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Consider an urn filled with balls, each labeled with one of several possible
collective decisions. Now, let a random voter draw two balls from the urn and
pick her more preferred as the collective decision. Relabel the losing ball with
the collective decision, put both balls back into the urn, and repeat. Once
in a while, relabel a randomly drawn ball with a random collective decision.
We prove that the empirical distribution of collective decisions produced by
this process approximates a maximal lottery, a celebrated probabilistic voting
rule proposed by Peter C. Fishburn (Rev. Econ. Stud., 51(4), 1984). In fact,
the probability that the collective decision in round n is made according to a
maximal lottery increases exponentially in n. The proposed procedure is more
flexible than traditional voting rules and bears strong similarities to natural
processes studied in biology, physics, and chemistry as well as algorithms
proposed in machine learning.

1. Introduction

The question of how to collectively select one of many alternatives based on the preferences
of multiple agents has occupied great minds from various disciplines. Its formal study
goes back to the Age of Enlightenment, in particular during the French Revolution, and
the important contributions by Jean-Charles de Borda and Marie Jean Antoine Nicolas
de Caritat, better known as the Marquis de Condorcet. Borda and Condorcet agreed
that plurality rule—then and now the most common collective choice procedure—has
serious shortcomings. This observation remains a point of consensus among social choice
theorists and is largely due to the fact that plurality rule merely asks each voter for her
most-preferred alternative (see, e.g., Brams and Fishburn, 2002; Laslier, 2011).1 When
eliciting more fine-grained preferences such as complete rankings over all alternatives from
the voters, much more attractive choice procedures are available. As a matter of fact,

1For example, plurality rule may select an alternative that an overwhelming majority of voters consider
to be the worst of all alternatives.
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since Arrow’s (1951) seminal work, the standard assumption in social choice theory is that
preferences are given in the form of binary relations that satisfy completeness, transitivity,
and often anti-symmetry. Despite a number of results which prove critical limitations
of choice procedures for more than two alternatives (e.g., Arrow, 1951; Gibbard, 1973;
Satterthwaite, 1975), there are many encouraging results (e.g. Young, 1974; Young and
Levenglick, 1978; Brams and Fishburn, 1978; Laslier, 2000a). In particular, when allowing
for randomization between alternatives, some of the traditional limitations can be avoided
and there are appealing choice procedures that stand out (Gibbard, 1977; Brandl et al.,
2016; Brandl and Brandt, 2020).

The standard framework in social choice theory rests on a number of rigid assumptions
that confine its applicability: there is a fixed set of voters, a fixed set of alternatives,
and a single point in time when preferences are to be aggregated; all voters are able to
rank-order all alternatives; there is a central authority that collects all these rankings,
computes the outcome, and convinces voters of the outcome’s correctness, etc. On top of
that, computing the outcome of many attractive choice procedures is a demanding task
that requires a computer, which can render the process less transparent to voters.2

In this paper, we devise an ongoing process in which voters may arrive, leave, and
change their preferences over time and collective decisions are made repeatedly at intervals.
Voters are never asked for their complete preference relations, but rather reveal minimal
information about their preferences by choosing between two randomly drawn alternatives
from time to time. No central voting authority is required. The process can be executed
via a simple physical device: an urn filled with balls that allows for two primitive
operations: (i) randomly sampling a ball and (ii) replacing a sampled ball of one kind
with a ball of another kind. More precisely, the process works as follows (see Figure 1).
There is an urn filled with balls that each carry the label of one alternative. The initial
distribution of balls in the urn is arbitrary. In each round, a randomly selected voter will
draw two balls from the urn at random. Say these two balls are labeled with alternatives
1 and 2, and the voter prefers 1 to 2. She will then change the label of the second ball to
1 and return both balls to the urn. Alternative 1 is declared the collective choice—or
winner—of this round. After each round, with some small probability r which we call
mutation rate, a randomly drawn ball is relabeled with a random alternative.

We show that if the number of balls in the urn is sufficiently large, then the limit
of the empirical distribution of winners is almost surely close to a maximal lottery—a
randomized extension of the Condorcet principle that was proposed by Fishburn (1984)
and enjoys many desirable axiomatic properties. How far the limiting distribution will
be from a maximal lottery depends on r. As r goes to 0, the limiting distribution
converges to a maximal lottery. We can, however, not set r to 0 as then almost surely,
all alternatives except one will permanently disappear from the urn and the limiting
distribution will be degenerate. Our proof not only shows convergence of the limiting
distribution but also that the probability that the urn distribution itself is close to a

2In some cases, computing the outcome was even shown to be NP-hard, i.e., the running time of all
known algorithms for computing election winners increases exponentially in the number of alternatives
(see, e.g., Bartholdi, III et al., 1989; Brandt et al., 2016).
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(iii) The distribution of winners converges to a maximal
lottery w.r.t. the voters’ preferences.

Figure 1: Illustration of one round of the urn process (i and ii) and the main result (iii).

maximal lottery gets arbitrarily close to 1 and increases exponentially in the number of
rounds. The winners of most rounds are thus selected according to approximate maximal
lotteries.

1.1. Maximal Lotteries, Dynamic Voting, and Approximate Axiomatics

The basic idea of maximal lotteries is to avoid the Condorcet paradox—which lies at
the heart of classic impossibility theorems—by extending the notion of a Condorcet
winner to lotteries. A lottery p is a randomized Condorcet winner—or maximal—if for
any other lottery q, a random voter is more likely to prefer the alternative sampled
from p to that sampled from q than vice versa.3 The minimax theorem guarantees that
maximal lotteries exist. Maximal lotteries also have a natural interpretation in terms of
electoral competition (see, e.g., Myerson, 1993; Laslier, 2000b; Carbonell-Nicolau and Ok,
2007). In fact, maximal lotteries are precisely the mixed Nash equilibrium (or maximin)
strategies of the symmetric two-player zero-sum game given by the pairwise majority
margins of the voters’ preferences. When interpreting the two players as parties and the
alternatives as possible positions of the parties, this can be seen as a game of electoral
competition in which two parties aim at maximizing the number of voters who prefer
their (mixed) position to that of the other party. For this reason, the social choice
literature sometimes refers to the support of maximal lotteries as the bipartisan set (a
term proposed by Roger Myerson).

Maximal lotteries are known to satisfy a number of desirable properties that are
typically considered in social choice theory (see, e.g., Felsenthal and Machover, 1992;
Laslier, 2000a; Rivest and Shen, 2010; Hoang, 2017; Brandl et al., 2022). For example,
Condorcet winners (i.e., alternatives that defeat every other alternative in a pairwise
majority comparison) will be selected with probability 1, and Condorcet losers (i.e.,

3This comparison of lotteries induces a binary relation on lotteries whose maximal elements are precisely
the maximal lotteries.
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alternatives that are defeated in all pairwise majority comparisons) will never be selected.
No group of voters benefits by abstaining from an election, removing losing alternatives
does not affect maximal lotteries, and each alternative’s probability is unaffected by
cloning other alternatives. Maximal lotteries have been axiomatically characterized using
Arrow’s independence of irrelevant alternatives and Pareto efficiency (Brandl and Brandt,
2020) as well as population-consistency and composition-consistency (Brandl et al., 2016).
The dynamic procedure described above implements maximal lotteries while providing

• myopic strategyproofness within each round,

• minimal preference elicitation and, thus, increased privacy protection,

• verifiability realized via a simple physical procedure, and

• all-round flexibility.

Myopic strategyproofness: Each round’s decision is made by letting a randomly selected
voter choose between two alternatives. Clearly, a voter who is only concerned with the
outcome of the current round is best off by choosing the alternative that she truly prefers.
If she also takes into account the outcomes of future rounds, however, she may be able to
skew the distribution in the urn by choosing alternatives strategically.4

Preference elicitation: Eliciting pairwise preferences on an as-needed basis has several
advantages. First, it spares the voters from the cognitive burden of having to rank-order
all alternatives at once. If the number of voters is large, it may well be possible that the
urn process yields satisfying results without ever querying some of the voters. Secondly,
rather than submitting a complete ranking of all alternatives to a trusted authority,
voters only reveal their preferences by making pairwise choices from time to time.5

Verifiability : Previously, the deployment of maximal lotteries required that a central
authority collects the preferences of all voters, computes a maximal lottery by solving a
linear program, and instantiates the lottery in some user-verifiable way. The urn process
allows to achieve these goals via a simple physical device.

Flexibility : The urn process is oblivious to changes in the voters’ preferences, the set of
voters as well as the set of alternatives. Everything that has happened up to the current
round is irrelevant. Since the process converges from any initial configuration, it will
keep “walking in the right direction” (towards a maximal lottery of the current preference
profile). If the preferences change slowly in the sense that only a small fraction of voters
changes their preferences from one round to the next, collective choices will thus be made

4Maximal lotteries, like any ex post Pareto efficient randomized choice procedure other than random
dictatorships, fail to be strategyproof (Gibbard, 1977). The simple notion of myopic strategyproofness
could be strengthened by discounting future rounds.

5Privacy can be further increased by letting voters draw their balls privately, announce the winner, and
put two balls of the same color back into the urn, without revealing the original color of the losing
ball. Alternatively, the voters’ preferences can be protected completely by letting the voter publicly
draw both balls, make one copy of each ball, and let her privately put back two balls of her choice.
The collective decision in each round can then be made by drawing a random ball from the urn.
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according to a maximal lottery for the current preferences in most rounds. This includes
the case when the distribution of preferences converges.

We also note some disadvantages of the urn process. The convergence of the distribution
of winners to an approximate maximal lottery is an asymptotic result. In particular, for
a finite number of rounds, there is a non-zero probability that the chosen alternative is
subpar for a significant fraction of rounds, for example, because it is Pareto dominated.
To bound this probability below an acceptable threshold, it may be necessary to run
the process for an excessively large number of rounds. Second, ensuring that the limit
distribution is sufficiently close to a maximal lottery could require an urn with a large
number of balls. We address the first concern by showing that the probability for the
distribution of winners to be far from the limit distribution converges to 0 exponentially
fast in the number of rounds. The rate of convergence is also evident in computational
simulations we ran for various parameterizations of the process. When the preference
profile admits a Condorcet winner, we can give tractable bounds on the number of balls
in the urn required to achieve a good approximation in the limit. This partially mitigates
the second concern since it has been observed that most real-world preference profiles
admit Condorcet winners (see, e.g., Gehrlein and Lepelley, 2011).

The axiomatic characterizations of maximal lotteries not only imply that maximal
lotteries satisfy desirable axioms, but also that any deviation from maximal lotteries
leads to a violation of at least one of the axioms. Hence, a process that only guarantees
an approximation of a maximal lottery will not enjoy the same axiomatic properties.
However, rather than insisting on stringent axioms, one can relax them by only requiring
them to hold in an approximate sense. For example, a natural notion of approximate
Condorcet-consistency would require that a Condorcet winner receives probability close to
1 whenever one exists. Since the empirical distribution of winners according to our process
is almost surely close to a maximal lottery and maximal lotteries are Condorcet-consistent,
the process is approximately Condorcet-consistent in the above sense. More generally,
approximate maximal lotteries satisfy approximate versions of many of the axioms enjoyed
by maximal lotteries such as population-consistency, composition-consistency, agenda-
consistency, and efficiency. This follows from the fact that the correspondence returning
the set of maximal lotteries depends continuously on the underlying preference profile
and we show this exemplarily for population-consistency in Section D.

Maximal lotteries have been repeatedly recommended for practical use (Felsenthal
and Machover, 1992; Rivest and Shen, 2010; Brandl et al., 2016; Hoang, 2017). We
believe that the benefits of the urn process described above extend the applicability
of maximal lotteries. Rather than for traditional political elections, probabilistic rules
like maximal lotteries seem more suitable for frequently repeated low-stakes elections
where some degree of randomization may not only be tolerable but even desirable. Two
example applications that have been suggested for maximal lotteries are to help a group
of coworkers with the daily decision where to have lunch and to select music for a party
or a radio station based on the preferences of the listeners (Brandl et al., 2016). The
transparency and the flexibility of the urn process seem particularly effective in the music
broadcasting example. Agents come and go, they only need to select from a pair of
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songs rather than rank-order all of them, and individual preferences, as well as the set
of available songs, can be changed at any time. Our theorem shows that the sequence
of simple pairwise choices results in a socially desirable distribution of songs: the more
songs are being played, the less likely it becomes that another distribution of songs would
have been preferred by an expected majority of listeners. It is plausible that, over time,
the preferences of the listeners change depending on the songs that have been played so
far. These changes will be reflected immediately in the selection of future songs.

1.2. Applications Beyond Collective Decision-Making

Interestingly, dynamic processes similar to the process we describe here have recently
been studied in population biology, quantum physics, chemical kinetics, and plasma
physics to model phenomena such as the coexistence of species, the condensation of
bosons, the reactions of molecules, and the scattering of plasmons. In each of these
cases, simple interactions between randomly sampled entities result in distributions that
correspond to equilibrium strategies of symmetric zero-sum games. Since the definition
of maximal lotteries and our dynamic process merely rely on this comparison matrix,
describing with which probability one entity will be replaced with another in a pairwise
encounter, our results are also of relevance to these areas. We discuss these connections,
as well as those to equilibrium learning and evolutionary game theory, in more detail in
Section 5.

An alternative interpretation of our result can be used to describe the formation of
opinions. In this model, there is a population of agents, each of whom entertains one
of many possible opinions. Agents come together in random pairwise interactions, in
which they try to convince each other of their opinion. The probabilities with which one
opinion beats another are given as a square matrix and, with some small probability, an
agent randomly changes her opinion. In other words, the agents correspond to the balls
in the urn, the opinions correspond to the alternatives, and there are neither voters nor
preference profiles as transition probabilities are given explicitly. Our theorem then shows
that, if the population is large enough, the distribution of opinions within the population
is close to a maximal lottery of the probability matrix most of the time. Other models of
opinion formation based on different processes were, for example, considered by DeGroot
(1974), Holley and Ligget (1975), and Goel and Lee (2014).

The process we describe approximately computes a mixed Nash equilibrium of a
symmetric zero-sum game. This problem is known to be equivalent to linear programming.
In fact, deciding whether an action is played with positive probability in an equilibrium of
a symmetric zero-sum game is P-complete (Brandt and Fischer, 2008, Theorem 5), which,
loosely speaking, means that the problem is at least as hard as any problem that can be
solved in polynomial time. The urn process can thus be seen as a probabilistic algorithm
that approximates polynomial-time computable functions. In contrast to traditional
computing devices such as Turing machines, the urn process is based on unordered
elementary entities that randomly interact according to very simple replacement rules.6

6Related decentralized models of computation with applications to sensor networks and molecular
computing are studied under the name “population protocols” in computer science (e.g., Angluin et al.,
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The remainder of the paper is structured as follows. After defining our model in
Section 2, we state the main result (Theorem 1) and a rough proof sketch in Section 3.
The full proof is given in the Appendix. In Section 4, we analyze the instructive special
case of preference profiles that admit a Condorcet winner, which allows for a more
elementary proof. In Section 5, we extensively discuss the connections between our
work and results from equilibrium learning, evolutionary game theory, and the natural
sciences. We also state a continuous version of our main result (Theorem 2) that may be
of independent interest. In Section D, we show in which sense the axiomatic properties
of maximal lotteries can be retained for approximations thereof.

2. The Model

Let [d] = {1, . . . , d} be a set of alternatives and ∆ the d− 1-dimensional unit simplex in
Rd, that is, ∆ = {x ∈ Rd

≥0 :
∑d

i=1 xi = 1}. We refer to elements of ∆ as lotteries. By
N = {1, 2, . . . } and N0 = N∪{0} we denote the sets of positive and non-negative integers,
respectively. Throughout the paper, for a vector x ∈ Rk for some k, |x| =

∑k
l=1|xl| denotes

its L1-norm. For δ > 0 and S ⊂ Rd, let Bδ(S) = {x ∈ ∆: |x− y| < δ for some y ∈ S} be
the δ-ball around S. For a finite set S, we write |S| for the number of elements of S.

A preference relation ≻ is an asymmetric binary relation over [d].7 By R we denote
the set of all preference relations. Let V be a finite set of voters. A preference profile
R ∈ RV specifies a preference relation for each voter. With each preference profile
R, we can associate a comparison matrix MR ∈ [0, 1]d×d that states for each ordered
pair of alternatives the fraction of voters who prefer the first to the second. That
is, MR(i, j) = |{v ∈ V : i ≻v j}|/|V |. This matrix induces a skew-symmetric matrix
M̃R =MR −M⊺

R, which we call the skew-comparison matrix.8

2.1. Maximal Lotteries

A lottery p ∈ ∆ is a maximal lottery for a profile R if M̃R p ≤ 0. The minimax theorem
implies that every profile admits at least one maximal lottery. By ML(R) we denote the
set of all lotteries that are maximal for R. Most profiles admit a unique maximal lottery.
For example, when the number of voters is odd and voters have strict preferences, there
is always a unique maximal lottery (Laffond et al., 1997).

2006; Aspnes and Ruppert, 2009). While the urn process has the same modus operandi as population
protocols, the input-output behavior is different. The input of population protocols is given by the
initial distribution of balls in the urn and the output has been reached if all balls belong to a certain
subset of types. By contrast, the input for our urn process is encoded in the matrix describing the
replacement rules and the (approximate) output is given by the distribution of balls in the urn after
sufficiently many rounds.

7Preferences need not be transitive or complete. The definition of maximal lotteries and the urn
process we describe only depend on the fractions of voters who prefer one alternative to another. In
particular, indifferences can easily be accommodated by randomly selecting which of the two balls
will be relabelled.

8A matrix M is skew-symmetric if M = −M⊺.
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Example 1 (Condorcet winner). Consider, for example, 900 voters, three alternatives,
and a preference profile R given by the following table. Each column header contains the
number of voters with the corresponding preference ranking.

300 300 300

1 1 2
2 3 3
3 2 1

Then,

MR =

 0 2/3 2/3
1/3 0 2/3
1/3 1/3 0

 and M̃R =

 0 1/3 1/3
−1/3 0 1/3
−1/3 −1/3 0

 .

The set of maximal lotteries ML(R) = {(1, 0, 0)⊺} only contains the degenerate lottery
with probability 1 on the first alternative. This alternative is a Condorcet winner, i.e.,
an alternative that is preferred to every other alternative by some majority of voters.

2.2. Markov Chains

Let S be a finite set and {X(n) : n ∈ N0} be a discrete-time, time-homogeneous Markov
chain with state space S. The transition probability matrix P ∈ [0, 1]S×S of {X(n) : n ∈
N0} is given by

P (p, p′) = P
(
X(n+ 1) = p′ | X(n) = p

)
for all p, p′ ∈ S. We will frequently write X(n, p0) for X(n) conditioned on X(0) = p0 ∈ S
and call p0 the initial state.

The period of a state p ∈ S is the greatest common divisor of the return times with
positive probability {n ∈ N : (Pn)(p, p) > 0}. A Markov chain is aperiodic if every state
has period 1. Note that any Markov chain with P (p, p) > 0 for all p ∈ S is aperiodic. A
Markov chain is irreducible if every state is reached from any other state with positive
probability. That is, for any two states p, p′ ∈ S, there is a positive integer n so that
(Pn)(p, p′) > 0. If {X(n) : n ∈ N0} is irreducible and aperiodic, it has a unique stationary
distribution π ∈ ∆S so that π⊺ = π⊺P .

2.3. The Urn Process

Consider an urn with N ∈ N balls, each labeled with some alternative. Viewing balls
with the same label as indistinguishable, we can identify each state of the urn with an
element of the discrete unit simplex ∆(N) = {p ∈ ∆: Np ∈ Nd

0}. Fix a mutation rate
r ∈ [0, 1].

We are interested in a Markov chain with state space ∆(N) that can be informally
described as follows. First, we flip a coin that has probability 1− r of landing heads. If
the coin shows heads, we choose one voter v ∈ V uniformly at random and ask the voter
to draw two balls from the urn. Say these two balls are labeled with alternatives 1 and 2.
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If 1 ≻v 2, the label of the second ball is changed to 1. Likewise, if 2 ≻v 1, the first ball is
relabeled with label 2. If both balls carry the same label, the labels remain unchanged.
If the coin shows tails, we draw a single ball from the urn, relabel it with an alternative
chosen uniformly at random, and put it back into the urn.

This description of the process assumes that two alternatives are sampled from the
urn distribution without replacement. For the formal description, we will assume that
drawing is with replacement. This corresponds to sampling one alternative by drawing
one ball, putting the ball back into the urn, and sampling a second alternative by again
drawing one ball (which may be the same as the first).9 Doing so avoids a lot of clumsy
notation. If the number of balls in the urn is large, there is no significant difference
between drawing with and without replacement. In the proof, we point out why the same
arguments also carry through with minor adaptations for drawing without replacement.

We define a transition probability matrix P (N,r) that specifies for every pair of states the
probability that the distribution of the urn transitions from the first to the second. Denote
by ei the ith unit vector in Nd

0. For p ∈ ∆(N) and i, j ∈ [d] with p′ = p+ ei
N − ej

N ∈ ∆(N),
let

P (N,r)(p, p′) =


(1− r)2pipjMR(i, j) +

r

d
pj if i ̸= j

(1− r)
d∑

k=1

p2k +
r

d
if i = j

be the probability of transitioning from p to p′. For the remaining pairs of states
p, p′ ∈ ∆(N), let P (N,r)(p, p′) = 0. Then, P (N,r) has non-negative values and its rows sum
to 1 so that it is a valid transition probability matrix. For an initial state p0 ∈ ∆(N),
we consider a Markov chain {X(N,r)(n, p0) : n ∈ N0} with transition probability matrix
P (N,r). The distribution of X(N,r)(n, p0) over ∆(N) is given by the row of

(
P (N,r)

)n with
index p0. If r > 0, this Markov chain is irreducible and aperiodic (since it remains in the
same state with positive probability). It corresponds to the urn process described above
when the initial state of the urn is p0.

Continuing Example 1, consider an urn with N = 5 balls and recall that d = 3. Then,
the transition probability matrix P (N,r) is an

(
3+5−1

5

)
= 21-dimensional square matrix.

Let the mutation rate be r = 0.1 and the initial state p0 = 1
5 (1, 2, 2)

⊺. The probability
that one of the balls of the second type is replaced with one of the first type is

P (5,0.1)(p0,
1

5
(2, 1, 2)⊺) = 0.9 · 4

25
· 2
3
+ 0.1 · 1

3
· 2
5
∼ 0.109.

3. The Result

We prove the following:

9In practice, it would the be infeasible to relabel the first drawn ball since it is “lost” in the urn after
putting it back. However, one could modify the process by relabeling the second ball if the voter
prefers the first sampled alternative and change nothing otherwise. This eliminates the factor of 2 in
the transition probabilities below but does not change the results.
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For any small enough mutation rate r > 0, there is a maximal lottery p∗ so
that for any initial state p0, X(N,r)(k, p0) is close to p∗ for all but a small
fraction of rounds k provided that the number of balls N is large enough.

More precisely, for any δ, τ > 0, there is an upper bound on the mutation rate r0 > 0 so
that for every 0 < r ≤ r0, there is a maximal lottery p∗ and a lower bound on the number
of balls N0 ∈ N such that for every N ≥ N0 and every p0 ∈ ∆(N), the fraction of rounds
k in which X(N,r)(k, p0) is no more than δ away from p∗ is almost surely at least 1− τ .10

Theorem 1. Let δ, τ > 0. Then, there is r0 > 0 such that for all 0 < r ≤ r0, there are
p∗ ∈ ML(R) and N0 ∈ N such that for all N ≥ N0 and p0 ∈ ∆(N), almost surely

lim
n→∞

1

n

∣∣∣{k ≤ n :
∣∣∣X(N,r)(k, p0)− p∗

∣∣∣ ≤ δ
}∣∣∣ ≥ 1− τ.

Moreover, there is C > 0 such that for all n ∈ N0,

P
(∣∣∣X(N,r)(n, p0)− p∗

∣∣∣ ≤ δ
)
≥ 1− τ − e−⌊Cn⌋.

To prove this, we approximate our discrete and stochastic urn process by a continuous
and deterministic process. The latter can be viewed as a version of the urn process with
a continuum of balls. Using analytical tools, it can be shown that this process converges
to an approximate maximal lottery for every initial state, where the approximation
can be made arbitrarily precise if r is made small (see Theorem 2 in Section 5). The
approximation only works for a finite number of rounds (respectively, bounded time
interval) and only with probability close to 1 (rather than almost surely). However, on
long enough time intervals, the deterministic process is close to an approximate maximal
lottery most of the time (since it converges to such a lottery). Moreover, on any such
interval, the deterministic process is a good approximation to the stochastic process with
probability close to 1 (provided that the number of balls is large enough). By a variant of
the strong law of large numbers, it then follows that the stochastic process is close to an
approximate maximal lottery for most rounds almost surely. This is the first statement of
Theorem 1. We give a more detailed outline and a complete proof in the Appendix. The
second statement follows from the first using the standard result that the distribution of
an irreducible and aperiodic Markov chain converges exponentially fast to its stationary
distribution in the total variation norm.

Theorem 1 is a statement about the distribution in the urn. Recall that the collective
decision in each round is the winner of the pairwise comparison between the two drawn

10Theorem 1 implies that the stationary distribution of X(N,r) assigns probability at least 1− τ to states
that are in a δ-neighborhood of p∗. Conversely, this property of the stationary distribution implies
Theorem 1 by the ergodic theorem for Markov chains. The proof does however not derive the above
property of the stationary distribution as an intermediate step. It is only a by-product of the final
result. For more than two alternatives, our result is stronger than proving that the expectation of the
stationary distribution, or, equivalently, the temporal average of the urn distribution, is close to a
maximal lottery.
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balls. It is not hard to show that the empirical distribution of winners is also close to a
maximal lottery.11

Another straightforward corollary of Theorem 1 is that the temporal average of the
urn distribution is almost surely close to a maximal lottery (provided that r is small and
N is large). Let

Z(N,r)(n, p0) =
1

n
·
n−1∑
k=0

X(N,r)(k, p0)

be the temporal average of X(N,r)(k, p0) over the first n rounds. Then, we have the
following.

Corollary 1. Let δ > 0. Then, there is r0 > 0 such that for all 0 < r ≤ r0, there are
p∗ ∈ ML(R) and N0 ∈ N such that for all N ≥ N0 and p0 ∈ ∆(N),

P
(∣∣∣ lim

n→∞
Z(N,r)(n, p0)− p∗

∣∣∣ ≤ δ
)
= 1

Proof. For some τ to be determined later, let r0 and, depending on 0 < r ≤ r0, p∗ and
N0 be as obtained from Theorem 1. By the triangle inequality, we have

∣∣∣Z(N,r)(n, p0)− p∗
∣∣∣ ≤ 1

n
·
n−1∑
k=0

∣∣∣X(N,r)(k, p0)− p∗
∣∣∣ .

By Theorem 1, in the limit when n goes to infinity, all but a 1−τ fraction of the summands
on the right-hand side are smaller than δ. The remaining summands are bounded by 2.
Hence, choosing τ = δ

2 gives that almost surely, |limn→∞ Z(N,r)(n, p0)− p∗| ≤ 2δ. The
ergodic theorem for Markov chains ensures that the limit exists.

Before illustrating these results via examples, we discuss variations of the urn process.

Remark 1 (Decoupling collective decisions). We assume that in each round, a collective
decision is made by selecting the winner of the pairwise comparison. It may, however, be
more practical to decouple collective decisions from the preference elicitation process and
draw winners less frequently. For example, collective decisions could be made by drawing
a random ball after any fixed number of rounds or at random times. Corollary 1 shows
that the resulting distribution would approximate a maximal lottery.
11Suppose the distribution of balls in the urn is p ∈ ∆(N). Then the probability that i ∈ [d] is the

collective decision is

wi = pi
(
pi + 2

∑
j ̸=i

MR(i, j)pj
)
= pi

(
pi +

∑
j ̸=i

(M̃R(i, j) + 1)pj
)
= pi

(
1 + M̃Rp

)
where we used that 2MR(i, j) = M̃R(i, j) + 1,

∑
j∈[d] pj = 1, and MR(i, i) = 0. If p∗ is a maximal

lottery and |p− p∗| ≤ δ, then (M̃Rp)i ≤ δ for all i ∈ [d]. Hence, wi ∈ [pi − δ, pi + δ] for all i, so that
|w − p∗| ≤ (d + 1)δ. For every δ′ > 0, choosing δ = τ = δ′

2(d+1)
in Theorem 1 thus shows that the

empirical distribution of collective decisions is almost surely no more than δ′ away from p∗.
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Remark 2 (Non-uniform mutation rates). The results still hold if we let the probability
of a random mutation from alternative i to alternative j depend on the pair (i, j). It
suffices that every alternative in the support of a maximal lottery can escape permanent
depletion via some path of mutations. More explicitly, it suffices if for any two alternatives
i and j, there is a path of alternatives from i to j so that the mutation rate is positive
from any alternative on the path to the next. The proof can be adapted at the expense
of more book-keeping.

Remark 3 (Mutation rate vs. urn size). Corollary 1 shows that the temporal average of
the urn distribution converges to a maximal lottery if we let N go to infinity and then
take r to 0 (see also Theorem 2). This is in contrast to other works on evolutionary
dynamics that take limits in the reverse order.12 While the frameworks are similar, these
results are conceptually different. In our model, if r is too small compared to 1

N , it will,
in general, not be the case that the distribution in the urn is close to a maximal lottery
for most rounds. For any long enough time interval, the distribution in the urn will for all
r degenerate within the interval with high probability, that is, it will only contain balls of
one type. If r is very small, it will stay in a degenerate state for a long time (compared to
the chosen interval) with high probability. When the process leaves the degenerate state,
the same will repeat itself (possibly with a different degenerate state), so that the process
spends most rounds in degenerate states. As a consequence, decreasing r over time does
not work unless N is increased as well. When increasing N at an appropriate rate, the
urn distribution will converge exactly to the set of maximal lotteries by Theorem 1.

Remark 4 (Majority voting). Rather than letting only a single voter decide on the
pairwise comparison between the two randomly drawn balls, it is possible to ask all
voters which alternative they prefer and replace the alternative which is less preferred
by a majority of voters. This variant is equivalent to the original process for a single
voter with possibly intransitive preferences (given by the majority relation of the entire
population of voters) and converges to a so-called C1 maximal lottery of the preference
profile (see Brandl et al., 2022, for more information on C1 maximal lotteries).

Remark 5 (Static or growing urn). When the initial distribution of balls in the urn
is uniform and remains fixed (i.e., no balls are replaced over time), then the empirical
distribution of winners converges to the lottery returned by the proportional Borda rule
(see, e.g., Barberà, 1979; Heckelman, 2003).13 This rule violates Condorcet-consistency
and Pareto efficiency. It can put probability 1

d on Pareto-dominated alternatives and
almost as little as 1

d on Condorcet winners for large numbers of voters (Brandt et al., 2022).

12For example, Fudenberg and Imhof (2008) study imitation dynamics with mutations in symmetric
two-player games (not necessarily zero-sum). They consider the case when the mutation rate goes to 0
for a fixed population size N . For small but positive mutation rates, the dynamics spend most of the
time in degenerate states where all but a small fraction of individuals play the same strategy. Letting
the mutation rate go to 0 thus induces a distribution over actions. Their main result determines the
limit of this distribution as the population size goes to infinity.

13The proportional Borda rule assigns to each alternative a probability that is proportional to its Borda
score. For example, for one voter with lexicographic preferences over a, b, and c, the Borda scores are
2, 1, and 0, respectively. The proportional Borda rule thus returns the lottery (2/3, 1/3, 0).
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Figure 2: Simulations of the urn process.
The left diagram shows the urn process for the profile given in Example 1 using an urn with
N = 50 balls for 1,000 rounds and mutation rate r = 0.02, starting from an almost uniform
distribution. Each intersection of the grid lines corresponds to a configuration of the urn.
The right diagram shows the urn process for the profile given in Example 2 using an urn with
N = 5, 000 balls for 500,000 rounds and mutation rate r = 0.04, starting from the degenerate
distribution in which all balls are labeled with Alternative 2. The green lines depict the actual
distribution of balls while the red lines depict the temporal average of urn distributions until
the given round.

When adding a new ball labeled with the winning alternative rather than replacing the
losing one (i.e., the number of balls increases over time), neither the relative distribution
in the urn nor the temporal average converges (see Section 5).

Figure 2 (left) shows a simulation of the urn process for the preference profile and
corresponding skew-comparison matrix given in Example 1. The urn process corresponds
to a random walk within the shown triangle starting from the center (an almost uniform
distribution). The first alternative in this profile is a Condorcet winner. From round
177 on, at least 90% of the balls (45 of the 50) are labeled with the Condorcet winner
except for three rounds. At this point, only 160 of the 900 voters were asked for their
preferences. The path is tilted to the left because a majority of voters prefer alternative
2 to alternative 3. Note that the process only depends on the fractions of voters who
prefer one alternative to another and is, thus, independent of the number of voters.
Hence, if there are nine million—rather than nine hundred—voters whose preferences are
distributed as in Example 1, the process could turn out exactly as shown in Figure 2.
In particular, the overwhelming majority of voters would never be queried for their
preferences.

We now give two other examples, for which the unique maximal lottery is not degenerate.

Example 2 (Condorcet cycle). Consider 900 voters, three alternatives, and the following
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preference profile R, leading to a so-called Condorcet cycle or Condorcet paradox.

300 300 300

1 2 3
2 3 1
3 1 2

Then,

MR =

 0 2/3 1/3
1/3 0 2/3
2/3 1/3 0

 and M̃R =

 0 1/3 −1/3
−1/3 0 1/3

1/3 −1/3 0

 .

The set of maximal lotteries ML(R) = {(1/3, 1/3, 1/3)} consists of the uniform lottery over
the three alternatives. A simulation of the urn process for this profile is given in Figure 2
(right). This time, the initial distribution is degenerate with all balls being of type 2. It
can be seen how the distribution of balls in the urn closes in on the maximal lottery and
remains in its neighborhood for most of the time while the temporal average converges
to the maximal lottery.

Example 3. Consider the following preference profile R with 900 voters and four
alternatives.

375 300 225

1 3 4
2 1 2
3 2 3
4 4 1

Then,

M̃R =


0 1/3 −1/9 1/3

−1/3 0 2/9 1/3
1/9 −2/9 0 1/3

−1/3 −1/3 −1/3 0

 .

The set of maximal lotteries ML(R) = {(1/3, 1/6, 1/2, 0)} consists of a single lottery, which
is supported on the first three alternatives. A simulation of an urn process for this
profile starting from the uniform distribution is given in Figure 3. The figure shows the
distribution in the urn, the temporal average of urn distributions, and the difference of
the urn distribution and the maximal lottery in terms of the relative entropy.

We use the relative entropy (rather than, for example, the distance |p− q|) to measure
how much the distribution in the urn diverges from the maximal lottery since the proof
of Theorem 1 shows that the entropy of the maximal lottery relative to the continuous
approximation of the discrete process converges monotonically to 0.

14
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Figure 3: Simulation of the urn process for the profile in Example 3 on an urn with N = 50, 000 balls
for 107 rounds and mutation rate r = 0.01. The solid lines show the fraction of balls in the
urn. The dashed lines show the temporal average of the fraction of balls in the urn until the
given round. The unique maximal lottery is p = (1/3, 1/6, 1/2, 0). The dotted line shows the
relative entropy D(p | q) = ∑

i∈[d] pi log(
pi
qi
) of p with respect to the distribution in the urn q.

4. The Case of a Condorcet Winner

We give an elementary proof of Theorem 1 for profiles that admit a Condorcet winner.
For those profiles, the unique maximal lottery assigns probability 1 to the Condorcet
winner. To analyze the stationary distribution π ∈ ∆(∆(N)) of the Markov chain induced
by the urn process, it suffices to examine the fraction of balls labeled with the Condorcet
winner. This allows us to relate the Markov chain to a process that is one-dimensional in
the sense that each state can only transition to two different states, and is, thus, easy
to analyze. It also enables us to give a concrete lower bound on the number of balls N
required for given δ, τ > 0 for the conclusion of Theorem 1 to hold.

Let M = MR be the majority matrix of a profile R with Condorcet winner i ∈ [d].
Hence, Mij >

1
2 for all j ∈ [d]\{i}. Let α = min{Mij : j ∈ [d]\{i}}− 1

2 . We slice up ∆(N)

into the level sets of the map p 7→ pi. For k ∈ {0, . . . , N}, let Sk = {p ∈ ∆(N) : pi =
k
N }

be the states corresponding to distributions with k of the N balls of type i. Then
σk :=

∑
p∈Sk

π(p) is the limit probability that the urn is in a state in Sk as the number of
rounds goes to infinity. We want to show that if r is sufficiently small and N sufficiently
large, π has most of the probability on states in Sk with k close to N .

For 4 alternatives, one can illustrate the ensuing argument as follows. The set of states
∆(N) corresponds to rooms in a tetrahedral-shaped pyramid. The rooms on the kth floor
correspond to Sk, so that the tip of the pyramid is the state where all balls are of type
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i. The urn process is a random walk through the pyramid, moving from one room to
an adjacent one (which could be on the same floor, the floor below, or the floor above).
With the exception of few floors close to the tip, the probability of going up is always
larger than the probability of going down. It is then intuitively clear that if the pyramid
is large enough, one should expect to find the random walk close to the tip of the pyramid
most of the time.14

Recall that P (N,r)(p, q) is the probability of transitioning from state p to state q. Since
π is a stationary distribution, we have π⊺P (N,r) = π⊺. Consider any partition of ∆(N)

into two sets. For the stationary distribution, the probability of transitioning from the
first set to the second is equal to the probability of transitioning from the second set
to the first since the probabilities of both sets are conserved. Applying this to the sets⋃k−1

l=0 Sl and
⋃N

l=k Sl for k ∈ [N ] and noticing that the only transitions between the two
sets with positive probability are from Sk−1 to Sk and vice versa, we get∑

p∈Sk−1

π(p)
∑
q∈Sk

P (N,r)(p, q) =
∑
p∈Sk

π(p)
∑

q∈Sk−1

P (N,r)(p, q). (1)

That is, the probability of being in a state in Sk−1 and transitioning to a state in Sk
equals the probability of being in a state in Sk and transitioning to a state in Sk−1.

Now observe that for p ∈ Sk, k ∈ {0, . . . , N − 1}, we have∑
q∈Sk+1

P (N,r)(p, q) ≥ 2(1− r)
k(N − k)

N2

(
1

2
+ α

)
+
r

d

N − k

N
=: uk

where the left hand side is the probability of replacing a ball of type other than i by one
of type i in state p ∈ Sk (moving up one floor in the pyramid). Similarly, we find that
for p ∈ Sk, k ∈ [N ], we have∑

q∈Sk−1

P (N,r)(p, q) ≤ 2(1− r)
k(N − k)

N2

(
1

2
− α

)
+ r

d− 1

d

k

N
=: dk

for the probability of replacing a ball of type i by one of type other than i in state p ∈ Sk
(moving down one floor in the pyramid). Plugging this into (1), we get

σk−1uk−1 ≤ σkdk. (2)

All terms in (2) are strictly positive if r > 0.
Let N be so that r

Nd ≥ 21−r
N2 (we choose r > 0 later). Then,

uk ≥ 2(1− r)
k(N − k)

N2

(
1

2
+ α

)
+ 2(1− r)

N − k

N2

14In the analysis of the general case, the number of balls of type i is replaced by the entropy of the urn
distribution relative to a maximal lottery. The fact that the number of balls not of type i more likely
than not decreases corresponds to the fact that the expected entropy relative to a maximal lottery
decreases.
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≥ 2(1− r)
(k + 1)(N − k − 1)

N2

(
1

2
+ α

)
where the last inequality uses 1 ≥ 1

2 + α. Similarly, we find that for r ≤ 1
d and

k ≤ N
(
1− r

α

)
,

dk ≤ 2(1− r)
k(N − k)

N2

1− α

2
.

Hence, with this bound on k, we have

dk
uk−1

≤ 1− α

2
(
1
2 + α

) =
1− α

1 + 2α
=: β.

Thus, by (2), σk−1

σk
≤ β < 1. We have shown that the cumulative probability σk of the

states Sk decreases at least as fast as the terms of the geometric series with parameter β
from some k (close to N) downwards.

The maximal lottery for R is the degenerate lottery with probability 1 on i. For given
δ, τ > 0, we are aiming for a lower bound on N so that the probability on states with at
least a 1− δ fraction of balls of type i in the stationary distribution π is at least 1− τ .
That is,

N∑
k=⌈N(1−δ)⌉

σk ≥ 1− τ .

First observe that ∑
k≥k0

βk = βk0
1

1− β
≤ τ (3)

for k0 ≥ log(τ(1−β))
log β . For our bound, N needs to be large enough so that there are at least

k0 integers in the interval {⌈(1− δ)N⌉ , . . . ,
⌊(
1− r

α

)
N
⌋
}. The probability on states in

Sk with k < (1− δ)N will then be below τ by (3) and the choice of k0 (since the bound
on dk assumes that k ≤ N(1− r

α)). Choosing r ≤ αδ
2 and

N ≥ k0
δ − r

α

≥ 1

δ

⌈
log (τ(1− β))

log β

⌉
achieves this.

In Example 1, there are three alternatives and 900 voters. Alternative 1 is a Condorcet
winner as it is preferred to every other alternative by 600 of the voters (α = 2

3 − 1
2 = 1

6 ,
β = 5

8). Suppose we want that at least 90% of the balls in the urn are of type 1 in at
least 90% of rounds (δ = 0.2, τ = 0.1). Choosing r = αδ

2 = 1
60 , we need N ≥ 70 balls in

the urn. These calculations suggest that, when a Condorcet winner exists, a reasonable
choice of the parameters is N ≥ −1

δ log(τ) and 1
N ≤ r ≤ δ.
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5. Discussion

Since the urn process described in this paper only depends on the comparison matrix MR

and the mutation rate r, it is connected to various problems unrelated to collective decision-
making. In particular, the literature on equilibrium learning and evolutionary game
theory has extensively studied dynamics based on payoff matrices and their convergence
behavior.

5.1. Equilibrium learning

When interpreting M̃R as a symmetric two-player zero-sum game and maximal lotteries
as equilibrium strategies, our result can be phrased as a result about a learning procedure
for equilibrium play. Such procedures have been extensively studied in game theory and,
in particular for zero-sum games, a number of simple and attractive procedures have
been proposed. The earliest of these is fictitious play (Brown, 1951; Robinson, 1951) and
its variant stochastic fictitious play (Fudenberg and Kreps, 1993).15 More recently, the
multiplicative weights update algorithm (e.g., Freund and Schapire, 1999; Arora et al.,
2012) and regret matching (Hart and Mas-Colell, 2000, 2013) have been celebrated in
game theory, optimization, and machine learning. When translating the multiplicative
weights update algorithm to our setting, one obtains a dynamic urn process, in which
voters need to compare a drawn ball to all possible alternatives and adjust the distribution
in the urn accordingly. It does not suffice to replace a single ball and the total number
of balls does not remain constant. Also, the multiplicative weights update algorithm
only guarantees convergence of the temporal average. The actual distribution does not
converge, even for self-play in symmetric zero-sum games (Bailey and Piliouras, 2018).

A notable subarea of machine learning is concerned with multi-armed bandits, a simple
model of learning optimal sequential decisions when only very limited information is
available (see, e.g., Bubeck and Cesa-Bianchi, 2012; Slivkins, 2019). The theory of
adversarial bandits is closely connected to learning in repeated multi-player games and it
turns out that the prototypical algorithm for adversarial bandits, Exp3 (which stands for
“exponential-weight algorithm for exploration and exploitation”), bears some similarities
to the urn process we describe in this paper. Exp3 can be formulated as an algorithm that
learns an equilibrium strategy of a symmetric zero-sum game in self-play by iteratively
updating a probability distribution merely based on the payoff associated with two actions
randomly drawn from the current distribution. Auer et al. (2002) prove strong bounds on
the expected average regret and average regret achieved by Exp3 after a finite number of
rounds, which imply that the temporal average of the distributions converges to a strategy
close to an equilibrium. How close it gets to an equilibrium depends on a parameter that
is roughly related to our mutation rate. Exp3 updates a probability distribution rather

15Hofbauer and Sandholm (2002) show that under stochastic fictitious play, players’ strategies and
beliefs converge to a Nash equilibrium in several classes of games, including two-player zero-sum
games. While best-response dynamics are conceptually different from our urn process, their technical
approach bears similarities to ours in that they use a deterministic process obtained as a solution to a
differential equation to approximate a stochastic process.
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than the contents of a discrete urn and we are not aware of convergence results beyond
the temporal average.

The literature on equilibrium learning often focusses on minimizing regret rather than
relative entropy with respect to an equilibrium distribution (see, e.g., Foster and Vohra,
1999; Auer et al., 2002). In our context, the regret of the urn distribution at round n
is maxi∈[d](M̃RX

(N,r)(n, p0))i. It follows from Theorem 1 that for sufficiently large n,
the regret is close to zero with high probability. Our simulations show that the regret
of the urn distribution converges faster than its relative entropy. This is interesting
insofar as in order to approximately satisfy the desirable axiomatic properties of maximal
lotteries discussed in Section D, low regret is sufficient. It can be shown that a lottery has
small regret if and only if it is a maximal lottery of a nearby preference profile. In other
words, even if the urn distribution is still far from a maximal lottery, the distribution
can perform almost as well as a maximal lottery. We have identified preference profiles
where this effect is quite noticeable.

5.2. Evolutionary Game Theory

The replicator equation in evolutionary game theory (see, e.g., Taylor and Jonker, 1978;
Schuster and Sigmund, 1983; Hofbauer and Sigmund, 1998) describes how the distribution
of different species changes continuously over time based on the individuals’ fitnesses. In
its basic form, it states that the change in the relative frequency of a species equals the
relative fitness of the species (that is, its fitness relative to the entire population) minus
the change in the size of the entire population. When the fitness depends linearly on
the relative frequencies of the species and the population size is constant, the replicator
equation defines the continuous deterministic process y : R≥0 → ∆ with fitness function
f (r) : ∆ → Rd below when setting r to 0. When r > 0, this process corresponds to a
continuous and deterministic version of the urn process described in this paper (see
Theorem 2).

d

dt
y(t) = f (r)(y(t)) and y(0) = p0, where

f
(r)
i (p) = 2(1− r)pi(M̃p)i + r

(
1

d
− pi

)
.

(4)

Solutions of this equation for r = 0 are connected to evolutionary stable distributions as
introduced by Maynard Smith and Price (1973). A distribution of species is evolutionary
stable if its relative fitness exceeds that of every other distribution in a fixed neighborhood
of it. Hence, evolutionary stable distributions are attractors of the dynamics defined by
Equation (4) (with r = 0) in the sense that they are limit points of solutions when the
initial distribution p0 is in the respective neighborhood. Mixed equilibria of zero-sum
games such as Rock-Paper-Scissors usually fail to be evolutionary stable. As a consequence,
results that prove convergence of dynamics to equilibrium strategies, either modify the
underlying process or settle for weaker notions of convergence such as convergence of the
temporal average.16

In the following, we discuss five results that are closest to ours.
16Foster and Young (1990) argue that evolutionary stability is not an appropriate solution concept
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Model Interaction Mutations Pop. Size Convergence

Allesina et al. (2011) discrete pairs, det. no fixed —a

Knebel et al. (2015) continuous pairs, det. nob fixed temporal average
Laslier et al. (2017) discrete pairs, det. no increasing support of distribution
Laslier et al. (2017) discrete triples, det. no increasing distribution
Grilli et al. (2017) continuous triples, stoch. no fixed distribution

Theorem 1 discrete pairs, stoch. yes fixed fraction of rounds
Corollary 1 discrete pairs, stoch. yes fixed temporal average
Theorem 2 continuous pairs, det. yes fixed distribution

Table 1: Comparison of related models and results.
a: In simulations, Allesina and Levine (2011) observe that the temporal average of their process
comes close to a maximal lottery after a finite number of rounds. However, when the process is
run long enough, the distribution will almost surely degenerate since there are no mutations.
b: While Knebel et al. (2015) consider a discrete process with mutations, the continuous process
they study has no mutations.

Allesina and Levine (2011) study the competition and coexistence of species in
nature via a mathematical framework that is similar to our urn process. There is a fixed
finite number of individuals, each of whom is assigned to some species at random. In
each round, two randomly selected individuals interact. The superior species will replace
the individual of the inferior. Which species is superior to which species is given in the
form of a tournament graph, which can be represented by a binary comparison matrix.
Interestingly, these tournaments are sampled from distributions that are obtained via
multiple rankings of the species called “limiting factors”, similar to the preferences of
voters. Simulations with large populations (e.g., 25,000 individuals) then show that
the relative frequencies of the species oscillate around the equilibrium strategy of the
skew-comparison matrix. However, this phenomenon is an artifact of the population size
and the limited time horizon. In the long run, as mentioned in Section 1, all species but
one will almost surely become extinct.
Knebel et al. (2015) study a dynamic process that involves quantum particles and
is equivalent to a deterministic version of our urn process. Here, balls in the urn
model correspond to bosons and alternatives to quantum states. The distribution
of quantum states determines which states are condensates and are thus observed
macroscopically. Since the number of particles in such systems is typically large, they
focus on a deterministic process with a continuum of particles as described in Section 3.
Leveraging a classic result from evolutionary game theory (Hofbauer and Sigmund, 1998,
Theorem 5.2.3), they show that the temporal average of this process converges to an

when stochastic events (such as random mutations or chance events in nature) affect the population.
They propose the stochastically stable set, which is the smallest set of states such that for every
neighborhood of it, with probability 1 the state is in that neighborhood all but a small fraction of the
time. Theorem 1 shows that the stochastically stable set is contained in a small neighborhood of the
set of maximal lotteries. As the mutation rate r goes to 0, it converges to the set of maximal lotteries.
Foster and Young (1990) show that the stochastically stable set is always non-empty and consists of
those states that minimize a potential function.
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equilibrium strategy (i.e., a maximal lottery) of the zero-sum game induced by the
transition probabilities between quantum states. All states with probability zero in the
equilibrium strategy are depleted; the fractions of the remaining states are bounded
away from 0 for all times. Even though their model allows for mutations, Knebel et al.
neglect mutations when analyzing the continuous process, which may cause the process
to cycle around the equilibrium strategy without converging to it. Within our proof of
Theorem 1 (see Theorem 2), we show that the continuous process with mutations does
converge (and not only its temporal average).17 In earlier work, Knebel et al. (2013) have
connected the survival and extinction of states to the Pfaffian of the transition matrix.
This is reminiscent of a statement by Kaplansky (1995) about the support of equilibrium
strategies in symmetric zero-sum games. Reichenbach et al. (2006) study the extinction
probabilities for three states with cyclical dominance (“rock-paper-scissors”) for finite
populations.
Laslier and Laslier (2017) consider a discrete urn process that is similar to ours, but in
which the number of balls in the urn increases over time. Two balls are drawn at random
and a binary comparison matrix specifies which alternative wins against which alternative
(this could be seen as a single voter with possibly intransitive preferences in our model).
Rather than replacing the losing ball, a new ball of the same type as the winning ball is
added to the urn. They show that the distribution in the urn does not converge unless
one alternative beats all alternatives (which corresponds to the Condorcet winner case).
However, the fraction of alternatives not contained in the support of the maximal lottery
of the skew-comparison matrix goes to zero. Their main results concerns a process in
which three balls are drawn from the urn. Whenever one of three balls beats both other
balls, a new ball of the same type is added to the urn. Otherwise, one of the three types
is chosen at random and a ball of that type is added. They prove that the distribution in
the urn converges towards the (unique) maximal lottery of the skew-comparison matrix.
Since the number of balls in the urn increases, convergence is generally very slow.
Grilli et al. (2017) consider a dynamic process in population biology to explain the
stable coexistence of multiple species. Based on Laslier and Laslier’s findings, Grilli et al.
adapt the replicator equation to interactions of triples of individuals. In contrast to
Laslier and Laslier, they keep the number of individuals constant and do not require the
comparison matrix to be binary. They show that with a continuum of individuals, this
process converges to an equilibrium strategy of the skew-comparison matrix. For a finite
number of individuals, permanent coexistence of multiple species is a probability zero
event. However, they argue that interactions of three or more individuals can prolong
coexistence compared to pairwise interactions.

Without mutations (i.e., r = 0), the deterministic process described by the differential

17Knebel et al. (2015, Supplementary Note 1) argue that the discrete process with mutations is well-
approximated by the continuous process if the number of particles is large and mutations become
vanishingly unlikely. Hence, they conclude that the temporal average of the discrete process converges
to an equilibrium strategy, which is in the spirit of Corollary 1. Our understanding is that their
arguments are heuristic and not intended to provide a rigorous derivation of this result. In particular,
the arguments do not seem to use that mutations happen with non-zero probability. Without
mutations, however, the discrete process almost surely enters a state with a degenerate distribution.
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Figure 4: The continuous deterministic process y(t) solving Equation (4) for the profile in Example 3
with r = 0.01 on the left and r = 0 on the right. For strictly positive r, y(t) converges to a
zero of f (r) (see Theorem 2). For r = 0, it approaches an orbit of constant entropy relative to
a zero of f (r).

equation (4) does not, in general, converge, but only approaches an orbit of constant
entropy relative to a zero of the fitness function f (0). When introducing mutations, the
limiting behavior of the process changes qualitatively (see Figure 4). As Theorem 2
shows, it then converges to a zero of the fitness function. A similar observation has
already been made by Hofbauer (2011, Theorem 2.8).

Theorem 2. Let f (r) and y be defined as in Equation (4). If r > 0, f (r) has a unique
zero p(r) and y(t) converges to p(r) as t→ ∞. Moreover, if r goes to 0, then p(r) converges
to ML(R) in Hausdorff distance.

Table 1 summarizes the key differences between the above mentioned results and ours.
In comparison, the main contribution of our work is that we are able to show for a
discrete (rather than continuous) process based on stochastic (rather than deterministic)
interactions between pairs (rather than triples) that the distribution in the urn is close
to a maximal lottery most of the time (rather than convergence of the temporal average).
Methodologically, the approach we take to cope with the discrete process is related to
that of Benaïm and Weibull (2003), who study more general population processes in
n-player games.18

We believe that Theorem 2 as well as Theorem 1 and Corollary 1 are of relevance to the
natural sciences. In particular, a discrete model may describe the aforementioned natural
phenomena more accurately than continuous ones. As Corollary 1 shows, the expectation
of the discrete process with a large number of individuals is a good approximation of the
18In Benaïm and Weibull’s model, there is a population of N individuals for each player, and each

individual plays a pure strategy. In each round, one individual can update their strategy based on the
distributions of pure strategies of all other individuals. An update rule induces a deterministic process
described by a differential equation similar to (4) below. They show that if N is large, the distributions
of strategies among the individuals of each role in this stochastic process approximate the deterministic
process described by the differential equation. Our setting corresponds to a symmetric two-player
zero-sum game and an update rule based on the comparison matrix M̃ . The special properties of this
instance allow us to make more precise statements about the behavior of the deterministic process,
and, thus, of the stochastic process for large N . In particular, we show that the deterministic process
converges and that its limit approximates a maximal lottery.
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continuous process. Furthermore, the observation that convergence is only guaranteed if
mutations occur with small probability and the number of individuals is large enough
seems noteworthy.
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APPENDIX: Proofs

As guidance for the reader, we outline the main steps in the proof of Theorem 1. Fix any
δ, τ > 0.

In Section A, we consider, for any p ∈ ∆(N), the expected value of
N
(
X(N,r)(k + 1, p)−X(N,r)(k, p)

)
, which, conditional on X(N,r)(k, p), is independent of

k since X(N,r) is a time-homogeneous Markov process. Moreover, it is independent of N
since the probability of replacing a ball of type j by one of type i is independent of N .
Hence, these expected values induce a continuous function f (r) : ∆ → Rd. We consider
g(r) : ∆ → Rd with g(r)(p) = p+ 1

2f
(r)(p) and show that it maps to ∆. If r > 0, g(r) has

a unique fixed-point p(r) (a zero of f (r)), which is close to some lottery in ML(R) for any
small enough r. We choose r0 so that p(r) is no more than δ

2 away from ML(R) for all
0 < r ≤ r0. Fixing such an r, let p∗ ∈ ML(R) be a maximal lottery which is within δ of
p(r).

Section B studies the following differential equation with p ∈ ∆, t ∈ R≥0, and
y(·, p) : R≥0 → ∆.

d

dt
y(t, p) = f (r)(y(t, p))

y(0, p) = p
(5)

A solution to (5) is a deterministic process that can be interpreted as the stochastic
process we consider with a continuum of balls. We show that the unique solution y(r)(·, p)
of (5) converges to p(r) for any initial state p ∈ ∆ as t goes to infinity and the convergence
is uniform in p. This is done by showing that the entropy of p(r) relative to y(r)(t, p)
decreases monotonically at a rate proportional to the square of the distance between p(r)

and y(r)(t, p).
Section C relates the discrete-time stochastic process X(N,r) to the continuous-time

deterministic process y(r). To this end, we extend the former to the real time axis by
letting X̄(N,r)(t, p) = X(N,r)(k, p) for t ∈ [k−1

N , k
N ). Given any T > 0, one can show

that with probability close to 1, X̄(N,r) approximately satisfies the integral equation
corresponding to (5) for t between 0 and T and uniformly in p ∈ ∆(N) if N is large.
Using Grönwall’s inequality, we show that with probability close to 1, X̄(N,r)(t, p) and
y(r)(t, p) are close to each other for all t from 0 to T .19 However, for t larger than T , they
may (and almost surely will) be arbitrarily far apart.

To deal with this, we partition the time axis into consecutive intervals of length T and
synchronize the deterministic process with the stochastic process at the beginning of each
interval. More precisely, since y(r)(t, p) converges to p(r) as t goes to infinity uniformly
in p, we can find T > 0 such that y(r)(t, p) is no more than δ

4 away from p(r) for all but
possibly a 1− τ

2 fraction of the interval [0, T ] for all p. Moreover, we can choose N large

19In the language of functional analysis, this step corresponds to an approximation of an operator
semi-group. Consider the operators Γ(t) on probability measures on ∆ induced by mapping p ∈ ∆ to
y(r)(t, p). Then {Γ(t) : t ≥ 0} is an operator semi-group (that is, Γ(s+ t) = Γ(s)Γ(t)). On ∆(∆(N)),
we approximate Γ(t) by (P (N,r))Nt.
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enough so that with probability at least 1− τ
2 , the distance between X̄(N,r) and y(r) is less

than δ
4 for all t in an interval of length T provided both processes start at the same point

at the beginning of the interval. We chop up the time axis into intervals [0, T ], [T, 2T ],
. . . . On the interval [(k − 1)T, kT ], we compare X̄(N,r)(t, p) to y(r)(t− (k − 1)T, x̄k−1),
where x̄k−1 = X(N,r)((k − 1)T, p). That is, we reset y(r) to the position of X̄(N,r) at the
beginning of the interval. In those intervals where the distance between both processes
is never more than δ

4 , X̄
(N,r) is no more than δ

4 +
δ
4 = δ

2 away from p(r) for all but a τ
2

fraction of the interval. By the choice of N , the union of those intervals is almost surely
at least a 1− τ

2 fraction of the time axis. Summing over all intervals, this is enough to
conclude that X̄(N,r) is no more than δ

2 away from p(r) at least a 1− τ fraction of the
time. Since p(r) is no more than δ

2 away from p∗, we can get the same conclusion with δ
in place of δ

2 and p∗ in place of p(r). Translating this statement back to X(N,r) gives the
first part of Theorem 1.

A. A Continuous Vector Field Induced by the Markov Chain

In this section, we define a continuous mapping from ∆ to ∆ based on the expected urn
distribution in the subsequent round for each state of the Markov chain. We then show
that this mapping admits a unique fixed-point corresponding to an approximate maximal
lottery.

Recall that {X(N,r)(n, p0) : n ∈ N0} is a discrete-time, time-homogeneous Markov chain
with state space ∆(N) and transition probability matrix

P (N,r)(p, p′) =

{
2(1− r)pipjM(i, j) + r

dpj if i ̸= j

2(1− r)
∑d

k=1 p
2
k +

r
d if i = j

for p ∈ ∆(N) and p′ = p + ei
N − ej

N for i, j ∈ [d] = {1, . . . , d} with p′ ∈ ∆(N). All
other transition probabilities are 0. If r > 0, it is irreducible and aperiodic and, thus,
admits a unique stationary distribution in ∆(∆(N)), a probability distribution over urn
distributions. We omit writing the initial state p0 whenever it is convenient.

For i ∈ [d], we calculate the expected change in the ith component of X(N,r) times N
given that X(N,r) is in state p ∈ ∆(N).

N E
(
X

(N,r)
i (n+ 1)−X

(N,r)
i (n) | X(N,r)(n) = p

)
= N

∑
p′∈∆(N)

(p′i − pi)P
(N,r)(p, p′)

= 2(1− r)
∑
j ̸=i

pipj (M(i, j)−M(j, i)) +
r

d

∑
j ̸=i

(pj − pi)

= 2(1− r)pi
∑
j ̸=i

M̃(i, j)pj +
r

d
(1− pi − (d− 1)pi)

= 2(1− r)pi(M̃p)i + r

(
1

d
− pi

)
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For the last equality, recall that M̃(i, i) = 0 since M̃ is skew-symmetric.
Based on this, we define the continuous function f (r) : ∆ → Rd with

f
(r)
i (p) = 2(1− r)pi(M̃p)i + r

(
1

d
− pi

)
. (6)

Let g(r) : ∆ → ∆ with g(r)(p) = p+ 1
2f(p) for p ∈ ∆. We show that g(r) is well-defined

(that is, indeed maps to ∆) and has a fixed-point. If r > 0, this fixed-point is unique and
we denote it by p(r). As r goes to 0, p(r) converges to the set of maximal lotteries for the
profile R that induces M̃ .

Lemma 1. For r > 0, g(r) has a unique fixed-point p(r). Moreover, for every δ > 0,
there is r0 so that p(r) ∈ Bδ(ML(R)) for all r ≤ r0.

Proof. We verify that g(r) maps to ∆. For all p ∈ ∆,
∑

i∈[d] f
(r)
i (p) = 2(1 − r)p⊺M̃p+

r
(
1−

∑
i∈[d] pi

)
= 0 since M̃ is skew-symmetric and p ∈ ∆. Moreover,

f
(r)
i (p) = 2(1− r)pi (M̃p)i︸ ︷︷ ︸

≥−1

+r

(
1

d
− pi

)
≥ −2pi.

Thus,

g
(r)
i (p) ≥ pi +

1

2
(−2pi) ≥ 0.

It follows that g(r) maps to ∆. Moreover, g(r) is continuous since f (r) is continuous.
Hence, by Brouwer’s Theorem, g(r) has a fixed point p(r).

Now let r > 0. Then, for all p ∈ ∆ with f (r)(p) = 0, we have for all i ∈ [d], pi > 0

since pi = 0 implies f (r)i (p) = r 1d > 0. Hence, we can rewrite f (r)(p) = 0 as follows: for
all i ∈ [d],

2(1− r)(M̃p)i = r

(
1− 1

pid

)
(7)

To show that f (r) has a unique zero, assume that f (r)(p) = f (r)(q) = 0 for p, q ∈ ∆.
We have

0 = 2(1− r)
(
p⊺M̃q + q⊺M̃p

)
= 2(1− r)

∑
i∈[d]

pi

(
M̃q
)
i
+ qi

(
M̃p

)
i

(7)
= r

∑
i∈[d]

pi

(
1− 1

qid

)
+ qi

(
1− 1

pid

)
=
r

d

∑
i∈[d]

piqi − pi
qi

+
piqi − qi

pi
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= −r
d

∑
i∈[d]

(pi − qi)
2

piqi
≤ −r

d
|p− q|22

where the first equality uses the skew-symmetry of M̃ (hence, p⊺M̃q = −q⊺M̃p), the
third equality follows from (7) and the fact that p and q are zeros of f (r), and the last
two are algebra. (|·|2 denotes the L2-norm.) This sequence of equalities implies that
p = q. Hence, p(r) is the unique zero of f (r) for r > 0. Since every fixed-point of g(r) is a
zero of f (r), g(r) has a unique fixed-point.

For the last statement, let δ > 0. By (7), for all r > 0 and i ∈ [d],(
M̃p(r)

)
i
=

r

2(1− r)

(
1− 1

p
(r)
i d

)
≤ r

2(1− r)
. (8)

Suppose for every r0 > 0, there is r < r0 so that p(r) ̸∈ Bδ(ML(R)). Then we can
find a sequence (rn) going to 0 so that p(rn) ̸∈ Bδ(ML(R)) for all n. By passing to a
subsequence, we may assume that p(rn) → p ̸∈ Bδ(ML(R)). But from (8) it follows that
M̃p ≤ 0 so that p ∈ ML(R), which is a contradiction.

B. Properties of the Deterministic Process

In this section, we study a deterministic version of the stochastic process described by
the Markov chain. We thus have a continuum of balls and continuous time, and show
that this process converges to the unique fixed-point identified in the previous section.

Function f (r) defined in Equation (6) gives rise to a (first-order ordinary) differential
equation for continuously differentiable functions from [0,∞) to ∆, that is, functions in
C1([0,∞),∆). For y ∈ C1([0,∞),∆) and p0 ∈ ∆, consider

d

dt
y(t) = f (r)(y(t))

y(0) = p0

(9)

We show that (9) has a unique global solution y(r) for all r > 0 and p0 ∈ ∆. Moreover,
this solution converges to the zero p(r) of f (r) as t goes to infinity. Since r remains fixed
throughout this section, we frequently omit the superscript (r).

The proof that (9) has a unique local solution with values in Rd is standard. Only the
fact that the solution does not leave the domain ∆ of f and can, thus, be extended to a
global solution requires attention.

Lemma 2. For every p0 ∈ ∆, (9) has a unique solution y ∈ C1([0,∞),∆) with y(0) = p0.

Proof. Note that f is Lipschitz-continuous in a neighborhood of ∆. It follows from the
Picard-Lindelöf Theorem that for any t0 ∈ [0,∞) and p ∈ ∆, the system

d

dt
y(t) = f(y(t))

y(t0) = p
(10)
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has a unique local solution, that is, a solution y ∈ C1((t0 − ε, t0 + ε),Rd).
We observe that y maps to ∆. First, by the same arguments as in the proof of Lemma 1,

we have

d

dt

∑
i∈[d]

yi(t) =
∑
i∈[d]

fi(y(t)) = 0

whenever y(t) ∈ ∆. Second, if yi(t) = 0, then d
dtyi(t) = fi(y(t)) > 0. Hence, y(t) ∈ ∆ for

all t ∈ (t0 − ε, t0 + ε). Since t0 ∈ [0,∞) was arbitrary, it follows that y can be uniquely
extended to a global solution in C1([0,∞),∆).

Denote by y(r)(t, p0) ∈ C1([0,∞),∆) the unique solution to (9) with y(r)(0, p0) = p0.
We will sometimes suppress the argument p0 when it is clear from the context.

We want to show that if r > 0, y(r)(t, p0) converges to the zero p(r) of f (r) as t goes to
infinity. Moreover, the convergence is uniform in p0. The proof of this fact in Lemma 4
uses the relative entropy (aka the Kullback–Leibler Divergence) of p, q ∈ ∆, which is
defined as

D(p | q) =
∑
i∈[d]

pi log

(
pi
qi

)
.

Moreover, the following lower bound on the relative entropy will be helpful (see, e.g.,
Cover and Thomas, 2006, Lemma 11.6.1).

Lemma 3. For all p, q ∈ ∆,

D(p | q) ≥ 1

2 log 2
|p− q|2 .

To ease notation, we write χS for the indicator function of a set S ⊂ Rd and χ̄S = 1−χS

for the indicator function of the complement of S.

Lemma 4. Let r > 0. Then,

lim
t→∞

sup
{∣∣∣y(r)(t, p0)− p(r)

∣∣∣ : p0 ∈ ∆
}
= 0.

Proof. Fix p0 in the interior of ∆ and write y = y(·, p0). We show that the entropy of
p(r) relative to y(t) decreases at a rate of at least r

d
√
d

∣∣p(r) − y(t)
∣∣2
2
.

d

dt
D(p(r) | y(t)) = d

dt

∑
i∈[d]

p
(r)
i log

(
p
(r)
i

yi(t)

)
= −

∑
i∈[d]

p
(r)
i

d
dtyi(t)

yi(t)

(i)
= −

∑
i∈[d]

p
(r)
i

fi(y(t))

yi(t)

= −
∑
i∈[d]

p
(r)
i

2(1− r)yi(t)(M̃y(t))i + r
(
1
d − yi(t)

)
yi(t)
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= −2(1− r)
∑
i∈[d]

p
(r)
i (M̃y(t))i − r

∑
i∈[d]

p
(r)
i

(
1

yi(t)d
− 1

)

(ii)
= 2(1− r)

∑
i∈[d]

yi(t)(M̃p(r))i − r

∑
i∈[d]

p
(r)
i

yi(t)d
− 1


(iii)
=
∑
i∈[d]

yi(t)r

(
1− 1

p
(r)
i d

)
− r

∑
i∈[d]

p
(r)
i

yi(t)d
− 1


= r

2− 1

d

∑
i∈[d]

yi(t)

p
(r)
i

+
p
(r)
i

yi(t)


(iv)
= −r

d

∑
i∈[d]

(p
(r)
i − yi(t))

2

p
(r)
i yi(t)

≤ − r

d
√
d

∣∣∣p(r) − y(t)
∣∣∣2

Here, (i) follows from the fact that y satisfies (9), (ii) uses the skew-symmetry of M̃ and∑
i∈[d] p

(r)
i = 1, (iii) uses (7), and (iv) uses a2 + b2 = (a+ b)2 − 2ab for any a, b ∈ R.

For t ≥ t0 ≥ 0, we have

0 ≤ D(p(r) | y(t)) = D(p(r) | y(t0)) +
∫ t

t0

d

ds
D(p(r) | y(s))ds ≤ D(p(r) | y(t0)).

Combining this with the sequence of equalities above, we see that

0 ≤ r

d

d∑
i=1

∫ t

t0

(p
(r)
i − yi(s))

2

p
(r)
i yi(s)

ds = −
∫ t

t0

d

ds
D(p(r) | y(s))ds ≤ D(p(r) | y(t0)). (11)

We want to prove that y(t, p0) converges to p(r) uniformly in p0 as t goes to ∞. That is,
for all ε > 0, there exists T > 0 such that for all t ≥ T and all p0 ∈ ∆, |y(t, p0)−p(r)| < ε.
To this end, first note that if yi(t, p0) < r

4d , then

d

dt
yi(t, p0) = 2(1− r)yi(t, p0)

(
M̃y(t, p0)

)
i︸ ︷︷ ︸

≥−1

+r

(
1

d
− yi(t, p0)

)
≥ − r

2d
+
r

d
≥ r

2d
.

Hence, for all p0 ∈ ∆, i ∈ [d], and t ≥ 1, yi(t, p0) ≥ r
4d . We can, thus, upper bound

D(p(r) | y(t, p0)) for all p0 ∈ ∆ and t ≥ 1 by C = maxp∈∆r D(p(r) | p) < ∞, where
∆r = {p ∈ ∆: pi ≥ r

4d for all i ∈ [d]}.
Now we prove uniform convergence in p0. Let ε > 0. It follows from (11) with t0 = 1

that given δ > 0, for all p0 ∈ ∆r,∫
t≥1

χ̄Bδ(p(r))
(y(t, p0))dt ≤

Cd
√
d

rδ2
.
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Hence, for every p0 ∈ ∆r, we can find t0(p0, δ) ∈ [1, 1 + Cd
√
d

rδ2
] such that∣∣∣y(t0(p0, δ), p0)− p(r)

∣∣∣ < δ. (12)

Using the estimate log(x− δ) ≥ log(x)− δ
x−δ for the last inequality, we find that

D(p(r) | y(t0(p0, δ))) ≤
∑
i∈[d]

log

(
p
(r)
i

p
(r)
i − δ

)
=
∑
i∈[d]

log
(
p
(r)
i

)
− log

(
p
(r)
i − δ

)
≤
∑
i∈[d]

δ

p
(r)
i − δ

≤ δC ′

where C ′ = 2dmax{ 1

p
(r)
i

: i ∈ [d]} if δ ∈ (0, 12 min{p(r)i : i ∈ [d]}).
We use this bound and the fact that the relative entropy is non-increasing in t to show

that |y(t, p0)− p(r)| < ε for t ≥ t0(p0, δ) for sufficiently small δ. By Lemma 3, we have
for all p ∈ ∆, D(p(r) | p) ≥ 1

2 log 2 |p
(r) − p|2. Hence, |p(r) − y(t, p0)| ≤

√
2 log(2)δC ′ for

t ≥ t0(p0, δ). Recalling that t0(p0, δ) ≤ 1 + Cd
√
d

rδ2
=: T , we have for δ ∈ (0, ε2

2 log(2)C′ ) that
|p(r) − y(t, p0)| < ε for all t ≥ T and p0 ∈ ∆. Since ε was arbitrary, this proves uniform
convergence.

The next lemma states that for any δ > 0, if the process y(r) starts sufficiently close to
p(r), it will never get further than δ away from p(r).

Lemma 5. Let r > 0 and δ > 0. Then, there is η > 0 such that

sup
{∣∣∣y(r)(t, p)− p(r)

∣∣∣ : t ≥ 0, p ∈ Bη(p
(r))
}
< δ

Proof. Recall that p(r)i > 0 for all i ∈ [d]. By Lemma 3, if p ̸∈ Bδ(p
(r)), then D(p(r) | p) ≥

1
2
√
2
δ2 =: C. Since D(p(r) | ·) is continuous on the interior of ∆ and D(p(r) | p(r)) = 0,

there is η > 0 such that D(p(r) | p) < C for all p ∈ Bη(p
(r)). In the proof of Lemma 4,

we have seen that D(p(r) | y(r)(t, p)) is non-increasing in t. Hence, for p ∈ Bη(p
(r)), it

follows that |y(r)(t, p)− p(r)| < δ for all t ≥ 0.

Summarizing Lemma 1, Lemma 2, and Lemma 4, we get the following theorem.

Theorem 2. Let f (r) and y be defined as in Equation (4). If r > 0, f (r) has a unique
zero p(r) and y(t) converges to p(r) as t→ ∞. Moreover, if r goes to 0, then p(r) converges
to ML(R) in Hausdorff distance.

Remark 6 (Drawing without replacement). For the urn process with drawing without
replacement, f (r) as derived in Section A would depend on N . The solution y(r) of the
differential equation (9) and the unique zero p(r) of f (r) would, thus, also depend on N .
The previous lemmas carry over to this case with the straightforward adaptations.
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C. Properties of the Stochastic Process

In this section, we study the behavior of the Markov chain X(N,r) by exploring its
connections to the deterministic process y(r).

We estimate the distance between X(N,r) and the set of maximal lotteries in several
steps. First, we choose T0 large enough so that y(r)(·, p0) is close to p(r) for all but a
small fraction of the time interval [0, T0] for all initial states p0. In Lemma 6, we show
that if N is large enough, X(N,r) approximately solves (the integral equation equivalent
to) the differential equation (9) with high probability on the interval [0, T0] for any initial
state. From this we conclude in Lemma 7 that for large enough N , X(N,r) is close to y(r)

with high probability on any interval of length T0, provided both processes start with
the same state at the beginning of that interval. Thus, X(N,r) is with high probability
approximately equal to p(r) for all but a small fraction of rounds in any interval of length
T0. Now we chop up the time line into successive intervals of length T0. In expectation,
X(N,r) stays close to y(r) in a large fraction of these intervals. Using an adaption of the
strong law of large numbers, we show in Lemma 9 that X(N,r) is almost surely close to
p(r) for all but a small fractions of rounds. Lastly, since by Lemma 1, p(r) is close to a
maximal lottery if r is small enough, Theorem 1 follows.

The integral equation equivalent to (9) is

y(t)− y(0) =

∫ t

0
f (r)(y(s))ds

y(0) = p0

(13)

We show that X(N,r) approximately satisfies (13) (with the integral replaced by a sum)
for large N on bounded time intervals. Lemma 6 below states that for any time T and
any δ > 0, we can choose N large enough so that with high probability, X(N,r)(n, p0)
does not violate (13) by more than δ within the first NT rounds independently of the
initial state p0 ∈ ∆(N). For the proof, we use the following proposition due to Kurtz
(1970, Proposition 4.1). (The statement is adapted to our setting.)

Proposition 1 (Kurtz, 1970). Let (z(N))N∈N be a sequence of discrete-time Markov
chains with states spaces A(N) and probability transition matrices Q(N). Suppose there
exist sequences of positive number (αN ) and (εN ),

lim
N→∞

αN = ∞ and lim
N→∞

εN = 0

such that

sup
N∈N

sup
p∈A(N)

αN

∑
q∈A(N)

|p− q|Q(N)(p, q) <∞ (14)

and

lim
N→∞

sup
p∈A(N)

αN

∑
q∈A(N),|p−q|>εN

|p− q|Q(N)(p, q) = 0. (15)
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Let

G(N)(p) = αN

∑
q∈A(N)

(q − p)Q(N)(p, q).

Then, for every δ > 0 and T > 0,

lim
N→∞

sup
p∈A(N)

P

(
sup

n≤αnT

∣∣∣∣∣z(N)(n)− z(N)(0)−
n−1∑
k=0

1

αN
G(N)(z(N)(k))

∣∣∣∣∣ > δ | z(N)(0) = p

)
= 0.

The following lemma applies this result to (X(N,r))N∈N for a fixed r.

Lemma 6. For every T > 0 and δ > 0,

lim
N→∞

sup
p∈∆(N)

P

(
sup

n≤NT

∣∣∣∣∣X(N,r)(n, p)−X(N,r)(0, p)−
n−1∑
k=0

f (r)
(
X(N,r)(k, p)

)∣∣∣∣∣ ≥ δ

)
= 0

(16)

Proof. Recall that P (N,r) is the transition probability matrix of X(N,r). We apply
Proposition 1 with z(N) = X(N,r), A(N) = ∆(N), Q(N) = P (N,r), αN = N , and εN = 2

N
and check (14) and (15):

sup
N∈N

sup
p∈∆(N)

N
∑

q∈∆(N)

|p− q|P (N,r)(Np,Nq)

= sup
N∈N

sup
p∈∆(N)

N

d∑
i,j=1

1

N
|ei − ej |P (N,r)(Np,Np− ei + ej) ≤ 2

and

lim
N→∞

sup
p∈∆(N)

N
∑

q∈∆(N) : |p−q|> 2
N

|p− q|P (N,r)(Np,Nq) = 0

Recalling the definition of f (r) shows that G(N) = f (r) for all N . Hence, (16) follows.

Note that Lemma 6 does not use the full strength of Proposition 1 since G(N) = f (r) is
independent of N . Recall from Remark 6 that for the urn process without replacement,
f (r) does depend on N . Hence, the additional flexibility of Proposition 1 is needed in
that case.

Since we want to compare the discrete-time process X(N,r) to the continuous-time
process y(r) solving (9), it is convenient to turn X(N,r) into a continuous-time process.
To this end, let X̄(N,r)(t, p) = X(N,r)(⌊Nt⌋, p) for all t ≥ 0 and p ∈ ∆. (That is, time
is scaled by 1

N .) X̄(N,r) is a right-continuous step function, which takes steps of length
1
N |ei − ej | = 2

N and is constant on time intervals [ kN ,
k+1
N ). Thus, as N grows, the steps

become smaller and appear in shorter intervals. Lemma 6 shows that on any bounded
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time interval, X̄(N,r) satisfies (13) up to some arbitrary error with high probability when
N is large enough. That is, for every T > 0 and δ > 0,

lim
N→∞

sup
p∈∆(N)

P

(
sup
t≤T

∣∣∣∣X̄(N,r)(t, p)− X̄(N,r)(0, p)−
∫ t

0
f (r)

(
X̄(N,r)(s, p)ds

)∣∣∣∣ ≥ δ

)
= 0

(17)

In Lemma 7, we show that this implies that the trajectories of y(r)(·, p) and X̄(N,r)(·, p)
stay close to each other with high probability on a given bounded time interval for any
initial state p for large N . Importantly for later use, the bound on the probability is
uniform in p.

Lemma 7. For every T > 0 and δ > 0,

lim
N→∞

sup
p∈∆(N)

P

(
sup
t≤T

∣∣∣y(r)(t, p)− X̄(N,r)(t, p)
∣∣∣ ≥ δ

)
= 0. (18)

Proof. First observe that since f (r) is continuously differentiable on the compact space
∆, there is C ∈ R≥0 such that f (r) is Lipschitz-continuous with constant C. Let T > 0,
δ > 0, and p ∈ ∆. If supt≤T |X̄(N,r)(t, p)− X̄(N,r)(0, p)−

∫ t
0 f

(r)(X̄(N,r)(s, p))ds| < ε, then
for all t ∈ [0, T ],∣∣∣y(r)(t, p)− X̄(N,r)(t, p)

∣∣∣ = ∣∣∣y(r)(t, p)− y(r)(0, p)− X̄(N,r)(t, p) + X̄(N,r)(0, p)
∣∣∣

< ε+

∫ t

0

∣∣∣f (r) (y(r)(s, p))− f (r)
(
X̄(N,r)(s, p)

)∣∣∣ ds
≤ ε+ C

∫ t

0

∣∣∣y(r)(s, p)− X̄(N,r)(s, p)
∣∣∣ ds

The first inequality follows from the assumption about X̄(N,r) and the fact that y(r)

satisfies (13). The second inequality uses the Lipschitz-continuity of f (r). We apply
Grönwall’s inequality to conclude that

sup
t≤T

∣∣∣y(r)(t, p)− X̄(N,r)(t, p)
∣∣∣ < εeCT < δ

for ε > 0 small enough. Note that the choice of ε does not depend on p = X̄(N,r)(0, p).
By (17), for every ρ > 0, we can find N0 ∈ N such that for every N ≥ N0,

sup
p∈∆(N)

P

(
sup
t≤T

∣∣∣∣X̄(N,r)(t, p)− X̄(N,r)(0, p)−
∫ t

0
f (r)

(
X̄(N,r)(s, p)

)
ds

∣∣∣∣ ≥ ε

)
< ρ

Hence, for all N ≥ N0,

sup
p∈∆(N)

P

(
sup
t≤T

|y(r)(t, p)− X̄(N,r)(t, p)| ≥ δ

)
< ρ

Since ρ was arbitrary, (18) follows.
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The last tool, Lemma 8, is in essence a one-sided strong law of large numbers for
indicator random variables. Instead of the usual assumption of i.i.d. random variables, it
only assumes that the probability of each variable being 1 is conditionally upper bounded.
The elegant proof was pointed out to us by an anonymous referee.

Lemma 8. Let α ∈ [0, 1]. Let {Zn : n ∈ N0} be indicator random variables and, for
n ≥ 1, Sn =

∑n
k=1 Zk. If P (Z1 = 1) ≤ α and for all n ≥ 2, P (Zn = 1 | Sn−1) ≤ α, then

P
(
lim sup
n→∞

Sn
n
> α

)
= 0.

Proof. The proof uses the moment generating functions of the random variables involved.
Let Z be an indicator random variable with P (Z = 1) = α. Then, for all n ≥ 2 and
t > 0,

E
(
etSn

)
= E

(
etZnetSn−1

)
≤ E

(
etZ
)
E
(
etSn−1

)
,

where the inequality follows from the assumption that P (Zn = 1 | Sn−1) ≤ α and Fubini’s
theorem. Repeated application of this inequality and the assumption P (Z1 = 1) ≤ α
give that for all n ≥ 1 and t > 0,

E
(
etSn

)
≤ E

(
etZ
)n
.

Now let β > α, n ≥ 1, and t > 0. Then, by Markov’s inequality,

P (Sn ≥ βn) = P
(
etSn ≥ etβn

)
≤ e−tβn E

(
etSn

)
.

Combining the two preceding inequalities gives

P (Sn ≥ βn) ≤ e−tβn E
(
etZ
)n

= E
(
et(Z−β)

)n
.

Since E (Z − β) < 0, we have for sufficiently small t > 0 that E
(
et(Z−β)

)
< 1. Hence,

P (Sn ≥ βn) decays exponentially in n, and so∑
n≥1

P (Sn ≥ βn) <∞.

The Borel-Cantelli lemma thus gives that lim supn
Sn
n ≤ β almost surely. Since β > α

was arbitrary, we conclude that lim supn
Sn
n ≤ α almost surely as claimed.

Putting together Lemma 4, Lemma 7, and Lemma 8, we show that X̄(N,r) is almost
surely close to p(r) most of the time for large enough N . More precisely, for S ⊂ ∆(N), let

s̄
(N,r)
t (S) =

1

t

∫ t

0
χS(X̄

(N,r)(s))ds

be the fraction of time X̄(N,r) spends in a state in S. For δ > 0, we consider the fraction
of time spent in Bδ(p

(r)). If N is large enough, the limit of s̄(N,r)
t (Bδ(p

(r))) for t to infinity
is almost surely close to 1.
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Lemma 9. Let δ, τ > 0. Then, for every r > 0, there is N0 such that for all N ≥ N0

and p0 ∈ ∆(N),

P
(
lim
t→∞

s̄
(N,r)
t (Bδ(p

(r))) ≥ 1− τ
)
= 1 (19)

Proof. Let r > 0. By Lemma 5, we can find η > 0 such that

sup
{∣∣∣y(r)(t, p)− p(r)

∣∣∣ : t ≥ 0, p ∈ Bη(p
(r))
}
<
δ

2

By Lemma 4, we can find T1 > 0 such that for all T ≥ T1,

sup
{∣∣∣y(r)(T, p)− p(r)

∣∣∣ : p ∈ ∆
}
< η

Let T0 = 2
τ T1. Note that y(r) is time-invariant, that is, y(r)(t, p) = y(r)(t− t0, y

(r)(t0, p))
for all t ≥ t0 ≥ 0. Combining these facts, it follows that for every p ∈ ∆, the measure of
t ∈ [t0, t0 + T0] for which y(r)(t, p) is in an δ

2 -ball around p(r) is at least (1− τ
2 )T0. We

may assume that T0 is integral.
By Lemma 7, there is N0 ∈ N such that for all N ≥ N0,

sup
p∈∆(N)

P

(
sup

0≤t≤T0

∣∣∣y(r)(t, p)− X̄(N,r)(t, p)
∣∣∣ ≥ δ

2

)
<
τ

2
.

Now fix N ≥ N0 and p ∈ ∆(N). We upper bound the fraction of time X̄(N,r) is
further than δ away from p(r). To simplify notation, let tk = kT0 and x̄k = X̄(N,r)(tk, p).
For n ≥ 1, we calculate the expected number of intervals [tk−1, tk], 1 ≤ k ≤ n so
that |x̄(t, p) − p(r)| ≥ δ for some t ∈ [tk−1, tk]. Let Z(N,r)

k be the indicator variable
for the event that X̄(N,r)(t, p) and y(r)(t − tk−1, x̄k−1) differ by at least δ

2 on the time
interval [tk−1, tk] given that both start at the point x̄k−1 at time tk−1. So Z

(N,r)
k is

1 if suptk−1≤t≤tk
|X̄(N,r)(t, p) − y(r)(t − tk−1, x̄k−1)| ≥ δ

2 and 0 otherwise. Notice that

{Z(N,r)
k : k ∈ N0} satisfies the hypothesis of Lemma 8 with α = τ

2 .20

If Z(N,r)
k = 0, then∫ tk

tk−1

χ̄Bδ(p(r))
(X̄(N,r)(t, p))dt ≤

∫ tk

tk−1

χ̄B δ
2
(y(r)(t−tk−1,x̄k−1))

(X̄(N,r)(t, p))dt

+

∫ tk

tk−1

χ̄B δ
2
(p(r))y

(r)(t− tk−1, x̄k−1)dt

≤ τ

2
T0.

It follows that
1

nT0

∑
k∈[n]

∫ tk

tk−1

χ̄Bδ(p(r))
(X̄(N,r)(t, p))dt =

∑
k∈[n]

Z
(N,r)
k =0

1

nT0

∫ tk

tk−1

χ̄Bδ(p(r))
(X̄(N,r)(t, p))dt

20While the probability that Z
(N,r)
n equals 1 may depend on Z

(N,r)
k for k < n, the bound of τ

2
holds

independently of the Z
(N,r)
k since the bound obtained in Lemma 7 is uniform in the initial state p.
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+
∑
k∈[n]

Z
(N,r)
k =1

1

nT0

∫ tk

tk−1

χ̄Bδ(p(r))
(X̄(N,r)(t, p))dt

≤ τ

2
+

1

n

n∑
k=1

Z
(N,r)
k .

Applying Lemma 8 to {Z(N,r)
k : k ∈ N0} with α = τ

2 gives

P

(
lim sup
n→∞

1

n

n∑
k=1

Z
(N,r)
k ≥ τ

2

)
= 0.

Hence, with the preceding inequality we get

P
(
lim
t→∞

s̄
(N,r)
t (Bδ(p

(r)) ≥ 1− τ
)
= P

(
lim
t→∞

∫ t

0
χBδ(p(r))

(X̄(N,r)) ≥ 1− τ

)
= 1

which is (19).

Theorem 1. Let δ, τ > 0. Then, there is r0 > 0 such that for all 0 < r ≤ r0, there are
p∗ ∈ ML(R) and N0 ∈ N such that for all N ≥ N0 and p0 ∈ ∆(N), almost surely

lim
n→∞

1

n

∣∣∣{k ≤ n :
∣∣∣X(N,r)(k, p0)− p∗

∣∣∣ ≤ δ
}∣∣∣ ≥ 1− τ.

Moreover, there is C > 0 such that for all n ∈ N0,

P
(∣∣∣X(N,r)(n, p0)− p∗

∣∣∣ ≤ δ
)
≥ 1− τ − e−⌊Cn⌋.

Proof. By Lemma 1, we can choose r0 > 0 so that p(r) ∈ B δ
2
(ML(R)) for all 0 < r ≤ r0.

Let 0 < r ≤ r0 and p∗ ∈ ML(R) so that |p(r) − p∗| ≤ δ
2 . Then, applying Lemma 9 to δ

2 , τ ,
and r, we get N0 ∈ N such that (19) holds (with δ

2 in place of δ). Hence,

P
(
lim
t→∞

s̄
(N,r)
t (Bδ(p

∗)) ≥ 1− τ
)
= 1. (20)

This is equivalent to the assertion in the first part of the theorem.
The second statement follows by recalling the standard fact that the distribution of

an irreducible and aperiodic Markov chain converges exponentially to its stationary
distribution in the total variation norm (Levin et al., 2009, Theorem 4.9).

D. Approximate Axiomatics

The temporal average of the urn process we describe approximates maximal lotteries. As
mentioned in Section 1, maximal lotteries are renowned for satisfying a large number
of desirable properties and several results have shown that no other probabilistic social
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choice function (PSCF) satisfies these properties. For some axioms, it is obvious that
every approximation of a PSCF that satisfies the axiom satisfies an approximate version of
the axiom. For example, every approximation of a Condorcet-consistent PSCF—one that
returns the lottery with probability 1 on the Condorcet winner whenever one exists—is
approximately Condorcet-consistent in the sense that it assigns probability close to 1
to Condorcet winners. For other axioms, this is not true in general. In this section, we
discuss population-consistency as an example and show that approximations of continuous
PSCFs that satisfy population-consistency satisfy an approximate consistency axiom.
Our notion of continuity requires that a preference change by a small fraction of the
voters leads to at most a small change to the chosen lottery. Since ML is continuous and
population-consistent, the urn procedure is approximately population-consistent. The
same holds for several other axioms satisfied by ML such as composition-consistency and
agenda-consistency (see Brandl et al., 2016). We do not discuss those here since the
analysis is very similar.

The notation becomes more convenient by switching to fractional preference profiles,
which map every preference relation to the fraction of voters with these preferences. The
set of all fractional preferences profiles is thus ∆(R). A PSCF is then a correspondence
from ∆(R) to ∆.21 Population-consistency is concerned with the consistency of PSCFs
with respect to variable electorates: whenever a PSCF ϕ selects p for two profiles on
disjoint electorates, then it also selects p for the union of both profiles. For fractional
preference profiles, this is formalized as

ϕ(R′) ∩ ϕ(R′′) ⊂ ϕ(12 R
′ + 1

2 R
′′) (population-consistency)

for all R′, R′′ ∈ ∆(R). An approximate version of population-consistency requires that
ϕ(R′) ∩ ϕ(R′′) is contained in a small neighborhood of ϕ(12 R

′ + 1
2 R

′′). For ε > 0, ϕ
satisfies ε-approximate population-consistency at R ∈ ∆(R) if

ϕ(R′) ∩ ϕ(R′′) ⊂ Bε (ϕ(R)) (ε-approximate population-consistency)

for all R′, R′′ ∈ ∆(R) with 1
2 R

′ + 1
2 R

′′ = R.
There are population-consistent PSCFs and ε > 0 such that even arbitrarily good

approximations of the PSCF do not satisfy ε-approximate population-consistency for
some profile. Call ψ a δ-approximation of ϕ for δ > 0 if dist (ψ(R), ϕ(R)) < δ for all R,
where dist (U, V ) = infp∈U,q∈V |p− q| for U, V ⊂ ∆. If a PSCF is population-consistent,
it may be the case that for some profile R, for every δ > 0, there is a δ-approximation of
the PSCF that violates ε-approximate population-consistency for R. We show that this
is impossible for (upper hemi-)continuous PSCFs at profiles for which a unique lottery is
returned.22

Proposition 2. Let ϕ be a continuous PSCF that satisfies population-consistency. Then,
for every ε > 0 and R ∈ ∆(R) with |ϕ(R)| = 1, there is δ > 0 such that every δ-
approximation of ϕ satisfies ε-approximate population-consistency at R.
21This definition of a PSCF entails that it is anonymous (the identities of the voters are irrelevant) and

homogeneous (replicating the entire electorate does not affect the outcome).
22A PSCF ϕ is upper hemi-continuous if for all R ∈ ∆(R) and every sequence (Rk)k∈N ⊂ ∆(R) converging

to R, whenever a sequence (pk)k∈N ⊂ ∆ with pk ∈ ϕ(Rk) converges to p ∈ ∆, then p ∈ ϕ(R).
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Brandl et al. (2016) have shown that ML is continuous and satisfies population-
consistency. Moreover, maximal lotteries are almost always unique in the sense that the
set of all profiles with multiple maximal lotteries has measure zero and is nowhere dense
in ∆(R).23 Theorem 1 implies that the number of balls in the urn and the mutation
rate can be chosen so that the temporal average of the urn distribution is almost surely
at most δ away from some maximal lottery. Hence, Proposition 2 implies that the urn
process satisfies ε-approximate population-consistency in a well-defined sense for arbitrary
ε > 0.

It is straightforward to check that Proposition 2 follows from the following lemma.

Lemma 10. Let ϕ : U ⇒ Rd be an upper hemi-continuous correspondence from a compact
subset U ⊂ Rk to Rd Suppose that for all u′, u′′ ∈ U , ϕ(u′)∩ϕ(u′′) ⊂ ϕ(12 u

′+ 1
2 u

′′). Then,
for all u ∈ U and ε > 0, there is δ > 0 such that for all u′, u′′ ∈ U with u = 1

2 u
′ + 1

2 u
′′,

Bδ(ϕ(u
′)) ∩Bδ(ϕ(u

′′)) ⊂ Bε(ϕ(u)).

Proof. Let u ∈ U and ε > 0. Define

δ′ = inf

{
dist

(
ϕ(u′) \B ε

2
(ϕ(u)), ϕ(u′′) \B ε

2
(ϕ(u)

)
: u′, u′′ ∈ U with

1

2
u′ +

1

2
u′′ = u

}
.

(By convention, dist (·, ·) takes the value ∞ if one of its arguments is the empty set.)
Since ϕ is upper hemi-continuous, U is compact, and ϕ(u′) ∩ ϕ(u′′) ⊂ ϕ(u) for u′, u′′ as
above, δ′ > 0.

Now let δ = 1
2 min{ε, δ′}. Let u′, u′′ ∈ U with 1

2 u
′ + 1

2 u
′′ = u and p ∈ Bδ(ϕ(u

′)) ∩
Bδ(ϕ(u

′′)). Then there are q′ ∈ ϕ(u′) and q′′ ∈ ϕ(u′′) with |q′ − p| < δ and |q′′ − p| < δ.
Hence, |q′ − q′′| < δ′. By definition of δ′, either q′ ∈ B ε

2
(ϕ(u)) or q′′ ∈ B ε

2
(ϕ(u)). Either

way, p ∈ Bδ+ ε
2
(ϕ(u)) ⊂ Bε(ϕ(u)), which is what had to be shown.

23These facts follow from considering the dimension of the kernel of a sub-matrix of the skew-comparison
matrix.
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