

Define valuations v as follows.

• For each S ∈ S, a ̸= a′ ∈ NS : va(a
′) = 1.

• For each r ∈ R,S ∈ Sr, i ∈ [nr − 1]: vaS
r
(bri,1) = vbri,1(a

S
r ) = 1.

• Each Br
i has internal valuations as in the first example of Proposition 3,

i.e., if v′ denotes the valuations of this example, then vbri,j (b
r
i,k) = v′cj (ck),

where the negative valuations are adapted to the specific number of agents
in the instance.

• All other valuations are −n.

We proceed to prove correctness of the reduction.

=⇒ Suppose that (R,S) has an exact cover S ′ ⊆ S. We construct an MIS
partition π as follows.

• First, we create coalitions corresponding to the cover, i.e., for each S ∈ S,
we have NS ∈ π if and only if S ∈ S ′.

• This leaves for each r ∈ R exactly nr − 1 sets S ∈ Sr such that NS ̸∈ π.
Arbitrarily number these sets S1, . . . , Snr−1 and define for each i ∈ [nr − 1]
the coalitions

{
aSi
r , bri,1

}
,
{
bri,2, b

r
i,4

}
, and

{
bri,3

}
.

• Finally, form
{
aS

}
for each S ∈ S \ S ′.
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In this partition, no agent can improve her utility by deviating, making the
partition an NS partition and thus an MIS partition.

⇐= Conversely, assume that (N, v) admits an MIS partition π. We construct
an exact cover S ′ ⊆ S. We begin with some observations:

1. No agent is in a coalition with someone she dislikes, otherwise she would
deviate to a singleton coalition. In particular, this means π(aS) ⊆ NS and
π(bri,j) ⊆ Br

i for j ∈ {2, 3, 4}.

2. Each agent of type bri,1 must be in a coalition with exactly one agent aSr .
If π(bri,1) ⊆ Br

i , we would contradict the fact that the subgame induced
by Br

i has no stable partition (see Proposition 3). As bri,1 cannot form a
coalition with someone she dislikes, at least one agent c of the type aSr
must be in her coalition. Finally, no other agent giving positive utility to
bri,1 can be in a common coalition with c.

Now, we know that for each r ∈ R, exactly nr − 1 of the agents aSr must be in
pairs with bri,1. This leaves exactly one agent aSr not in a pair. We claim that
for these agents we have π(aSr ) = NS . Indeed, it is clear that we then must
have π(aSr ) ⊆ NS . If π(aSr ) = {aSr }, she would deviate to join π(aS). Then,∣∣π(aSr )∣∣ ≥ 2, and members from NS \ π(aSr ) would have an incentive to join
π(aSr ). It follows that NS \ π(aSr ) = ∅, and therefore π(aSr ) = NS . Hence, we
obtain a cover S ′ = {S ∈ S : NS ∈ π}.

Note that it can be shown that a partition in the AEGs constructed in the
reduction of Theorem 7 is Nash-stable if and only if it is majority-in stable.
Hence, the theorem provides yet another proof of the respective statement about
Nash stability first shown by Sung and Dimitrov (2010) (and already revisited
in Theorem 1). We proceed with the analogous result for majority-out stability.

Theorem 8. It is NP-complete to decide if there exists an MOS partition in
AEGs.

Proof. Again, we reduce from E3C. Let (R,S) be an instance of E3C. The
reduced instances are very similar to the instance in Figure 8, so we omit another
illustration. We produce an AEG (N, v) as follows. Define N = NR ∪NS where

• NR =
⋃

r∈R Nr where Nr =
⋃nr−1

i=1 Br
i with Br

i =
{
bri,j : j ∈ [4]

}
for

r ∈ R, i ∈ [nr − 1], and

• NS =
⋃

S∈S NS with NS =
{
aSr1 , a

S
r2 , a

S
r3 , a

S
}

for S = {r1, r2, r3} ∈ S.

Define the following valuations v.

• For each S ∈ S, a ̸= a′ ∈ NS : va(a
′) = 1.

• For each r ∈ R,S ∈ Sr, i ∈ [nr − 1]: vaS
r
(bri,1) = 1.
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• Each Br
i has internal valuations as in the second example constructed in

the proof of Proposition 3, i.e., if v′ are the valuations from this example,
then vbri,j (b

r
i,k) = v′dj

(dk), where the negative valuations are adapted to the
specific number of agents in the instance.

• All other valuations are −n.

We claim that (R,S) has an exact cover if and only if (N, v) has an MOS
partition.

=⇒ Suppose (R,S) has an exact cover S ′ ⊆ S. We construct an MOS
partition π.

• First, we create coalitions corresponding to the cover, i.e., for each S ∈ S,
we have NS ∈ π if and only if S ∈ S ′.

• This leaves for each r ∈ R exactly nr − 1 sets S ∈ Sr such that NS ̸∈ π.
Arbitrarily number these sets S1, . . . , Snr−1 and define for each i ∈ [nr − 1]
the coalitions

{
asir , bri,1

}
,
{
bri,2, b

r
i,3

}
, and

{
bri,4

}
.

• Finally, form
{
aS

}
for each S ∈ S \ S ′.

The only agents that have an NS deviation are agents of types bri,1 and bri,3.
However, there is some S ∈ S such that π(bri,1) =

{
bri,1, a

S
r

}
, and aSr ensures that

bri cannot leave. Similarly, π(bri,3) =
{
bri,3, b

r
i,2

}
, and bri,2 ensures that bri,3 cannot

leave. Note that agents aS for S /∈ S ′ cannot deviate, because all their friends
form a coalition with an enemy. Hence, π is majority-out stable.

⇐= Conversely, assume that (N, v) has an MOS partition π. We construct an
exact cover S ′ ⊆ S. First, we make some observations:

1. Agents bri,2 must have π(bri,2) ⊆ Br
i . If there was an agent a ∈ π(bri,2) \Br

i ,
then, as vbri,2(a) = −n, bri,2 would rather be in a singleton, and could form
one, as

∣∣Fout(π(b
r
i,2), b

r
i,2)

∣∣ ≥ |{a}| = 1 =
∣∣{bri,1}∣∣ ≥ ∣∣Fin(π(b

r
i,2), b

r
i,2)

∣∣.
2. Using Observation 1, we can conclude that agents bri,3 must also have

π(bri,3) ⊆ Br
i .

3. Using Observations 1 and 2, we can conclude that agents bri,4 must also
have π(bri,4) ⊆ Br

i .

4. Agents a ∈ NS and a′ ∈ NS′ with S ̸= S′ satisfy π(a) ̸= π(a′). For
contradiction, suppose this is not the case, i.e., there are a ∈ NS and
a′ ∈ NS′ with S ̸= S′ such that π(a) = π(a′). Define C = π(a). Clearly,
both a and a′ prefer to be in a singleton coalition. Further, we can assume
without loss of generality that |NS ∩ C| ≤ |NS′ ∩ C| (otherwise, we can just
swap them). Then, as |Fout(C, a)| ≥ |NS′ ∩ C| ≥ |NS ∩ C| > |Fin(C, a)|,
agent a could deviate to form a singleton coalition, a contradiction.
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5. Agents bri,1 must be in a coalition with no other agents from Br
i and at

least one other agent from N \ Br
i . This follows from Observations 1, 2,

and 3 in conjunction with the fact that the subgame induced by Br
i is

identical to the example from the second part of Proposition 3 which has
no MOS partition. Due to the valuations for agent bi,1, some agent aSr
must be in her coalition, and due to Observation 4, there can be at most
one such agent in her coalition. If there were further agents from NS in
her coalition, bri,1 could deviate to a singleton coalition. Thus, the only
possibility is that bri,1 is in a pair with exactly one agent aSr .

We now know that for each r ∈ R, exactly nr − 1 of the agents aSr must be in
pairs with bri,1. This leaves exactly one agent aSr not in a pair. For these agents
we have π(aSr ) ⊆ NS . Also, π(aS) ⊆ NS , as any agent outside would like to
leave and there is at most 1 vote for her to stay. Consequently,

∣∣π(aSr )∣∣ ≥ 2,
and members from NS \ π(aSr ) would have an incentive to join π(aSr ). Hence,
π(aSr ) = NS , and we obtain a cover S ′ = {S ∈ S : NS ∈ π}.

5.2. Appreciation-Of-Friends Games
The utility restrictions in Theorems 7 and 8 are not as flexible as in the neg-

ative result for Nash stability in Theorem 1 or the positive results for unanimity-
based dynamics in Theorems 4 and 5. In fact, the picture for majority-based
notions is more diverse because we obtain another positive result for the class of
AFGs.

Theorem 9. When starting from the grand coalition, the MIS dynamics con-
verges after at most n rounds in AFGs.

Proof. The key insight is that there can only be deviations to form a new
singleton coalition yielding no more than n deviations. Let π0 = {N} be the
initial partition, and consider a sequence of k MIS deviations

π0
i1−→ π1

i2−→ . . .
ik−→ πk.

We inductively define coalitions evolving from the grand coalition if removing
the deviator as G0 = N , and Gj = Gj−1 \ {ij} for j > 0.

Now, we proceed to simultaneously prove the following claims by induction:

1. ∀j ∈ [k] : πj−1(ij) = Gj−1.

2. ∀j ∈ [k] : πj(ij) = {ij}.

3. ∀j ∈ [k] :
{
i ∈ πj−1(ij) : vij (i) = n

}
= ∅.

The base case j = 1 is immediate. For the induction step, let 2 ≤ j ≤ k
and suppose the claims are true for all 1 ≤ l < j. We start with the first claim.
By the induction hypothesis, πj−1 = {Gj−1} ∪ {{il} : 1 ≤ l < j}. This means
that if πj−1(ij) ̸= Gj−1, we must have πj−1(ij) = {ij}, indicating ij = il for
some l < j. Then, the welcoming coalition cannot be Gj−1, as ij , by induction
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hypothesis, abandoned Gl−1 due to not having any friends in Gl−1, and thus
has, by Gj−1 ⊆ Gl−1, no friends in Gj−1, either. The alternative is that ij joins
another singleton coalition {im} to form a pair. However, if im abandoned Gm

at some point m < l, then she dislikes ij , and won’t allow her to join. If im
abandoned Gm at some point m > l, then ij dislikes im, and has no incentive to
join. Hence, πj−1(ij) = Gj−1. For the second claim, note that ij cannot join
another singleton {im}, because im abandoned Gm−1 at some point m < j and
thus dislikes ij . Hence, ij must form a singleton πj(ij) = {ij}, which she only
wants to do if

{
i ∈ πj−1(ij) : vij (i) = n

}
= ∅. This accomplishes the third claim,

and completes the induction proof.
Finally, as there can be at most n singletons, the dynamics must terminate

after at most n rounds.

By contrast, we show in our next result that MOS partitions need not exist in
AFGs. In other words, despite their conceptual complementarity, majority-out
and majority-in stability behave differently in a natural subclass of ASHGs. The
constructed game has a sparse friendship relation in the sense that almost all
agents only have a single friend. After discussing the counterexample, we show
how requiring slightly more sparsity yields a positive result.

Proposition 4. There exists an AFG without an MOS partition.

Proof. We define the game formally. An illustration is given in Figure 9. Let
N = {z}∪

⋃
x∈{a,b,c} Nx, where Nx = {xi : i ∈ [5]} for x ∈ {a, b, c}. In the whole

proof, we read indices modulo 5, mapping to the respective representative in the
set [5]. The utilities are given as:

• For all i ∈ [5], x ∈ {a, b, c} : vxi
(xi+1) = n.

• For all x ∈ {a, b, c} : vx1
(z) = n.

• All other valuations are −1.

The AFG consists of 3 cycles with 5 agents each, together with a special
agent that is liked by a fixed agent of each cycle and has no friends herself. The
key insight to understanding why there exists no MOS partition is that agents
of type x1 where x ∈ {a, b, c} have conflicting candidate coalitions in a potential
MOS partition. Either, they want to be with z (a coalition that has to be small
because z prefers to stay alone) or they want to be with x2 which requires a
rather large coalition containing their cycle.

Before going through the proof that this game has no MOS partition, it is
instructional to verify that, for cycles of 5 agents, the unique MOS partition
is the grand coalition, i.e., the unique MOS partition of the game restricted to
Nx is {Nx}, where x ∈ {a, b, c}. This is a key idea of the construction and is
implicitly shown in Case 2 of the proof for x = b.

Assume for contradiction that the defined AFG admits an MOS partition π.
To derive a contradiction, we perform a case distinction over the coalition sizes
of z.
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a2 a5

a3 a4

b2 b5

b3 b4

c2 c5

c3 c4

b1
a1 c1

Figure 9: AFG without an MOS partition. The depicted (directed) edges represent friends,
i.e., a utility of n, whereas missing edges represent a utility of −1.

Case 1: Assume that |π(z)| = 1.
In this case, it holds that π(z) = {z}. Then, π(a1) ∈ {{a1, a2}, {a1, a5}}.

Indeed, if π(a1) ̸= {a1, a2}, then a1 has an NS deviation to join z, and is
allowed to perform it unless π(a1) = {a1, a5}. We may therefore assume that
{ai, ai+1} ∈ π for some i ∈ {1, 5}. Then, π(ai−1) = {ai−1, ai−2}. Otherwise,
ai−1 can perform an MOS deviation to join {ai, ai+1}. But then ai+2 can perform
an MOS deviation to join π(ai−1). This is a contradiction and concludes the
case that |π(z)| = 1.

Case 2: Assume that |π(z)| > 1.
Define F = {a1, b1, c1}, i.e., F is the set of agents that have z as a friend.

Note that z can perform an NS deviation by forming a singleton coalition.
Hence, as π is majority-out stable, |F ∩ π(v)| ≥ |π(z)|/2. In particular, there
exists an x ∈ {a, b, c} with π(z) ∩ Nx = {x1}. We may assume without loss
of generality that π(z) ∩ Na = {a1}. Then, π(a5) = {a4, a5}. Otherwise,
a5 has an MOS deviation to join π(z). Similarly, π(a3) = {a2, a3} (because
of the potential deviation of a3 who would like to join {a4, a5}). Now, note
that va1

({a1, a2, a3}) = n − 1. We can conclude that |π(z)| ≤ 3 as a1 would
join {a2, a3} by an MOS deviation, otherwise. Hence, we find x ∈ {b, c} with
Nx ∩ π(z) = ∅. Assume without loss of generality that x = b has this property.

Assume first that π(b1) = {b1, b5}. Then, π(b4) = {b3, b4}. Otherwise, b4
has an MOS deviation to join {b1, b5}. But then b2 has an MOS deviation to
join {b3, b4}, a contradiction. Hence, π(b1) ̸= {b1, b5}. Note that we have now
excluded the only case where b1 is not allowed to perform an MOS deviation,
because of the vote of her abandoned coalition. In all other cases, no majority
of agents prefers her to stay in the coalition. We can conclude that b2 ∈ π(b1)
because otherwise, b1 can perform an MOS deviation to join π(z). If b5 /∈ π(b1),
then π(b5) = {b4, b5} (to prevent a potential deviation by b5). But then b3 has
an MOS deviation to join them. Hence, b5 ∈ π(b1). Similarly, if b4 /∈ π(b1),
then π(b4) = {b3, b4} and b2 has an MOS deviation to join {b3, b4} (which is
permissible because b5 ∈ π(b1)). Hence {b1, b2, b4, b5} ⊆ π(b1), and therefore
even Nb ⊆ π(b1). Hence, b1 has an MOS deviation to join π(z) (recall that
|π(z)| ≤ 3). This is the final contradiction, and we can conclude that π is not
majority-out stable.
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Note that most agents in the previous example have at most 1 friend (only
three agents have 2 friends). By contrast, if every agent has at most one friend,
MOS partitions are guaranteed to exist. This is interesting because it covers
in particular directed cycles, which include the run-and-chase example in the
introduction, which is a No-instance for Nash stability. The constructive proof
of the following proposition can be directly converted into a polynomial-time
algorithm.

Proposition 5. Every AFG in which every agent has at most one friend admits
an MOS partition.

Proof. We prove the statement by induction over n. Clearly, the grand coalition
is majority-out stable for n = 1. Now, assume that (N, v) is an AFG with n ≥ 2
agents such that every agent has at most one friend. Consider the underlying
directed graph G = (N,A) where (x, y) ∈ A if and only if vx(y) > 0, i.e., y is
a friend of x. By assumption, G has a maximum out-degree of 1, hence it can
be decomposed into connected components containing a directed cycle and a
directed acyclic graph.

Assume first that there exists C ⊆ N such that C induces a directed cycle in
G. We call an agent y reachable by agent x if there exists a directed path in G
from x to y. Let c ∈ C and define R = {x ∈ N : c reachable by x}. Note that
C ⊆ R and that R is identical to the set of agents that can reach any agent in C.
By induction, there exists an MOS partition π′ of the subgame of (N, v) induced
by N \R that is majority-out stable. Define π = π′ ∪ {R}. We claim that π is
majority-out stable. Let x ∈ N \R. By our assumptions on π′, there exists no
MOS deviation of x to join π(y) for y ∈ N \R. In particular, if x is allowed to
perform a deviation, then x must have a nonnegative utility (otherwise, she can
form a singleton coalition contradicting that π′ is majority-out stable). So her
only potential deviations are to a coalition where she has a friend. Note that x
has no friend in R. Indeed, if y was a friend of x in R, then c is reachable for
x in G through the concatenation of (x, y) and the path from y to c. Hence, x
has no MOS deviation. Now, let x ∈ R. Then, vx(π) > 0 because she forms a
coalition with her unique friend. By assumption, x has no friend in any other
coalition. Therefore, x has no MOS deviation either.

We may therefore assume that G is a directed acyclic graph. Hence, there
exists an agent x ∈ N with in-degree 0. If x has no friend, let T = {x}. If x has
a friend y, we claim that there exists an agent w such that (i) w is the friend of
at least one agent and (ii) every agent that has w as a friend has in-degree 0,
i.e., such agents are not the friend of any agent. We provide a simple linear-time
algorithm that finds such an agent. Starting with w = y, we will maintain a
tentative agent w that will continuously fulfill (i) and update w until this agent
also fulfills (ii). Note that the starting agent w = y fulfills (i) because y is a
friend of x. Now, consider any tentative agent w. If w is the friend of some
agent z that is herself the friend of some other agent, update w = z. For the
finiteness (and efficient computability) of this procedure, consider a topological
order σ of the agents N in the directed acyclic graph G (Kahn, 1962), i.e., a
function σ : N → [n] such that σ(a) < σ(b) whenever (a, b) ∈ A. Note that if
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w is replaced by the agent z in the procedure, then σ(z) < σ(w). Hence, w is
replaced at most n times, and our procedure finds the desired agent w after
a linear number of steps. Now, define T = {a ∈ N : w reachable by a}, i.e., T
contains precisely w and all agents that have w as a friend.

We are ready to find the MOS partition. By induction, we find a partition
π′ that is majority-out stable for the subgame induced by N \ T . Consider
π = π′ ∪ {T}. Then, a ∈ T \ {w} has no incentive to deviate, because she has
no friend in any other coalition and has w as a friend. Also, w is not allowed to
perform a deviation, because the nonempty set of agents T \ {w} unanimously
prevents that. Possible deviations by agents in N \ T can be excluded as in the
first part of the proof because these agents have no friend in T . Together, we
have completed the induction step and found an MOS partition.

On the other hand, it is NP-complete to decide whether an AFG contains an
MOS partition. For a proof, we use the game constructed in Proposition 4 as
a gadget in a greater game. The difficulty is to preserve bad properties about
the existence of MOS partitions because the larger game might allow for new
possibilities to create coalitions with the agents in the counterexample.

Theorem 10. Deciding whether an AFG contains an MOS partition is NP-
complete.

Proof. We provide a reduction from E3C. Let (R,S) be an instance of E3C.
We define an ASHG (N, v) as follows. Let N = NR ∪NS where

• NR = ∪r∈RNr with Nr = {ari , bri , cri : i ∈ [5]} ∪ {zr} for r ∈ R and

• NS = ∪S∈SNS with NS = {eSr : r ∈ S} ∪ {eS0 } for S ∈ S.

In the whole proof, we read indices of agents ari , bri , and cri modulo 5, mapping
to the representative in the set [5].

We define utilities v as follows:

• For all S ∈ S, r ∈ S: veSr (e
S
0 ) = n.

• For all S ∈ S, r, r′ ∈ S, r ̸= r′: veSr (e
S
r′) = n.

• For all S ∈ S, r ∈ S: veSr (a
r
1) = n.

• For all r ∈ R, i ∈ [5], and x ∈ {a, b, c}: vxr
i
(xr

i+1) = n.

• For all r ∈ R, x ∈ {a, b, c}: vxr
1
(zr) = n.

• All other valuations are −1.

An illustration of the reduction is provided in Figure 10. As in previous
reductions, the reduced instance consists of two types of gadgets. The elements
in the ground set R are represented by R-gadgets which are subgames identical to
the counterexample in Proposition 4. The sets in S are represented by S-gadgets
consisting of a triple of agents representing its elements in R that are each linked
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Figure 10: Schematic of the reduction from the proof of Theorem 10. We depict the reduced
instance for the instance (R,S) of E3C where R = {1, 2, 3, 4, 5, 6} and S = {S, T, U} with
S = {1, 2, 3}, T = {2, 3, 4}, and U = {4, 5, 6}. Directed edges indicate a utility of n, undirected
edges a mutual utility of n, and missing edges a utility of −1. Every element in R is represented
by a gadget identical to the game in Proposition 4.

to their respective R-gadget. Furthermore, in every S-gadget, there is one special
agent without any friends attracting the other agents in this S-gadget.

We claim that (R,S) is a Yes-instance if and only if the reduced AFG contains
an MOS partition.

=⇒ Suppose first that S ′ ⊆ S partitions R. We define a partition π by taking
the union of the following coalitions:

• For r ∈ R, x ∈ {a, b, c}, form {xr
2, x

r
3}, {xr

4, x
r
5}, and {br1, cr1, zr}.

• For S ∈ S ′, r ∈ S, form {eSr , ar1}.

• For S ∈ S ′, form {eS0 }.

• For S ∈ S \ S ′, form NS .

We prove that π is majority-out stable by performing a case analysis to show
that no agent can perform a deviation.

• For r ∈ R and x ∈ {a, b, c}, the agents xr
3 and xr

5 are not allowed to
perform an MOS deviation. Moreover, the agents xr

2 and xr
4 are in their

most preferred coalitions and have, therefore, no incentive to perform a
deviation.

• For r ∈ R, the agents ar1 and zr are not allowed to perform an MOS
deviation.

• For r ∈ R and x ∈ {b, c}, the agent xr
1 has no incentive to deviate. It

holds that vxr
1
(π) = n− 1, whereas no deviation increases her utility. In

particular, joining π(xr
2) only yields the same utility.

• For S ∈ S and r ∈ S, the agent eSr has at most one friend after any possible
deviation. However, she has at least two friends in π, and therefore no
incentive to perform a deviation.
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• For S ∈ S ′, the agent eS0 is in her most preferred coalition and has no
incentive to perform a deviation. Finally, for S ∈ S \ S ′, the agent eS0 is
not allowed to perform an MOS deviation.

⇐= Conversely, assume that the reduced instance contains an MOS partition π.
We show that it originates from a Yes-instance. We split the proof into several
claims.

Claim 1. For all S ∈ S, it holds that π(eS0 ) = {eS0 } or NS ⊆ π(eS0 ).

Proof. Let S ∈ S, say S = {u,w, x}, and define C = π(eS0 ) and D = {eSu , eSw, eSx}.
Assume that C ⊋ {eS0 }. Note that since eS0 has no friends, she would prefer
to stay in a singleton coalition. Hence, C ⊋ {eS0 } implies that some agent has
to be against her potential MOS deviation to a single coalition, and therefore
C ∩D ̸= ∅, say eSu ∈ C.

Assume for contradiction that D \ C ̸= ∅, say eSw /∈ C. Then, eSx ∈ π(eSw).
Indeed, if eSx /∈ π(eSw), then eSw has at most one friend in her coalition, and no
agent would prevent her from performing an MOS deviation to join C. Hence,
eSx ∈ π(eSw). Then, C = {eS0 , eSu}, as eS0 could leave her coalition to form a
singleton coalition if any other agent was part of it. But then, eSu has an
incentive to join π(eSw), and could perform a valid MOS deviation to do so. This
is a contradiction and, therefore, D ⊆ C. ◁

In the next claim, we improve upon Claim 1 and show that there are in fact
only two possible coalitions for eS0 .

Claim 2. For all S ∈ S, it holds that π(eS0 ) = {eS0 } or π(eS0 ) = NS.

Proof. Let S ∈ S and define C = π(eS0 ). Assume that C ⊋ {eS0 }. By Claim 1,
it holds that NS ⊆ C and since eS0 has an NS deviation to form a singleton
coalition, even |C| ≤ 6. This means, in particular, that every agent y ∈ C \NS

must have a friend in C. Indeed, if this was not the case, then such an agent y
would like to deviate to form a singleton coalition, and this is an MOS deviation
as it is supported by at least three agents in NS . Hence, C \NS ≠ ∅ can only
happen if there are two more agents in C who are a friend of each other. By the
design of the utilities, the only possibility for this to happen is that there exists
t ∈ S with t ̸= s and u, v ∈ t with C = NS∪{tu, tv}. Then, by Claim 1, {t0} ∈ π,
implying that tu has an MOS deviation to join t0. This is a contradiction, and
we can therefore conclude that π(eS0 ) = NS . ◁

Next, we consider the coalitions of other agents in gadgets related to sets in
S.

Claim 3. For all S ∈ S and r ∈ R, it holds that π(eSr ) = {eSr , ar1} or NS \{eS0 } ⊆
π(eSr ).

Proof. Let S ∈ S, say S = {r, u, w}, and define C = π(eSr ). If eS0 ∈ C, then
C = NS by Claim 2 and the assertion is true. Suppose, therefore, that eS0 /∈ C.
Assume now that there is x ∈ S with eSx /∈ C, say eSu /∈ C. If eSw /∈ C, then
no agent in C has eSr as a friend and could therefore vote against a deviation.
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Moreover, since the deviation of eSr to join eS0 is not an MOS deviation, it must
be the case that veSr (π) = n, which can, under the given assumptions, only be
the case if π(eSr ) = {eSr , ar1}.

It remains to consider the case that eSw ∈ C. But then, eSu is in a coalition
with at most one friend (note that it is excluded that eS0 ∈ π(eSu) by Claim 2) and
no agent in her coalition has her as a friend. Hence, eSu has an MOS deviation
to join C, a contradiction. Together, we have shown that if there is x ∈ S with
eSx /∈ C, then π(eSr ) = {eSr , ar1}, which proves this claim. ◁

In the next claim, we gain even more insight on the coalitions of agents of
the type eSr .

Claim 4. For all S ∈ S, r ∈ S, and u ∈ R, it holds that if π(eSr )∩Nu ≠ ∅, then
r = u and π(eSr ) = {eSr , au1}.

Proof. Let S ∈ S, r ∈ S, and u ∈ R. The assertion is true if π(eSr ) = {eSr , ar1}.
Hence, by Claim 3, we may assume that NS \ {eS0 } ⊆ C. We will show that
π(eSr )∩Nu = ∅. First, note that since zu has an NS deviation to form a singleton
coalition whenever she is not in such a coalition already and because only three
agents have zu as a friend, it holds that zu forms a coalition with at most two
agents that have her as an enemy. This implies in particular that zu /∈ C and
that |π(zu)| ≤ 6.

Assume for contradiction that there exists an agent y ∈ Nu ∩ C. We already
know that y ̸= zu. Next, if y ̸= au1 , then y must have a friend in C. Indeed, at
most one agent in C can have y as a friend, but the three agents in NS \ {eS0 }
favor y to leave. Hence, y could perform an MOS deviation to form a singleton
coalition, otherwise. In addition, if y = au1 , then y must also have a friend in
C. Note that at most two agents in (Nu ∪NS) ∩ C favor her to stay while all
other agents in (Nu ∪NS) ∩ C (of which there are at least 2 agents) favor her
to leave. The only possibility that there is another agent who favors au1 to stay
is if there exists t ∈ S with u ∈ t and tu ∈ C. But then, Claim 3 implies that
Nt \ {t0} ⊆ C, a majority of which favors au1 to leave. Together, au1 is favored
to leave C by a (weak) majority of agents. Therefore, she must not have an
incentive to form a singleton coalition and, therefore, has a friend in C.

Now, assume that there exists x ∈ {a, b, c} and i ∈ [5] with xu
i ∈ C. Then,

our previous observation implies that {xu
i : i ∈ [5]} ⊆ C. Hence, |C| ≥ 8 and

therefore vxu
1
(π) ≤ n− 6 < n− 5 ≤ vxu

1
(π(zu)∪ {xu

1}). Hence, xu
1 could perform

an MOS deviation. This is a contradiction. Therefore, we have shown that
π(eSr ) ∩Nu = ∅. ◁

Now, we show that coalitions of agents in different sets of the type Nr are
disjoint.

Claim 5. For all r, u ∈ R and agents w ∈ Nr, y ∈ Nu, it holds that π(w)∩π(y) =
∅.

Proof. Let r, u ∈ R and assume for contradiction that there exist agents w ∈ Nr

and y ∈ Nu with π(w) = π(y). Define C = π(w). By Claim 2 and Claim 4,
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it holds that C ∩ NS = ∅ for all S ∈ S. We may assume without loss of
generality that |C ∩Nr| ≤ |C ∩Nu|. Since every agent in C ∩Nr is preferred
to leave by a majority of agents in C, it holds that zr /∈ C and every agent in
C ∩ Nr must have a friend in C. The remaining proof of this step is similar
to the proof of Claim 4. Let x ∈ {a, b, c} and i ∈ [5] with xr

i ∈ C. Then,
{xr

i : i ∈ [5]} ⊆ C and therefore |C| ≥ 10. As in the previous claim, |π(zr)| ≤ 6.
Hence, vxr

1
(π) ≤ n− 8 < n− 5 ≤ vxr

1
(π(zr) ∪ {xr

1}), a contradiction. ◁

Finally, we can conclude the proof by showing that there exists S ′ ⊆ S
partitioning R. Therefore, let S ′ = {S ∈ S : π(eSr ) = {eSr , ar1} for some r ∈ S}.
We show that S ′ partitions R by showing that it covers all elements from R and
that its elements are disjoint sets.

For the first part, let r ∈ R. By the proof of Proposition 4, if π(y) ⊆ Nr

for all y ∈ Nr, then the partition π is not MOS. Hence, some agent in Nr must
form a coalition with an agent outside of Nr. Combining Claim 2, Claim 4,
and Claim 5, this can only be the case if there exists S ∈ S with r ∈ S and
π(eSr ) = {eSr , ar1}. Consequently, S ′ covers R.

For the second part, assume for contradiction that some element in R is
covered at least twice by sets in S ′. Then, there exists S ∈ S ′ with r ∈ S and
{eSr , ar1} /∈ π. By Claim 3, NS \ {eS0 } ⊆ π(eSr ). But then, according to the
definition of S ′, it follows that S /∈ S ′, a contradiction. Hence, the elements of
S ′ are disjoint sets. This completes the proof.

5.3. Friends-And-Enemies Games
We have already seen that friends-and-enemies games contain efficiently

computable stable coalition structures with respect to the unanimity-based
concepts of individual stability and contractual Nash stability (cf. Corollary 1).
In this section, we will see that the transition to majority-based consent crosses
the boundary of tractability. The closeness to this boundary is also emphasized
by the fact that it is surprisingly difficult to even construct No-instances for
majority-out and majority-in stability, i.e., FEGs which do not contain an MOS
or MIS partition, respectively. Indeed, the smallest such games that we can
construct are games with 23 and 183 agents, respectively. We will start by
considering majority-out stability.

Proposition 6. There exists an FEG without an MOS partition.

Proof. We start by sketching the FEG constructed for the proof and by giving
some intuition why it contains no MOS partition. The instance is illustrated in
Figure 11. It consists of a triangle of agents together with 4 sets of agents whose
friendship relation is complete and transitive,9 together with one additional
agent each that gives a temptation for the agent of the transitive substructures
with the most friends.

9Completeness means that for any pair of agents, at least one agent is the friend of the
other agent. Transitivity means that if b is a friend of a and c is a friend of b, then c is a friend
of a.
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a0a1a2a3a4

b0b1b2b3b4

c0c1c2c3c4

d0d1d2d3d4

z1

z2

z3

Figure 11: FEG without an MOS partition. The depicted (directed) edges represent friends.
The double arrow denotes that every agent to the left of the tail of the arrow has every agent
below the arrow as a friend.

An important reason for the nonexistence of MOS partitions is that there
is a high incentive for the transitive structures to form coalitions. This gives
incentive to agents zi to join them. If z1, z2, and z3 are in disjoint coalitions,
then they would chase each other according to their cyclic structure. If they are
all in the same coalition, then agents x0 for x ∈ {a, b, c, d} prevent the complete
transitive structures to be part of this coalition and other transitive structures
are more attractive.

We now provide the formal proof. Let N = Nz ∪Na ∪Nb ∪Nc ∪Nd, where
Nz = {z1, z2, z3} and Nx = {x0, x1, x2, x3, x4} for x ∈ {a, b, c, d}. Utilities are
given as

• vx(y) = 1 if (x, y) ∈ {(z1, z2), (z2, z3), (z3, z1)},

• vxi
(xj) = 1 if x ∈ {a, b, c, d}, i, j ∈ [4], i < j,

• vx1
(x0) = 1 if x ∈ {a, b, c, d},

• vzi(xj) = 1 if x ∈ {a, b, c, d}, i ∈ [3], j ∈ [4], and

• all other valuations are −1.

Assume for contradiction that this FEG admits an MOS partition π. We
will derive a contradiction in 4 steps. First, Claim 6 describes possible coalitions
of agents x0 where x ∈ {a, b, c, d}. Second, Claim 7 establishes that coalitions
from agents of different sets of Nx, x ∈ {a, b, c, d}, are disjoint. Then, Claim 8
excludes that all agents in Nz are in a joint coalition. Finally, we complete
the proof by performing a case analysis for two disjoined coalitions containing
different agents from Nz.

Claim 6. It holds that π(x0) ∈ {{x0}, {x0, x1}} for x ∈ {a, b, c, d}.
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Proof. Let x ∈ {a, b, c, d} and suppose that |π(x0)| > 1. Then, x0 has an NS
deviation to form a singleton. The claim follows because the only agent that
prevents her to leave the coalition is x1. ◁

Claim 7. It holds that xi /∈ π(yj) for x, y ∈ {a, b, c, d}, x ̸= y, and i, j ∈ [4].

Proof. Assume for contradiction that there exist x, y ∈ {a, b, c, d}, x ≠ y, and
i, j ∈ [4] with xi ∈ π(yj). Without loss of generality, x = a and y = b.
Define Γ = π(bj). Again, without loss of generality, we may assume that
|Γ ∩Na| ≥ |Γ ∩Nb|. Let j∗ = min{j ∈ [4] : bj ∈ Γ}.

By Claim 6, x0 /∈ Γ for x ∈ {a, b, c, d}. Hence, bj∗ wants to perform an NS
deviation to form a singleton and is only favored to stay by agents in Nz. As
ai ∈ Fout(Γ, bj∗), at least two agents must favor bj∗ to stay. We conclude that

• |Γ ∩Nz| ≥ 2 and (∗)

• |Γ \Nz| ≤ 3. (∗∗)

There, (∗∗) follows because at most 3 agents favor bj∗ to stay, and she can
therefore have at most two enemies. To conclude this step, we distinguish two
cases.

Case 1: It holds that |Nz ∩ Γ| = 3, i.e., Nz ⊆ Γ.
We now consider the agents in Nc. By Claim 6, (∗), and Nz ⊆ Γ, we derive

that π(ci) ⊆ Nc \ {c0} for i = 2, 3, 4, and π(c1) ⊆ Nc. If π(c1) = {c0, c1}, then
there is a coalition of size at least 2 consisting of agents in C \ {c0, c1}, and c1
could perform an MOS deviation to join them. Hence, using Claim 6, it follows
that π(c1) ⊆ C \ {c0}.

Let Φ ⊆ C \ {c0} be a coalition of the largest size. Note that C \ {c0} cannot
contain (at least) 2 singleton coalitions. Then, the singleton with the lower index
would join the other singleton. If |Φ| = 2, then C \ {c0} consists of two pairs,
and c1 has an MOS deviation to join the other pair. Next, assume that |Φ| = 3.
If c1 or c2 remain as a singleton, they would join Φ. If c3 or c4 remain as a
singleton, then c2 performs an MOS deviation to join her. This leaves only the
case |Φ| = 4 and we can conclude that C \ {c0} ∈ π. But then, by (∗∗), zk has
an MOS deviation to join C \ {c0} for k ∈ [3], a contradiction. This concludes
Case 1.

Case 2: It holds that |Nz ∩ Γ| = 2.
Then, |Γ \Nz| ≤ 2 which means that Γ \Nz = {ai, bj} and it follows that

Γ∩Nc = Γ∩Nd = ∅. Let k∗ ∈ [3] be the unique index with zk∗ /∈ Γ, say without
loss of generality k∗ = 1. Using (∗), it must also be the case that π(z1)∩Nc = ∅
or π(z1) ∩Nd = ∅, say without loss of generality π(z1) ∩Nc = ∅. The identical
arguments as in the previous case show that C \ {c0} ∈ π. But then z3 could
perform an MOS deviation to join C \ {c0}, a contradiction. This concludes
Case 2 and, therefore, the proof of the claim. ◁

Claim 8. There exists no Γ ∈ π with Nz ⊆ Γ.
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Proof. Assume for contradiction that there exists Γ ∈ π with Nz ⊆ Γ. By
Claim 6 and Claim 7, there exists x ∈ {a, b, c, d} with Γ ⊆ Nz ∪Nx. Without
loss of generality, assume that Γ ⊆ Nz ∪ Na. By Claim 6, a0 /∈ Γ. We
claim that |Γ ∩ Na| ≤ 3. For the contrary, assume that |Γ ∩ Na| = 4. Then,
Claim 6 implies that {a0} ∈ π. Also, va1

(π) = 0 and |Fin(Γ, a1)| = |Nz| =
|{a2, a3, a4}| = |Fout(Γ, a1)|. Hence, a1 can perform an MOS deviation to join
{a0}, a contradiction. Thus, |Γ ∩Na| ≤ 3, as claimed.

As in the proof of Claim 7, we can show that B \ {b0} ∈ π. But then zk has
an MOS deviation to join this coalition for every k ∈ [3], a contradiction. This
concludes the proof of this claim. ◁

We are ready to obtain a final contradiction. By Claim 8, there exist i, j ∈ [3]
with zi /∈ π(zj). Without loss of generality, we may assume that i = 2 and j = 1.

Case 1: It holds that z3 ∈ π(z2).
By Claim 6, vzk(x) = 1 for all k ∈ [3], x ∈ (π(z1) ∪ π(z2)) \ Nz. Let

m1 = |π(z2)| − 2 = |π(z2) \Nz| and m2 = |π(z1)| − 1 = |π(z1) \Nz|.
If m2 ≥ m1, then z3 can perform an NS deviation to join π(z1). This is also

an MOS deviation unless π(z2) = {z2, z3}. But in this case, we find a coalition
of the form Nx \ {x0} for some x ∈ {a, b, c, d} as in the previous steps. Then, z2
has an MOS deviation to join this coalition.

On the other hand, if m2 < m1, then z1 can perform an MOS deviation to
join π(z2). This concludes Case 1. By symmetry, this covers even all cases where
at least two agents from Nz are in the same coalition. Hence, it remains one
final case.

Case 2: The agents in Nz are in pairwise disjoint coalitions.
Let pk = |π(zk)| for k ∈ [3] and k∗ = argmaxk∈[3] pk. Without loss of

generality, k∗ = 1. As in the previous case, it follows from Claim 6 that vzk(x) = 1
for all k ∈ [3], x ∈

⋃
l∈[3] π(zl) \Nz. But then z3 has an MOS deviation to join

π(z1). This is the final contradiction and completes the proof.

In the previous proof, it was particularly useful to establish disjoint coalitions
of groups such that agents from one group dislike the agents of all other groups.
By contrast, if we make the further assumption that one agent from every
pair of agents likes the other agent, then this does not work anymore, and the
grand coalition is majority-out stable. More formally, we say that the friendship
relation of an ASHG (N, v) is complete if, for every pair of agents i, j ∈ N with
i ̸= j, it holds that vi(j) > 0 or vj(i) > 0. Note that the next proposition is
not true for other stability concepts, such as Nash stability or even individual
stability.

Proposition 7. The grand coalition is majority-out stable in every FEG with
complete friendship relation.

Proof. Let (N, v) be an FEG with complete friendship relation, and let π be the
grand coalition. We claim that π is majority-out stable. Suppose that there is
an agent x ∈ N who can perform an NS deviation to form a singleton.
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Then, vx(N) < 0 and therefore |{y ∈ N \ {x} : vx(y) = −1}| > {y ∈
N \ {x} : vx(y) = 1}|. Hence,

|Fin(N, x)| ≥ |{y ∈ N \ {x} : vx(y) = −1}|
> |{y ∈ N \ {x} : vx(y) = 1}|
≥ |Fout(N, x)|.

In the first inequality, we use that x is a friend of all of her enemies. In the
final inequality, we use that x can only be an enemy of her friends. Hence, x is
not allowed to perform an MOS deviation.

Still, the nonexistence of MOS partitions in FEGs shown in Proposition 6 can
be leveraged to prove an intractability result. Towards the hardness reduction,
we start with a useful lemma. It lets us separate the agent set into subsets such
that agents from different subsets cannot form joint coalitions within an MOS
partition.

Lemma 3. Consider an FEG (N, v) with an MOS partition π. Let i, j ∈ N be
two agents with vi(j) = vj(i) = −1 and assume that, for every agent k ∈ N\{i, j},
it holds that

• vi(k) = −1 or vj(k) = −1,

• vk(i) = −1 or vk(j) = −1,

• vk(i) = −1 whenever vj(k) = 1, and

• vk(j) = −1 whenever vi(k) = 1.

Then, i /∈ π(j).

Proof. Let an FEG (N, v) be given together with an MOS partition π, and
let i, j ∈ N be two agents satisfying the assumptions of the lemma. Assume
for contradiction that i ∈ π(j), and define C = π(j). We will use the first
assumption of the lemma to show that either i or j can perform an NS deviation
to form a singleton coalition, and the other conditions to argue that there is
even a valid MOS deviation. First, note that the first assumption implies that,
for every agent k ∈ N \ {i, j}, it holds that vi(k) + vj(k) ≤ 0. Hence,

vi(π) + vj(π) = −2 +
∑

k∈π(j)\{i,j}

vi(k) + vj(k) ≤ −2.

Therefore, vi(π) < 0 or vj(π) < 0, and thus either i or j can perform an NS
deviation to form a singleton coalition.

In addition, our second assumption implies that, for every agent k ∈ N \{i, j},
it holds that k ∈ Fout(C, i) or k ∈ Fout(C, j). Hence, a similar averaging
argument as the previous consideration shows that |Fout(C, i)| > |C|/2 or
|Fout(C, j)| > |C|/2.
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Assume first that vi(π) < 0 and vj(π) < 0. Then, our second observation
implies that one of i and j can perform an MOS deviation to form a singleton
coalition, a contradiction. Hence, we may assume without loss of generality that
vi(π) < 0 and vj(π) ≥ 0. Then,

|Fin(C, i)| − |Fout(C, i)|
= |{l ∈ C \ {i} : vl(i) = 1}| − |{l ∈ C \ {i} : vl(i) = −1}|
≤ |{l ∈ C \ {i} : vj(l) = −1}| − |{l ∈ C \ {i} : vj(l) = 1}| = −vj(π) ≤ 0.

In the inequality, we have used the third assumption of the lemma (the fourth
assumption is necessary for the symmetric case where i and j swap roles). Hence,
agent i can perform an MOS deviation to form a singleton coalition. This is a
contradiction and we can conclude that i /∈ π(j).

We are ready for the proof of the hardness result. Interestingly, in contrast
to the proofs of Theorem 3 and Theorem 10, the next theorem merely uses the
existence of an FEG without an MOS partition to design a gadget and does not
exploit the specific structure of a known counterexample.

Theorem 11. Deciding whether an FEG contains an MOS partition is NP-
complete.

Proof. We provide another reduction from E3C. Let (R,S) be an instance of
E3C. We define a reduced FEG (N, v) as follows. By Proposition 6, there exists
an FEG without an MOS partition and we may assume that (N ′, v′) is such an
FEG with the additional property that there exists an agent x ∈ N ′ such that
the FEG restricted to N ′ \ {x} contains an MOS partition π′. Indeed, an FEG
with the additional property can be obtained simply by removing agents until
the property is satisfied.

Now, let N = NS ∪NR where

• NS = ∪S∈SNS with NS = {aS0 } ∪ {aSr : r ∈ S} for S ∈ S and

• NR = ∪r∈RNr with Nr = {br : b ∈ N ′} for r ∈ R.

Specifically, we denote the agent corresponding to the special agent x ∈ N ′ by xr.
Agents of the type aSr will receive a positive utility from forming a coalition
with xr, and therefore have the capability of forcing xr to stay in a coalition of
size 2 with them.

We define utilities v as follows:

• For all S ∈ S, b, c ∈ NS : vb(c) = 1.

• For all S ∈ S, r ∈ S: vaS
r
(xr) = 1.

• For all r ∈ R and b, c ∈ N ′: vbr (cr) = v′b(c), i.e., the internal valuations for
agents in Nr are identical to the valuations in the counterexample (N ′, v′).

• All other valuations are −1.
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The reduced instances look very similar to the ones of Theorem 10 depicted
in Figure 10. The key differences are that the agents in every NS now form
cliques, and that we replace the gadgets formed by the agents in NR by the
No-instance (N ′, v′).

We claim that (R,S) is a Yes-instance if and only if the reduced FEG contains
an MOS partition.

=⇒ Suppose first that S ′ ⊆ S partitions R. We define a partition π as follows.

• For S ∈ S \ S ′, we have NS ∈ π and for S ∈ S ′, we have {aS0 } ∈ π.

• For S ∈ S ′, r ∈ S, we have {aSr , xr} ∈ π.

• For r ∈ R and b ∈ N ′ \ {x}, we have π(br) = {br : b ∈ π′(x)}.

Recall that π′ is the MOS partition in (N ′, v′) after removing x.
We claim that the partition π is majority-out stable.

• Let r ∈ R and consider an agent b ∈ N ′ \ {x}. Then, br cannot perform an
MOS deviation to join π(cr) for any c ∈ N ′ \ {x}, because π′ restricted to
N ′ \ {x} is an MOS partition. Moreover, joining π(c) for any c ∈ N \Nr

yields utility at most 0 (in fact, the only such coalition that br could
join to obtain a utility of 0 is π(xr)). Hence, if this constituted an
MOS deviation, then forming a singleton coalition would also be an MOS
deviation, contradicting the fact that π′ is an MOS partition.

• Let r ∈ R. Then, xr is not allowed to leave her coalition by means of an
MOS deviation.

• Let S ∈ S ′. Then vaS
0
(π) = 0 and joining any other coalition yields utility

at most 0. In particular, vaS
0
(π(aSr )∪{aS0 }) = 0 for all r ∈ S. Moreover, for

r ∈ S, vaS
r
(π) = 1 and joining any other coalition yields utility at most 1.

In particular, vaS
r
(π(aS0 ) ∪ {aSr }) = 1.

• Let S ∈ S \ S ′. Then, π(aS0 ) is the most preferred coalition of aS0 and
she has no incentive to perform an MOS deviation. Moreover, for r ∈ S,
vaS

r
(π) = 3 and joining any other coalition yields a utility of at most 0.

Together, we have shown that π is an MOS partition.

⇐= For the reverse implication, assume that π is an MOS partition for the
reduced instance (N, v). We start by determining the coalitions of agents of the
type aS0 .

Claim 9. Let S ∈ S. Then, π(aS0 ) = {aS0 } or π(c) ⊆ NS for all c ∈ NS.

Proof. Let S ∈ S and define C = π(aS0 ). A close inspection of the utilities in
the definition of the reduced instance lets us apply Lemma 3 multiple times to
conclude that

• for all S′ ∈ S \ {S}, C ∩NS′ = ∅,
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• for all r ∈ R \ S, C ∩Nr = ∅, and

• for all r ∈ S, C ∩Nr ⊆ {xr}.

Together, C ⊆ NS ∪ {xr : r ∈ S}. Even more, for r ∈ S, if xr ∈ C, then
vxr(π) < 0. In addition, Fin(C, x

r) ⊆ {aSr } and aS0 ∈ Fout(C, x
r). Hence, xr

could perform an MOS deviation to form a singleton coalition. We can therefore
conclude that C ⊆ NS .

Assume that C ⊋ {aS0 }. If |C| = 3, then there exists a unique r ∈ S with
aSr /∈ C. Since aSr has only one friend outside C, this would imply that vaS

r
(π) ≤ 1

whereas vaS
r
(C ∪ {aSr }) = 3 and Fin(π(a

S
r ), a

S
r ) = ∅. Hence, aSr could perform an

MOS deviation to join C, a contradiction. Hence, |C| = 2 or |C| = 4. As the
latter case corresponds to the situation that C = NS , we only need to consider
the former case.

Suppose that S = {r1, r2, r3} and that C = {aS0 , aSr1}. Then, it holds
that aSr3 ∈ π(aSr2), as otherwise vaS

r2
(π) ≤ 1 whereas vaS

r
(C ∪ {aSr2}) = 3 and

Fin(π(a
S
r2), a

S
r2) = ∅. But then, π(aSr2) = {aSr2 , a

S
r3}. Any other agent would

only have enemies in π(aSr2) and is allowed to leave by a weak majority. This
concludes the proof of the claim. ◁

Our next claim investigates elements S ∈ S for which {aS0 } ∈ π.

Claim 10. Let S ∈ S such that {aS0 } ∈ π. Then, for every r ∈ S, it holds that
π(aSr ) = {aSr , xr}.

Proof. Let S ∈ S with {aS0 } ∈ π and consider any r ∈ S. Define C = π(aSr ) and
assume for contradiction that there exists r′ ∈ S with r′ ̸= r and aSr′ ∈ C. We
can combine the following observations:

• Claim 9 shows that aS
′

0 /∈ C for every S′ ∈ S \ {S}.

• Let r̂ ∈ R. We can apply Lemma 3 for aSr (or aSr′) and an agent in Nr̂ to
show that C ∩Nr̂ = ∅ if r̂ ̸= r (or if r̂ = r).

• Let S′ ∈ S and r̂ ∈ S′. We can apply Lemma 3 for aSr (or aSr′) and aS
′

r̂ to
show that aS

′

r̂ /∈ C if r̂ ̸= r (or r̂ = r).

Together, the observations show that C ⊆ NS . But then, vaS
0
(C ∪ {aS0 }) ≥ 2,

and aS0 could perform an MOS deviation to join C. This is a contradiction and
we can conclude that C ∩NS = {aSr }.

This means in particular, that Fin(C, a
S
r ) = ∅. Since vaS

r
({aS0 , aSr }) = 1, it

must hold that vaS
r
(π) = 1. Since the unique friend of aSr outside NS is xr, we

can conclude that π(aSr ) = {aSr , xr}. ◁

We are ready to finish the proof. Therefore, let S ′ = {S ∈ S : {aS0 } ∈ π}.
We show that S ′ partitions R in two steps. First, the sets in S ′ are disjoint.
Indeed, if S, S′ ∈ S ′ with S ̸= S′ and r ∈ S ∩ S′, then Claim 10 implies that
{aSr , xr} ∈ π and {aS′

r , xr} ∈ π, contradicting the fact that π is a partition.
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It remains to show that all elements of R are covered by a set in S ′. Therefore,
consider an arbitrary r ∈ R and let b ∈ N ′. By Lemma 3, π(br)∩Nr′ = ∅ for all
r′ ∈ R with r′ ̸= r. Moreover, Claim 9 and Claim 10 imply that π(br) ∩NS = ∅
for all S ∈ S with r /∈ S. Assume for contradiction that there exists no S ∈ S ′

with r ∈ S. Then, Claim 9 implies that π(br) ∩ NS = ∅ for all S ∈ S with
r ∈ S. Together, π(br) ⊆ Nr. This means that π restricted to the agents in Nr

is an MOS partition, contradicting the fact that such a partition does not exist.
Hence, r must be covered by some set in S ′.

Our next goal is to construct an FEG without an MIS partition. Despite a
lot of structure, the game that we find, which is depicted in Figure 12, is quite
large, encompassing 183 agents. Before we describe and analyze the game, we
prove a useful lemma showing that certain agents in cliques of mutual friendship
playing identical roles have to be in joint coalitions in every MIS partition. This
will concern the agents in the sets Ki and Bj

i for i, j ∈ [5] (cf. Figure 12).

Lemma 4. Consider an FEG (N, v) with an MIS partition π. Let W ⊆ N such
that the following conditions hold:

1. For all i, j ∈ W : vi(j) = 1.

2. For all i, j ∈ W , k ∈ N : vi(k) = vj(k).

3. For all i ∈ W , k ∈ N : vi(k) = 1 implies vk(i) = 1.

Then, there exists a coalition C ∈ π with W ⊆ C.

Proof. Let an FEG (N, v) be given together with an MIS partition π, and let
W ⊆ N be a subset of agents that fulfills the three conditions of the assertion.
Assume for contradiction that there exist i, j ∈ W with π(i) ̸= π(j). We may
assume without loss of generality that vi(π) ≥ vj(π). Consider the deviation
where agent j joins π(i). Then,

vj(π(i) ∪ {j}) (1),(2)
= 1 + vi(π) > vj(π).

Hence, this constitutes an NS deviation. Moreover, since π is majority-in
stable, it holds that vi(π) ≥ 0 and therefore, because the game is an FEG,

|{x ∈ π(i) \ {i} : ui(x) = 1}| ≥ |{x ∈ π(i) \ {i} : ui(x) = −1}|. (∗)

It follows that

|Fin(π(i), j)|
(1)
= |{x ∈ π(i) \ {i} : ux(j) = 1}|+ 1

(3)

≥ |{x ∈ π(i) \ {i} : uj(x) = 1}|+ 1
(2)
= |{x ∈ π(i) \ {i} : ui(x) = 1}|+ 1

(∗)
≥ |{x ∈ π(i) \ {i} : ui(x) = −1}|+ 1

(2)
= |{x ∈ π(i) \ {i} : uj(x) = −1}|+ 1

(3)

≥ |{x ∈ π(i) \ {i} : ux(j) = −1}|+ 1 = |Fout(π(i), j)|+ 1 > |Fout(π(i), j)|.

Hence, this is even an MIS deviation, a contradiction.
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like aji for i ∈ [5], j ∈ [9]

liked by aji for i ∈ [5],

j ∈ {0, 1, . . . , 9}

Figure 12: FEG without an MIS partition. The depicted edges represent friends. Undirected
edges represent mutual friendship. For i ∈ [5], some of the edges of agents in Ai are omitted.
In fact, these agents form cliques. Also, each Ki represents a clique of 11 agents. Finally, the
agents {z1, z2, z3} have edges from and towards agents aji for i ∈ [5] and j ∈ [9]. Moreover,
there are edges towards them from a0i but not vice versa.

We are ready to prove the next statement.

Proposition 8. There exists an FEG without an MIS partition.

Proof. The game we construct is illustrated in Figure 12. Before the formal
description and analysis, we briefly discuss some key features. Similar to the
game in Proposition 6, the central element is a directed cycle of three agents.
These agents are connected to five copies of the same gadget. This gadget
consists of a main clique {a0i , . . . , a9i } of 10 mutual friends and further cliques
that cause certain temptations for agents in the main clique. Cliques are linked
by agents that have an incentive to be part of two cliques, which are part of
disjoint coalitions. Since it is impossible to avoid all of these potential deviations,
the instance does not admit an MIS partition.

Formally, the agent set is given by N = Z ∪
⋃

i∈[5](Ai ∪Bi ∪Ki), where the
exact definitions and interpretation of the subsets of agents is as follows:

• The set of agents Z = {z1, z2, z3} forms a directed triangle.

• For i ∈ [5], the sets Ai = {aji : j = {0, 1, . . . , 9} form cliques which are
liked by agents in Z, except for the special agent a0i . In turn, all of them
like the agents in Z.

• For i ∈ [5], the sets Ki = {kji : j ∈ [11]} form cliques not liked by agents in
Z, but a0i likes these agents.

• For i ∈ [5], define Bi =
⋃5

j=1 B
j
i , where Bj

i = {bj,li : l ∈ [3]}. The set
Bj

i forms a small clique which tries to tempt agent aji to join if Bj
i is a

coalition.
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The utilities are defined as

• vx(y) = 1 if (x, y) ∈ {(z1, z2), (z2, z3), (z3, z1)},

• vzi(a
l
j) = 1 if i ∈ [3], j ∈ [5], and l ∈ [9],

• vaj
i
(ali) = 1 if i ∈ [5], j, l ∈ {0, 1, . . . , 9},

• vaj
i
(zl) = 1 if i ∈ [5], j ∈ {0, 1, . . . , 9}, and l ∈ [3],

• va0
i
(kji ) = vkj

i
(a0i ) = 1 if i ∈ [5], j ∈ [11],

• vaj
i
(bj,li ) = 1 if i, j ∈ [5], l ∈ [3],

• vbj,li
(bj,l

′

i ) = 1 if i, j ∈ [5], l, l′ ∈ [3],

• vkj
i
(kli) = 1 if i ∈ [5], j, l ∈ [11], and

• all other valuations are −1.

Assume for contradiction that π is an MIS partition for this game. The
following observation is helpful in various places:

Every agent receives nonnegative utility in π, i.e.,
vi(π) ≥ 0 for all i ∈ N . (∗)

The observation is true because every agent of negative utility could perform
an MIS deviation to form a singleton coalition. We will now derive a contradiction
proving several claims. The first one is a direct application of Lemma 4 for the
agents in sets Ki for i ∈ [5].

Claim 11. For all i ∈ [5], there exists C ∈ π with Ki ⊆ C.

The next claim improves upon the previous claim.

Claim 12. If i ∈ [5], then Ki ∈ π or Ki ∪ {a0i } ∈ π.

Proof. Let i ∈ [5] and assume for contradiction that there exists C ∈ π with
Ki ⊆ C and C \ (Ki ∪ {a0i }) ̸= ∅. By (∗), vk1

i
(π) ≥ 0 and therefore |C \

(Ki ∪ {a0i })| ≤ |Ki ∪ {a0i }| − 1 = 11. Let x ∈ C \ (Ki ∪ {a0i }). Then, a0i ∈ C,
|C \ (Ki ∪ {a0i })| = 11, and vx(y) = 1 for all y ∈ C \ (Ki ∪ {a0i }). Otherwise,
x has at most 10 friends leading to vx(π) ≤ 10 − |Ki| < 0, contradicting (∗).
Consequently, the agents C \ (Ki ∪ {a0i }) form a set of 11 mutual friends which
all have a0i as a friend. Such a set of agents does not exist, and we derive a
contradiction. ◁

The next two claims make similar structural observations for the agent sets
Bj

i . First, we can apply Lemma 4 again for a statement analogous to Claim 11.

Claim 13. For all i, j ∈ [5], there exists C ∈ π with Bj
i ⊆ C.
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We also refine this claim.

Claim 14. If i, j ∈ [5], then Bj
i ∈ π or Bj

i ∪ {aji} ∈ π.

Proof. Let i, j ∈ [5] and assume for contradiction that there exists C ∈ π
with Bj

i ⊆ C and C \ (Bj
i ∪ {aji}) ̸= ∅. If |C \ (Bj

i ∪ {aji})| < 3 = |Bj
i |, then

x ∈ C\(Bj
i ∪{a

j
i}) has a negative utility, contradicting (∗). If |C\(Bj

i ∪{a
j
i})| > 3,

then bj,1i has negative utility, contradicting (∗). Hence, |C \ (Bj
i ∪ {aji})| = 3.

Moreover, then aji ∈ C as an agent in C \ (Bj
i ∪ {aji}) would have at most two

friends but three enemies, and therefore a negative utility, otherwise. For similar
reasons, the agents in C \ (Bj

i ∪ {aji}) have to form a clique of friends of aji .
We will exclude all possible agents in C \ (Bj

i ∪ {aji}). First note that the
structure we obtained so far holds for arbitrary i and j. Hence, if aj

′

i ∈ C for
j′ ∈ [5] \ {j}, then the assertion of Claim 14 is already true for i and j′ and
therefore Bj′

i ∈ π. But then, aj
′

i can perform an MIS deviation to join Bj′

i , a
contradiction. Thus, since the agents in Z are no mutual friends, there exist
l, l′ ∈ {6, 7, 8, 9} with ali ∈ C and al

′

i /∈ C. By (∗), val′
i
(π) ≥ 0. Moreover, since

ali and al
′

i have identical friends in N \ {ali, al
′

i } and al
′

i is also a friend of ali, it
holds that val

i
(π(al

′

i )∪{ali}) ≥ 1. Since val
i
(π) = 0, this is an NS deviation. Also,

since all friends of al
′

i and al
′

i herself favor ali to join their coalition, this is even
an MIS deviation. Hence, we obtain a contradiction. ◁

The next claim establishes a relationship between agents in Z and Ai.

Claim 15. For i ∈ [5], if Z ∩ π(aji ) = ∅ for all j ∈ [9], then Ai \ {a0i } ∈ π.

Proof. Let i ∈ [5] such that Z ∩ π(aji ) = ∅ for all j ∈ [9]. First, we show that
then π(aji ) ⊆ Ai for j = 6, 7, 8, 9. Let therefore j ∈ {6, 7, 8, 9} and assume
for contradiction that π(aji ) \ Ai ̸= ∅. By Claim 12, Claim 14, and the initial
assumptions of this claim, π(aji ) ⊆

⋃
l∈[5] Al. Consider x ∈ π(aji ) \ Ai. If

|π(aji ) \Ai| ≤ |π(aji )∩Ai|, then vx(π) < 0, contradicting (∗). On the other hand,
if |π(aji ) \Ai| ≥ |π(aji )∩Ai|, then vaj

i
(π) < 0, also contradicting (∗). We derived

a contradiction in both cases and can therefore conclude that π(aji ) ⊆ Ai.
As in previous steps, we can use the symmetry of the agents in {aji : j =

6, 7, 8, 9} to show that there exists a coalition C ∈ π with {aji : j = 6, 7, 8, 9} ⊆
C ⊆ Ai. Indeed, otherwise, one of these agents could join the coalition of another
such agent of at least as high utility by an MIS deviation. Hence, Bj

i ∪ {aji} /∈ π

for j ∈ [5] as aji would perform an MIS deviation to join C, otherwise. But then,
similarly as above, π(aji ) ⊆ Ai for j ∈ [5], and therefore even Ai \ {a0i } ⊆ C.
Finally, if ai0 ∈ C, then va0

i
= 9. However, by Claim 12, Ki ∈ π and therefore a0i

could perform an MIS deviation to join Ki. Hence, C = Ai \ {a0i }. ◁

We have now collected enough structural results to consider the agents in Z.
The next two claims will yield the final contradiction.

Claim 16. There exists no C ∈ π with Z ⊆ C.
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Proof. Assume for contradiction that there exists C ∈ π with Z ⊆ C. By
Claim 12 and Claim 14, C ⊆ Z ∪

⋃
i∈[5] Ai. Define I = {i ∈ [5] : Ai ∩ C ̸= ∅}

and let

i∗ ∈ argmin
i∈I

{|Ai ∩ C|}. (∗∗)

Let x ∈ Ai∗ ∩ C.

Case 1: |I| = 5.
In this case, we obtain a contradiction to (∗) because

vx(π) = 3 + (|Ai∗ ∩ C| − 1)−
∑

i∈I\{i∗}

|Ai ∩ C|

(∗∗)
≤ 2− (|I| − 2)|Ai∗ ∩ C| ≤ −1 < 0.

Case 2: |I| = 4.

As in the previous case, 0
(∗)
≤ vx(π) ≤ 2 + |Ai∗ ∩ C| −

∑
i∈I\{i∗} |Ai ∩ C|.

Therefore,

3|Ai∗ ∩ C| ≤
∑

i∈I\{i∗}

|Ai ∩ C| ≤ 2 + |Ai∗ ∩ C|.

Consequently, |Ai∗ ∩ C| = 1 and |Ai ∩ C| = 1 for i ∈ I \ {i∗}. Let l ∈ [3].
Then, vzl(π) ≤ 4. By Claim 15, it holds that Ai′ \ {a0i′} ∈ π, where i′ ∈ [5] \ I.
Hence, zl has an MIS deviation, a contradiction.

Case 3: |I| = 3.
As in Case 2,

2|Ai∗ ∩ C| ≤
∑

i∈I\{i∗}

|Ai ∩ C| ≤ 2 + |Ai∗ ∩ C|.

Hence, |Ai∗ ∩ C| ≤ 2 and thus
∑

i∈I\{i∗} |Ai ∩ C| ≤ 4. Therefore, vzl(π) ≤ 6 if
l ∈ [3], and an analogous MIS deviation is possible as in the previous case.

Case 4: |I| = 2.
Let i′ ∈ I \ {i∗} be the unique second index in I. We claim that aji /∈ C for

i ∈ I and j ∈ [5]. Let j ∈ [5]. First, if aji∗ ∈ C, then vaj
i∗
(π) ≤ 3 + (|Ai∗ ∩ C| −

1)− |Ai′ ∩ C| ≤ 2. Moreover, by Claim 14, Bj
i∗ ∈ π and aji∗ could perform an

MIS deviation to join Bj
i∗ .

Second, assume that aji′ ∈ C. Then, again by Claim 14, Bj
i′ ∈ π and since π

is majority-in stable, uaj

i′
(π) ≥ 3. Let j′ ∈ [9] \ {j} and assume for contradiction

that aj
′

i′ /∈ C. Since aj
′

i′ has at least as many friends in C as aji′ (recall that
Bj

i′ ∈ π), v
aj′
i′
(π) ≥ vaj

i′
(π) + 1 ≥ 4. Using Claim 14, this means in particular

that Bj′

i′ ∩ π(aj
′

i′ ) = ∅ if j′ ∈ [5]. Therefore, v
aj′
i′
(π(aji′)∪{aj

′

i′ }) ≥ vaj

i′
(π) + 1 and
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vaj

i′
(π(aj

′

i′ )∪ {aji′}) ≥ v
aj′
i′
(π) + 1. Hence, either aj

′

i′ has an MIS deviation to join

π(aji′) or aji′ has an MIS deviation to join π(aj
′

i′ ), a contradiction. Consequently,
ai′(j

′) ∈ C and therefore Ai′ \ {a0i′} ⊆ C.
Recall that we already know that |Ai∗ ∩ C| ≤ 5 because ali∗ /∈ C for l ∈ [5].

We obtain a contradiction to (∗) because

vx(π) ≤ 3 + (|Ai∗ ∩ C|︸ ︷︷ ︸
≤5

−1)− |Ai′ ∩ C|︸ ︷︷ ︸
≥9

≤ −2 < 0.

Hence, we can conclude that aji′ /∈ C for j ∈ [5]. But then, for l ∈ [3],
vzl ≤ |(Ai∗ \ {a0i∗})∩C|+ |(Ai′ \ {a0i′})∩C| ≤ 8. Hence, zl can perform an MIS
deviation to join Ai \ {a0i } for i ∈ [5] \ I, as in the previous two cases.

Case 5: |I| = 1.
If C ̸= Z ∪ (Ai∗ \ {a0i∗}), then, for l ∈ [3], vzl(π) ≤ 8, and an analogous MIS

deviation as in the previous cases is possible. Hence, C = Z ∪ (Ai∗ \ {a0i∗}).
But then va0

i∗
(π) ≤ 11, whereas va0

i∗
(C ∪ {a0i∗}) ≥ 12. Hence, a0i∗ has an MIS

deviation to join C (which is favored by all agents in Ai∗ \ {a0i∗}). This is a
contradiction, and concludes the proof of the claim. ◁

For a final contradiction, it remains to lead the case to a contradiction that
the agents in Z are part of different coalitions.

Claim 17. There exists C ∈ π with Z ⊆ C.

Proof. Assume for contradiction that there exists C ∈ π with Z ∩ C ̸= ∅ and
Z ̸⊆ C.

Assume first that |Z ∩ C| = 2 and suppose without loss of generality that
z1, z2 ∈ C. Note that vz3(C ∪ {z3}) = vz2(π) + 1. Hence, if vz3(π) ≤ vz2(π),
then z3 can perform an NS deviation to join C. This is even an MIS deviation
as vz2(π) ≥ 0 and z2 favors her to join. On the other hand, vz2(π(z3) ∪ {z2}) =
vz3(π) + 1. Hence, if vz2(π) < vz3(π), then z2 has an NS deviation to join π(z3).
Note that z3 is opposed to that. However, as vz3(π) > vz2(π) ≥ 0, and every
friend of z3 in π(z3) favors to let z2 join, it holds that

|Fin(π(z3), z2)| = |{y ∈ π(z3) : uz3(y) = 1}|
≥ |{y ∈ π(z3) : uz3(y) = −1}|+ 1

≥ |Fout(π(z3), z2)|.

Hence, this is even an MIS deviation.
Finally, assume that π(zl) ∩ Z = {zl} for all l ∈ [3]. Let l ∈ [3] and i ∈ [5].

Then, a0i /∈ π(zl). Indeed, if a0i ∈ π(zl), then u0
i can have at most 10 friends in

her coalition. By Claim 12, Ki ∈ π and a0i would perform an MIS deviation
to join this coalition. By this observation and using Claim 12 and Claim 14,
zl forms a coalition with friends only (and these do additionally also have all
agents in Z as a friend).
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Let l∗ ∈ argminl∈[3]{vzl(π)}. Without loss of generality, we may assume that
l∗ = 1. Then, z1 has an NS deviation to join π(z2). This is also an MIS deviation
unless π(z2) = {z2}. Then, z2 has an NS deviation to join π(z3), which in turn
is an MIS deviation unless π(z3) = {z3}. By the minimality assumption on l∗, it
must then also hold that π(z1) = {z1}. But then, using Claim 15, A1 \ {a01} ∈ π
and z1 could perform an MIS deviation to join this coalition. This contradiction
concludes the proof of the claim. ◁

As the combination of Claim 16 and Claim 17 directly leads to a contradiction,
we have shown that the constructed FEG has no MIS partition.

Similar to Proposition 7, it is easy to see that the singleton partition is
majority-in stable in every FEG with complete enemy relation. Indeed, then
an agent either has no incentive to join another agent or the other agent will
deny her consent. Hence, also majority-in stability guarantees the existence of a
stable partition in the run-and-chase example discussed in the introduction, for
which no NS partition exists.

Still, we obtain a hardness for general FEGs based on the game constructed
in Proposition 8. First, we prove another useful lemma, which excludes that
enemies can be in a joint coalition of an MIS partition if they do not have a
common friend in their coalition.

Lemma 5. Consider an FEG (N, v) with an MIS partition π. Let i, j ∈ N be
two agents with vi(j) = vj(i) = −1 such that, for every agent k ∈ π(i) \ {i, j}, it
holds that vi(k) = −1 or vj(k) = −1. Then, i /∈ π(j).

Proof. Let an FEG (N, v) be given together with an MIS partition π, let i, j ∈ N
be two agents satisfying the assumptions of the lemma. Assume for contradiction
that i ∈ π(j). Our assumptions imply in particular that, for every agent
k ∈ N \ {i, j}, it holds that vi(k) + vj(k) ≤ 0. Hence,

vi(π) + vj(π) = −2 +
∑

k∈π(j)\{i,j}

vi(k) + vj(k) ≤ −2.

Therefore vi(π) < 0 or vj(π) < 0, a contradiction.

We are ready to prove hardness of deciding on the existence of MIS partitions
in FEGs.

Theorem 12. Deciding whether an FEG contains an MIS partition is NP-
complete.

Proof. We provide another reduction from E3C. Let (R,S) be an instance of
E3C. We now define the reduced FEG (N, v), which is illustrated in Figure 13.

Let N = NS ∪NR where

• NS = ∪S∈SNS with NS = V S ∪
⋃

r∈S V S
r for S ∈ S and

• NR = ∪r∈RNr.
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Figure 13: Schematic of the reduction from the proof of Theorem 12. We depict the reduced
instance for the instance (R,S) of E3C where R = {1, 2, 3, 4, 5, 6} and S = {S, T, U} with
S = {1, 2, 3}, T = {2, 3, 4}, and U = {4, 5, 6}. In contrast to earlier reductions, NS now
contains multiple copies for each of the agents in previous reductions. The edge bundles
indicate mutual friendships of all involved agents. Every element in R is represented by a
gadget identical to the game in Proposition 8, which is indicated by the ellipses at the bottom.
Figure 12 provides an illustration of this gadget.

We define, for S ∈ S, V S = {cSi : i ∈ [10]}, and for S ∈ S and r ∈ S,
V S
r = {cSr,i : i ∈ [10]}. To define the sets Nr, assume that (N ′, v′) is the

FEG constructed in the proof of Proposition 8. Then, for r ∈ R, we define
Nr = {xr : x ∈ N ′}. Specifically, we denote the agent corresponding to z1 by zr1 .
Agents of this type will be linked to agents in V S

r by means of a positive utility
correspondence. We define utilities v as follows:

• For all S ∈ S, x, y ∈ NS : vx(y) = 1.

• For all S ∈ S, r ∈ S, and x ∈ V S
r : vx(z

r
1) = vzr

1
(x) = 1.

• For all r ∈ R and x, y ∈ N ′: vxr (yr) = v′x(y) i.e., the internal valuations for
agents in Nr are identical to the valuations in the counterexample defined
in the proof of Proposition 8.

• All other valuations are −1.

We claim that (R,S) is a Yes-instance if and only if the reduced FEG contains
an MIS partition.

=⇒ Suppose first that S ′ ⊆ S partitions R. We define a partition π based on
a partition π′ of the agent set N ′ \ {z1} in the game (N ′, v′) from the proof of
Proposition 8. The partition π′ is given as follows.

• We have {z2, z3} ∪A1 ∈ π′ and K1 ∈ π′.

• For i, j ∈ [5], we have Bj
i ∈ π′.
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• For i ∈ {2, 3, 4, 5}, we have Ai \ {a0i } ∈ π′ and Ki ∪ {a0i } ∈ π′.

Based on this partition, we can define the partition π as follows.

• For S ∈ S \ S ′, we have NS ∈ π and for S ∈ S ′, we have V S ∈ π.

• For S ∈ S ′, r ∈ S, we have V S
r ∪ {zr1} ∈ π.

• For r ∈ R and x ∈ N ′ \ {z1}, we have π(xr) = {yr : y ∈ π′(x)}.

Showing that π is majority-in stable follows from a lengthy, but straightfor-
ward case analysis.

• For every r ∈ R and x ∈ N ′ \ {z1}, agent xr has utility vxr(π) > 0, and
therefore xr cannot join a coalition containing an agent outside Nr as this
would give her negative utility. Moreover, also deviations within Nr cannot
improve her utility:

– For i, j ∈ [5], and l ∈ [3], if x = bj,li , then vxr (π) = 2, but xr can have
at most one friend in any other coalition.

– For i ∈ [5] and j ∈ [11], if x = kji , then vxr (π) ≥ 10, but xr can have
at most one friend in any other coalition.

– If x = a01, then vxr (π) = 11, and the only possible deviation that gives
xr positive utility, i.e., joining K1, would not increase her utility.

– For i ∈ {2, 3, 4, 5}, if x = a0i , then vxr (π) = 11, and the only possible
deviation that gives xr positive utility, i.e., joining Ai \ {a0i } would
decrease her utility.

– If x = z2 or x = z3, then vxr (π) ≥ 9, and the only possible deviations,
i.e., joining a coalition Ai \ {a0i } for i ∈ {2, 3, 4, 5} would not increase
her utility.

• For r ∈ R, vzr
1
(π) = 10, and joining any other coalition does not increase

her utility.

• For S ∈ S \ S ′ and x ∈ NS , vx(π) = 39, and joining any other coalition
does not give agent x positive utility.

• For S ∈ S ′ and x ∈ V S , vx(π) = 9, and joining any other coalition does
not give her a better utility. In particular, joining V S

r ∪ {zr1} for r ∈ S
would also give her a utility of 9.

• For S ∈ S ′, r ∈ S, and x ∈ V S
r , vx(π) = 10, and no other coalition gives

her a better utility. In particular, joining V S would also give her a utility
of 10.

Together, we have shown that π is an MIS partition (we have even shown that it
is an NS partition).

⇐= Conversely, assume that the reduced FEG contains an MIS partition π.
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Note that the assumptions of Lemma 5 are in particular satisfied for two
agents i, j ∈ N with vi(j) = vj(i) = −1 such that, for every agent k ∈ N \ {i, j},
it holds that vi(k) = −1 or vj(k) = −1. Therefore, we can apply Lemma 5
multiple times to obtain the following facts:

1. For r, r′ ∈ R with r ̸= r′, x ∈ Nr, and y ∈ Nr′ , it holds that y /∈ π(x).

2. For every S, S′ ∈ S, S ̸= S′, x ∈ V S , and y ∈ NS′ , it holds that y /∈ π(x).

3. For every S ∈ S, r ∈ R \ S, x ∈ NS , and y ∈ Nr, it holds that y /∈ π(x).

4. For every S ∈ S, r ∈ S, and x ∈ V S , it holds that π(x) ∩Nr ⊆ {zr1}.

Next, we can apply Lemma 4 to obtain the next two facts.

5. For every S ∈ S, there exists a coalition C ∈ π with V S ⊆ C.

6. For every S ∈ S, r ∈ S, there exists a coalition C ∈ π with V S
r ⊆ C.

Moreover, combining Lemma 5 with Fact 6 allows us to further refine Fact 4
yielding the fact

7. For every S ∈ S, r ∈ S, and x ∈ V S , it holds that V S
r ⊆ π(x) whenever

zr1 ∈ π(x).

We are ready to restrict the coalitions of agents in sets V S to two possibilities.

Claim 18. For all S ∈ S, it holds that V S ∈ π or NS ∈ π.

Proof. Let S ∈ S and x ∈ V S , and define C = π(x). By Fact 5, V S ⊆ C.
Furthermore, by Fact 2, Fact 3, and Fact 4, it holds that C ⊆ NS ∪ {zr1 : r ∈ S}.

Suppose that V S ⊊ C. We have to show that C = NS . By Fact 7, there
exists r ∈ S with V S

r ⊆ C. Assume for contradiction that zr1 ∈ C. Since all
agents in C except the agents in Nr

S are enemies of zr1 , it holds that vzr
1
(π) < 0

if C ⊋ V S ∪ V S
r ∪ {zr1}. This would contradict that π is an MIS partition and

therefore C = V S ∪ V S
r ∪ {zr1}. In particular, every agent y ∈ NS \ C has

to satisfy vy(π) ≥ 19. Otherwise, this agent could perform an MIS deviation
to join C. Hence, there exists a coalition D ∈ π with NS \ C ⊆ D. Assume
that S = {r, r′, r′′}. Let y′ ∈ V S

r′ and y′′ ∈ V S
r′′ . If there exists an agent

q ∈ N \ (V S
r′ ∪ V S

r′′), then either vy′(q) = −1 or vy′′(q) = −1. Assume without
loss of generality that the former case holds. Then, zr

′

1 ∈ D. Otherwise,
vy′(π) ≤ 18 and y′ would deviate to join C. But then also zr

′′

1 ∈ D (due to
the utility of y′′), and it must hold that D = V S

r′ ∪ V S
r′′ ∪ {zr′1 , zr

′′

1 }. But then,
vzr′

1
(π) = −1, a contradiction. Hence, D = V S

r′ ∪V S
r′′ . but then, any agent in V S

has an MIS deviation to join D, a contradiction. We can conclude that zr1 /∈ C.
Since the previous argument is valid for every r ∈ S with V S

r ⊆ C, we can
conclude that C ⊆ NS . Assume for contradiction that there exists an agent y ∈
NS \C, say without loss of generality that y ∈ V S

r′ . Note that vy(C ∪ {y}) ≥ 20,
and therefore, it must hold that vy(π) ≥ 20. Hence, V S

r′ ∪ V S
r′′ ∪ {zr′1 } ⊆ π(y).

Therefore, even zr
′′

1 ∈ π(y) because otherwise, an agent in V S
r′′ would perform
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an MIS deviation to join C. But then, as in the previous argument, zr
′

1 has a
negative utility, a contradiction. Hence, C = NS . This concludes the proof of
the claim. ◁

Our next goal is to pinpoint the coalitions of agents in sets of the type V S
r .

Claim 19. For all S ∈ S and r ∈ S, it holds that V S
r ∪ {zr1} ∈ π or NS ∈ π.

Proof. For S ∈ S and r ∈ S consider an agent x ∈ V S
r and define C = π(x).

Assume that C ̸= NS . We have to show that C = V S
r ∪ {zr1}. By Claim 18, we

know then that V S ∈ π. By Fact 3, we know that C ⊆ NS ∪
⋃

t∈S N t. Assume
that S = {r, r′, r′′}.

Assume for contradiction that there exists an agent y ∈ (V S
r′ ∪V S

r′′)∩C. Then,
C∩N t ⊆ {zt1} for t ∈ S. Indeed, if there is t ∈ S and an agent q ∈ (N t\{zt1})∩C,
then we derive a contradiction by applying Lemma 5 for q and one of x and y.
A similar argument shows that NS ∩ C ⊆ NS . Hence, C ⊆ NS ∪

⋃
t∈S{zt1}.

By Fact 6 and our assumptions, we know that in addition V S
r ∪ V S

t ⊆ C for
t ∈ S with y ∈ V S

t . Hence, vp(C ∪ {p}) ≥ 17 > 9 = vp(π) for every p ∈ V S .
Hence, such an agent p could perform an MIS deviation, a contradiction. We
can, therefore, conclude that C ∩NS = V S

r . Since V S ∈ π, it must hold that
vx(π) ≥ 10. Since we already know that C ⊆ NS ∪ (NS \NS) ∪

⋃
t∈S N t, this is

only possible if C = V S
r ∪ {zr1}. ◁

We are ready to prove that (R,S) is a Yes-instance. Define S ′ = {S ∈
S : NS /∈ π}. First, note that the sets in S ′ are disjoint. Indeed, let S ∈ S ′ and
consider r ∈ S. By Claim 19, V S

r ∪{zr1} ∈ π. Hence, for every S′ ∈ S \ {S} with
r ∈ S′, it cannot be the case that V r

S′ ∪ {zr1} ∈ π. Hence, another application of
Claim 19 yields NS′ ∈ π, and therefore S′ /∈ S ′.

It remains to show that S ′ covers all elements in R. Therefore, let r ∈ R. By
Fact 1, Claim 18, and Claim 19, it holds that π(x) ⊆ Nr for all x ∈ Nr \{zr1} and
π(zr1) ⊆ Nr or π(zr1) = V S

r ∪{zr1} for some S ∈ S. In the former case, π(x) ⊆ Nr

for all x ∈ Nr, which contradicts the fact that π is an MIS partition because,
according to the proof of Proposition 8, the game restricted to Nr contains no
MIS partition. Hence, the latter case must be true, i.e., π(zr1) = V S

r ∪ {zr1} for
some S ∈ S. Then, S ∈ S ′, and therefore r is covered by an element in S ′.

5.4. Joint-Majority and Separate-Majorities Stability
The computational boundaries encountered so far only hold for one-sided

stability notions where only the welcoming or the abandoned coalition takes
a vote. In addition, Theorem 6 shows that these are opposed by tractabilities
under two-sided majority consent.

However, for general utilities, the existence of SMS (and therefore JMS)
partitions is not guaranteed anymore.

Proposition 9. There exists an ASHG without SMS partition.

Proof. Let N = [5] and consider the utilities according to Table 1 below.
See Figure 14 for a graphical representation of this example. We show that

no partition can be separate-majorities stable by an exhaustive case analysis.
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Table 1: Valuations for an ASHG without SMS partition.

v 1 2 3 4 5
1 0 2 −1 −3 1
2 1 0 2 −1 −3
3 −3 1 0 2 −1
4 −1 −3 1 0 2
5 2 −1 −3 1 0

2

−1
−3

1

Figure 14: The ASHG without SMS partition from Proposition 9. Outgoing edges with weights
have been drawn explicitly only for one agent, they are the same for each agent (up to rotation).

Let +[5] denote addition modulo 5, mapping to the representative in the set [5].
Assume for contradiction that π is separate-majorities stable, and C ∈ π is a
coalition of largest cardinality.

• Suppose |C| = 5. Then π = {N}, and all agents can form a singleton via
an SMS deviation.

• Suppose |C| = 4. Then we can write it as
{
i, i+[5] 1, i+[5] 2, i+[5] 3

}
for

some i ∈ N , and agent i can form a singleton via an SMS deviation.

• Suppose |C| = 3. Then it is either of the form
{
i, i+[5] 1, i+[5] 2

}
or of the

form
{
i, i+[5] 1, i+[5] 3

}
for some i ∈ N . In the first case, agent i+[5] 2

can form a singleton coalition, in the second case, agent i+[5] 3 can form a
singleton coalition.

• Suppose |C| = 2. Then π also has to contain a singleton {i}. If π(i+[5] 1) ∈{{
i+[5] 1

}
,
{
i+[5] 1, i+[5] 2

}}
, then i can join i+[5]1 via an SMS deviation.

If π(i+[5] 1) ∈
{{

i+[5] 1, i+[5] 3
}
,
{
i+[5] 1, i+[5] 4

}}
, then i+[5] 1 can join

i via an SMS deviation.

• Suppose |C| = 1. Then any agent i can join i+[5] 1 via an SMS deviation.

We can leverage the game constructed in the proof of Proposition 9 to oppose
Theorem 6 with a hardness result in general ASHGs.
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−3
1
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Figure 15: Schematic of the reduction from the proof of Theorem 13 for the Yes-instance of
E3C ({1, . . . , 6}, {s, t, u}) with S = {1, 2, 3}, t = {2, 3, 4} and u = {4, 5, 6}. Some edges have
been omitted for clarity. The indicated partition is both SMS and JMS.

Theorem 13. Deciding whether an ASHG contains an SMS (or JMS) partition
is NP-complete.

Proof. We provide a polynomial-time reduction from E3C that simultaneously
works for JMS and SMS. Let (R,S) be an instance of E3C. We produce an ASHG
(N, v) such that for all α ∈ {JMS, SMS}, (R,S) has an exact cover if and only if
(N, v) has an α partition. Define the agent set N =

⋃
S∈S AS ∪

⋃
r∈R

⋃nr

i=1 B
r
i ,

where

• AS =
{
aSr : r ∈ S

}
for S ∈ S and

• Br
i =

{
bri,j : j ∈ [5]

}
for r ∈ R, i ∈ [nr − 1].

Also, define utilities v as follows:

• For each S ∈ S, a ̸= a′ ∈ AS : va(a
′) = 2.

• For each r ∈ R,S ∈ Sr, i ∈ [nr − 1] : vaS
r
(bri,1) = 1, vbri,1(a

S
r ) = 0.

• For each r ∈ R, i ∈ [nr−1], each Br
i has internal utilities as in the example

constructed in Proposition 9, i.e., if v′ are the utilities in the example, then
vbri,j (b

r
i,k) = v′j(k) for all j, k ∈ [5].

• All other utilities are −M , where M = |S|+ 5 (can be thought of as −∞).

The reduction is visualized in Figure 15. Note that it can be performed in
polynomial time, as there are at most 3|S|+ 5|R||S| agents. We proceed with
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the proof of the correctness of the reduction and show that if (R,S) has an exact
cover, then (N, v) also has a JMS and SMS partition, and conversely, if (N, v)
has a partition π that is either JMS or SMS, then there is an exact cover in the
instance (R,S).

=⇒ Suppose (R,S) has an exact cover S ′ ⊆ S. We construct a stable
partition π.

• First, we create coalitions corresponding to the cover, i.e., for each S ∈ S,
we have AS ∈ π if and only if S ∈ S ′.

• This leaves for each r ∈ R exactly nr − 1 sets S ∈ Sr such that AS ̸∈ π.
Arbitrarily number these sets S1, . . . , Snr−1 and define for each i ∈ [nr − 1]
the coalitions

{
asir , bri,1

}
,
{
bri,2, b

r
i,3

}
,
{
bri,4, b

r
i,5

}
.

We claim that this partition is joint-majority stable and separate-majorities
stable. To see this, note that the only agents that have an incentive to deviate
are agents of type bri,1 who would prefer to join

{
bri,2, b

r
i,3

}
. Fix any such agent

bri,1 and consider S ∈ S with aSr ∈ π(bri,1). Then, aSr is against bri,1 leaving, so
the partition is majority-out stable and thus SMS. To see that it is also JMS,
note that even though bri,2 would vote in favor of the deviation, bri,3 is against it,
which together with the against-vote of aSr ensures that there is a strict joint
majority against the deviation.

⇐= Conversely, assume that there is a partition π that is joint-majority stable
or separate-majorities stable. We show that then there must be an exact cover
S ′ ⊆ S of R. We begin with some observations:

1. Agents bri,j with j ∈ {2, . . . , 5} must have π(bri,j) ⊆ Br
i . For contradiction,

suppose this is not so. Consider first the case that there is exactly one
outside agent a ∈ π(bri,j)\Br

i . Then, as va(bri,j) = −M , a has an incentive to
form a singleton coalition, and this is a valid SMS deviation (and therefore
JMS deviation). The other case is that there are at least two agents a, a′ ∈
π(bri,j) \Br

i with a ̸= a′. Then, as vbri,j (a) = −M and
∣∣Fout(π(b

r
i,j), b

r
i,j)

∣∣ ≥
|{a, a′}| = 2 =

∣∣∣{bri,j+[5]1
, bri,j+[5]4

}∣∣∣ ≥ ∣∣Fin(π(b
r
i,j), b

r
i,j)

∣∣, bri,j can form a
singleton coalition.

2. Agents aSr and aS
′

r′ with S ≠ S′ have π(aSr ) ̸= π(aS
′

r′ ). For contradiction,
suppose the contrary, i.e., suppose that there are aSr and aS

′

r′ with S ̸= S′,
but π(aSr ) = π(aS

′

r′ ). Define C = π(aSr ). As vaS
r
(aS

′

r′ ) = vaS′
r′
(aSr ) = −M ,

both would rather be in a singleton coalition. Further, we can assume
without loss of generality that

∣∣AS ∩ C
∣∣ ≤ ∣∣∣AS′ ∩ C

∣∣∣ (otherwise, we can

just swap them). Then, as
∣∣Fout(C, a

S
r )
∣∣ ≥

∣∣∣AS′ ∩ C
∣∣∣ ≥

∣∣AS ∩ C
∣∣ >∣∣Fin(C, a

S
r )
∣∣, it holds that aSr can deviate to form a singleton coalition.

3. Agents bri,1 must be in a pair with exactly one agent aSr . Fix such an
agent bri,1. First, due to the first observation, she cannot be alone, and no
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Table 2: Overview of our computational results. A red cell denotes the existence of games
without a stable partition and usually comes with computational intractability. A green cell
means that a stable partition can be constructed in polynomial time (Function-P), and, in the
case of results from this paper, even by executing a dynamics.
a: Aziz and Brandl (2012), b: Aziz et al. (2013), c: Dimitrov et al. (2006), d: Sung and
Dimitrov (2010)

General FEGs AEGs AFGs

NS NP-cd NP-c (Th. 1) NP-c (Th. 1) NP-c (Th. 2)
IS NP-cd FP (Th. 4) FPa (Th. 4) FPc (Th. 4)
CNS NP-c (Th. 3) FP (Th. 5) FP (Th. 5) FP (Th. 5)
CIS FPb FPb FPb FPb

MIS NP-c (Th. 7) NP-c (Th. 12) NP-c (Th. 7) FP (Th. 9)
MOS NP-c (Th. 8) NP-c (Th. 11) NP-c (Th. 8) NP-c (Th. 10)
JMS NP-c (Th. 13) FP (Th. 6) FP (Th. 6) FP (Th. 6)
SMS NP-c (Th. 13) FP (Th. 6) FP (Th. 6) FP (Th. 6)

other agents from Br
i can be in her coalition, as the example constructed

in Proposition 9 has no SMS partition. Consequently, she must form a
coalition with at least one agent outside of Br

i , and no agents from Br
i .

Next, due to the second observation, she can be together with at most one
agent of type aSr . If there was another member from AS (other than aSr ),
bri,1 could deviate to a singleton coalition.

We now know that for each r ∈ R, exactly nr−1 of the agents aSr must be in pairs
with agents bri,1. This leaves exactly one agent aSr not in a pair. We claim that
for these agents we have π(aSr ) = AS , yielding a cover S ′ =

{
S ∈ S : AS ∈ π

}
.

Suppose that aSr is such an agent not in a pair. Then, π(aSr ) ⊆ AS . If the
other two agents from AS form a pair, then aSr has an incentive to join them.
Otherwise, the other two agents would have an incentive to join aSr . In any case,
the only stable situation is π(aSr ) = AS .

6. Conclusion and Discussion

We studied stability based on single-agent deviations in additively separable
hedonic games. Our results complete the complexity picture of eight stability
notions in additively separable hedonic games under four utility assumptions.
Table 2 summarizes our results and compares them with related results from the
literature. All stability notions we consider are based on deviations by single
agents, where deviations might be subject to the consent of the abandoned or
welcoming coalition of a deviation. The consent can either be unanimous or by
a majority vote. Apart from unrestricted utility functions, we consider three
restrictions that can be naturally interpreted in terms of friends and enemies.

Our work identifies several interesting complexity dichotomies. First, Nash
stability yields computational boundaries that cannot be crossed for severe utility
restrictions. On the other hand, unanimous consent leads to positive results for
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all three utility restrictions based on friends and enemies. The picture is less
clear when deviations are governed by majority consent. While stable partitions
always exist when considering both the abandoned and the welcoming coalition
of the deviating agent, we obtain mostly negative results if only one of these
coalitions is considered.

Notably, we obtain all of our positive results through the convergence of
simple and natural dynamics. The convergence of dynamics is a strong certificate
of existence because it does not only answer which outcomes are desirable but
it also helps to understand how and why certain outcomes form. It would
be interesting to see whether dynamics based on stability lead to reasonable
predictions of the outcomes of real coalition formation processes.

Moreover, our results obtained by dynamics extend previously known results
about individual stability. Aziz and Brandl (2012) obtain a polynomial algorithm
essentially by running a dynamics from the singleton partition, whereas Dimitrov
et al. (2006) take a different, graph-theoretical approach considering strongly
connected components. The construction of CIS partitions by Aziz et al. (2013)
is done by iteratively identifying specific coalitions, and it is not known whether
CIS dynamics converge in polynomial time for natural starting partitions such
as the singleton partition or grand coalition. An important tool in establishing
our results concerning the convergence of dynamics is the Deviation Lemma, a
general combinatorial insight that allows us to study dynamics from a global
perspective.

By contrast, we have determined strong boundaries to the efficient com-
putability of stable partitions. First, we resolve the computational complexity
of computing CNS partitions, which considers the last open unanimity-based
stability notion in unrestricted ASHGs. Second, our intractability concerning
AFGs for majority-out stability is a contrast to the positive results for all other
consent-based stability notions, and can also be circumvented by considering
AFGs with a sparse friendship relation. Finally, we provide sophisticated hard-
ness proofs for majority-based stability concepts in FEGs. However, these turn
into computational feasibilities when transitioning to unanimity-based stability,
or under further assumptions to the structure of the friendship graph.

A key step of all hardness results in restricted classes of ASHGs was to
construct the first No-instances, that is, games that do not admit stable partitions
for the respective stability notion. This is no trivial task as can be seen from
the complexity of the constructed games. Once No-instances are found, we can
leverage them as gadgets of hardness reductions, which is a typical approach
for complexity results about hedonic games. We have provided both reductions
where the explicit structure of the determined No-instances is used as well as
reductions where the mere existence of No-instances is sufficient and can be used
as a black box.

Our results give a complete picture of the computational complexity for all
considered stability notions and game classes. Still, majority-based stability
notions deserve further attention because they offer a natural degree of consent
to perform deviations. Majority-based decisions can likely explain agreements
to form a coalition where the strong demands of unanimous consent fail. Their
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thorough investigation in other classes of hedonic games might lead to interesting
discoveries. Another intriguing direction is to establish further applications of
the combinatorial insights from the Deviation Lemma.
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