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The work we present in this paper initiated the formal study of fractional hedonic games, coalition formation

games in which the utility of a player is the average value he ascribes to the members of his coalition. Among

other settings, this covers situations in which players only distinguish between friends and non-friends and

desire to be in a coalition in which the fraction of friends is maximal. Fractional hedonic games thus not only

constitute a natural class of succinctly representable coalition formation games, but also provide an interesting

framework for network clustering. We propose a number of conditions under which the core of fractional

hedonic games is non-empty and provide algorithms for computing a core stable outcome. By contrast, we

show that the core may be empty in other cases, and that it is computationally hard in general to decide

non-emptiness of the core.

CCS Concepts: • Theory of computation→ Representations of games and their complexity; Algorith-
mic game theory; Solution concepts in game theory; Problems, reductions and completeness; Facility location

and clustering; • Mathematics of computing→ Graph theory.
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1 INTRODUCTION
Hedonic games present a natural and versatile framework to study the formal aspects of coalition

formationwhich has receivedmuch attention from both an economic and an algorithmic perspective.

This work was initiated by Drèze and Greenberg [1980], Banerjee et al. [2001], Cechlárová and

Romero-Medina [2001], and Bogomolnaia and Jackson [2002] and has sparked a lot of follow-

up work. A recent survey was provided by Aziz and Savani [2016]. In hedonic games, coalition

formation is approached from a game-theoretic angle. The outcomes are coalition structures—

partitions of the players—over which the players have preferences. Moreover, the players have

different individual or joint strategies at their disposal to affect the coalition structure to be formed.

Various solution concepts—such as the core, the strict core, and several kinds of individual stability—
have been proposed to analyze these games.

The characteristic feature of hedonic games is a non-externalities condition, according to which

every player’s preferences over the coalition structures are fully determined by the player’s prefer-

ences over coalitions he belongs to, and do not depend on how the remaining players are grouped.

Nevertheless, the number of coalitions a player can be a member of is exponential in the total

number of players, and the development and analysis of concise representations as well as interest-

ing subclasses of hedonic games are an ongoing concern in computer science and game theory.
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Particularly prominent in this respect are representations in which the players are assumed to

entertain preferences over the other players, which are then systematically lifted to preferences over

coalitions [see, e.g., Alcalde and Revilla 2004; Aziz et al. 2013a; Banerjee et al. 2001; Bogomolnaia

and Jackson 2002; Cechlárová and Romero-Medina 2001; Dimitrov et al. 2006].

The work presented in this paper pertains to what we will call fractional hedonic games, a subclass
of hedonic games in which each player is assumed to have cardinal utilities or valuations over the
other players. These induce preferences over coalitions by considering the average valuation of

the members in each coalition. The higher this value, the more preferred the respective coalition

is. Previously, the min, max, and sum operators have been used, respectively, for hedonic games
based on worst players [Cechlárová and Romero-Medina 2001], hedonic games based on best play-
ers [Cechlárová and Hajduková 2002], and additively separable hedonic games [Banerjee et al. 2001].
Despite the natural appeal of taking the average value, fractional hedonic games have enjoyed

surprisingly little attention prior to this work.
1
Fractional hedonic games can be represented by

a weighted directed graph where the weight of the edge (i, j) denotes the value player i has for
player j . However, we will be particularly interested in games that can be represented by undirected
and unweighted graphs. Thus, such games have symmetric valuations that only take the values 0

and 1. With the natural graphical representation of these games, desirable outcomes for fractional

hedonic games also provide an interesting angle on network clustering.

Many natural economic problems can be modeled as fractional hedonic games. A particular

economic problem that we will consider is what we refer to as Bakers and Millers. Suppose there are
two types of players, bakers and millers, where individuals of the same type are competitors, trading

with players of the other type. Both types of players can freely choose the ‘neighborhood’ in which

to set up their enterprises; in the formal model, each neighborhood forms a coalition. Millers want

to be situated in a neighborhood with as many purchasing bakers relative to competing millers as

possible, so as to achieve a high price for the wheat they produce. On the other hand, bakers seek a

high ratio of the number of millers to the number of bakers, to keep the price of wheat low and

that of bread up. We show that these problems (which belong to the class of fractional hedonic

games) always admit a core stable partition. This result generalizes to situations in which there are

more than two types of players who want to keep the fraction of players of their own type as low

as possible. Our study of the Baker and Millers setting is inspired by Schelling’s famous dynamic

model of segregation [Schelling 1971, 1978].

Another example concerns the formation of political parties. The valuation of two players for

each other may be interpreted as the extent to which their opinions overlap, perhaps measured by

the inverse of their distance in the political spectrum. In political environments, players need to

form coalitions and join parties to acquire influence. On the other hand, as parties become larger,

disagreement among their members will increase, making them susceptible to split-offs. Thus, one

could assume that players seek to maximize the average agreement with the members of their

coalition.

In general, finding stable partitions for fractional hedonic games represented by social networks

provides an interesting game-theoretic perspective to community detection [see, e.g., Fortunato

2010; Newman 2004] and network clustering.
2

The contributions of the paper are as follows.

1
Hajduková [2006] first mentioned the possibility of using the average value in hedonic games but did not further analyze it.

2
Clauset et al. [2004] discuss how social network analysis can be used to identify clusters of like-minded buyers and sellers

in Amazon’s purchasing network.



Fractional Hedonic Games 3

• We introduce and formally define fractional hedonic games and their graphical representation.

We identify the subclass of games represented by undirected and unweighted graphs (simple
and symmetric fractional hedonic games) and discuss some of their properties.

• We show that fractional hedonic gamesmay have an empty core, even in the simple symmetric

case. We give an example of such a game with 40 players. We leverage this example to show

that it is Σ
p
2
-complete to decide whether a given simple symmetric fractional hedonic game

has non-empty core. Thus, finding a partition in the core is NP-hard. It is also coNP-complete

to verify whether a given partition is in the core.

• Based on the graphical representation of fractional hedonic games, we identify a number of

classes of graphs which induce games that admit a non-empty core. These include graphs

with degree at most 2, forests, complete multipartite graphs, bipartite graphs which admit

perfect matchings, and graphs with girth at least 5. For each of these classes, we also present

polynomial-time algorithms to compute a core stable partition.

• We formulate the Bakers and Millers setting as a fractional hedonic game based on complete

bipartite (or, more generally, complete k-partite) graphs. We show that such games always

admit a non-empty strict core, and that the grand coalition is always stable. We characterize

the partitions in the strict core, and give a polynomial-time algorithm to compute a unique

finest partition in the strict core.

2 RELATEDWORK
Fractional hedonic games are related to additively separable hedonic games [see, e.g., Aziz et al.

2013b; Olsen 2009; Sung and Dimitrov 2010]. In both fractional hedonic games and additively

separable hedonic games, each player ascribes a cardinal value to every other player. In additively

separable hedonic games, utility in a coalition is derived by adding the values for the other players.

By contrast, in fractional hedonic games, utility in a coalition is derived by adding the values for the

other players and then dividing the sum by the total number of players in the coalition. Although

conceptually additively separable and fractional hedonic games are similar, their formal properties

are quite different. As neither of the two models is obviously superior, this shows how slight

modeling decisions may affect the formal analysis. For example, in unweighted and undirected

graphs, the grand coalition is trivially core stable for additively separable hedonic games. On the

other hand, this is not the case for fractional hedonic games.
3
A fractional hedonic game approach

to social networks with only non-negative weights may help to detect like-minded and densely

connected communities. In comparison, when the network only has non-negative weights for the

edges, any reasonable solution for the corresponding additively separable hedonic game returns

the grand coalition, which is not informative.

The difference between additively separable and fractional hedonic games is reminiscent of some

issues in population ethics (see, e.g., Arrhenius et al. 2017), which concerns the evaluation of states

of the world with different numbers of individuals alive. Two prominent principles in population

ethics are total utilitarianism and average utilitarianism. The former claims that a state of the world

is better than another if it has a higher sum of individual utility, whereas the latter ranks states

by the average utility enjoyed by the individuals. Many of the paradoxes of population ethics

are analogous to properties of hedonic games. For example, average utilitarianism and fractional

hedonic games both suffer from the ‘Mere Addition Paradox’ [Parfit 1984], according to which a

state of the world (resp., a coalition) can become less attractive if we add to it another positive-utility

player (but whose utility is lower than the current average). Note, however, that this paradox cannot

3
Examples of this kind show that there are additively separable hedonic games which cannot be represented as a fractional

hedonic game, and vice versa.
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occur for simple symmetric fractional hedonic games: adding a friend always increases a player’s

satisfaction.

Olsen [2012] examined a variant of simple symmetric fractional hedonic games and investigated

the computation and existence of Nash stable partitions. In the games he considered, however,

every maximal matching is core stable and every perfect matching is a best possible outcome, even

if large cliques are present in the graph. By contrast, in our setting players have an incentive to

form large cliques.

Fractional hedonic games are different from, but related to, another class of hedonic games called

social distance games, which were introduced by Brânzei and Larson [2011] and further studied by

Balliu et al. [2017b,a]. In social distance games, a player’s utility from another player’s presence in

a coalition is inversely proportional to the distance between them in the subgraph induced by the

coalition. Similar ideas have been considered in other papers (see, e.g., [Nguyen et al. 2016]). In

many situations, one does not derive an additional benefit from friends of friends and may in fact

prefer to minimize the fraction of people one does not agree with or have direct connections with.

In such scenarios, fractional hedonic games are more suitable than social distance games.

Fractional hedonic games also exhibit some similarity with the segregation and status-seeking

models considered by Milchtaich and Winter [2002] and Lazarova and Dimitrov [2013]. Research

on such group formation models based on types goes back to at least Schelling [1971].

Independently of our work, Feldman et al. [2012] have also considered the framework of hedonic

games as an approach to graph clustering. However, their research does not relate to core and strict

core stability, and they study different classes of hedonic games.

Since their inception in the conference version of this paper [Aziz et al. 2014], fractional hedonic

games have already sparked some followup work. Aziz et al. [2015] took a welfare maximization

approach to fractional hedonic games and considered the complexity of finding partitions that

maximize utilitarian or egalitarian social welfare. Bilò et al. [2014] analyze fractional hedonic games

from the viewpoint of non-cooperative game theory. They show that Nash stable partitions may not

exist in the presence of negative valuations. Furthermore, they give bounds on the price of anarchy

and the price of stability. Bilò et al. [2015] and Kaklamanis et al. [2016] further examine the price of

(Nash) stability in simple symmetric fractional hedonic games, and Elkind et al. [2016] consider the

price of Pareto optimality. Brandl et al. [2015] presented computational results for various stability

concepts for fractional hedonic games. Peters and Elkind [2015] identified structural features for

various classes of hedonic games for which finding stable partitions is NP-hard. Their analysis

implies several hardness results for fractional hedonic games. Sliwinski and Zick [2017] have

studied the PAC learnability of hedonic games, including fractional hedonic games.

Liu andWei [2017] discuss simple symmetric fractional hedonic games (which they call popularity
games) as a model for the formation of socially cohesive groups. They argue that in social networks,

groups form based both on individual needs and desires, and on the group’s resistance to disruption.

Formally, individuals wish to maximize their popularity in the group (measured by the fraction of

the group that they are connected to in the network), while insisting that the group is core stable.

Liu and Wei [2017] identify several classes of networks in which the grand coalition is core stable

and give some necessary conditions in terms of structural cohesiveness measures. They also show

that it is NP-hard to decide whether the grand coalition is core stable in a given simple symmetric

fractional hedonic game, and present and evaluate some heuristics for this question.

Weese et al. [2017] use fractional hedonic games as a model of the formation of jurisdictions,

noting that the arrangement of political boundaries involves a tradeoff between efficiencies of scale

and of geographic heterogeneity. In examining the core of their weighted symmetric fractional

hedonic games, they randomly sampled such games and found that all their samples admit a non-

empty core, suggesting that the problem of non-existence of stable outcomes is not a problem in
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practice. They also introduce a heuristic algorithm for finding a core stable outcome, which proceeds

by repeatedly searching for a blocking coalition (using integer programming) and myopically

implementing the corresponding coalitional deviation. They then apply this algorithm to specific

games modeled using historical data from Japan about political boundary changes, finding that

their algorithm always found a core solution and typically terminated within a few hours, even for

games containing approximately 1,000 players. They conclude that fractional hedonic games are

“an appropriate way of modeling mergers and splits of political jurisdictions” and that they “might

also be used to model the formation of students into schools or classes, workers into unions, or

public employees into different pension funds”.

3 PRELIMINARIES
Let N be a set {1, . . . ,n} of agents or players. A coalition is a subset of the players. For every

player i ∈ N , we let Ni denote the set {S ⊆ N : i ∈ S} of coalitions i is a member of. Every player i
is equipped with a reflexive, complete, and transitive preference relation ≿i over the setNi . We use ≻i
and ∼i to refer to the strict and indifferent parts of ≿i , respectively. If ≿i is also anti-symmetric

we say that i’s preferences are strict. A hedonic game is a pair (N ,≿), where ≿ = (≿1, . . . ,≿n) is a
profile of preference relations ≿i , modeling the preferences of the players.

A valuation function of a player i is a function vi : N → R assigning a real value to every player.

A hedonic game (N ,≿) is said to be a fractional hedonic game (FHG) if, for every player i in N , there

is a valuation function vi such that for all coalitions S,T ∈ Ni ,

S ≿i T if and only if vi (S) ≥ vi (T ),

where, abusing notation, for all S ∈ Ni , we write

vi (S) =

∑
j ∈S vi (j)

|S |
.

Hence, every FHG can be compactly represented by a tuple of valuation functions v = (v1, . . . ,vn).
Throughout the paper, we assume that vi (i) = 0 for all i ∈ N . It can be shown that every general

FHG can be induced by valuation functions with vi (i) = 0 for all i ∈ N by shifting the valuation

functions,
4
but this assumption comes with some loss of generality in restricted settings, such

as simple FHGs introduced below. We will frequently associate FHGs with weighted digraphs

G = (N ,N × N ,v) where the weight of the edge (i, j) is vi (j), that is, the valuation of player i for
player j.
Two key restrictions on the valuations in an FHG will be of particular interest to us.

• An FHG is symmetric if vi (j) = vj (i) for all i, j ∈ N .

• An FHG is simple if vi (j) ∈ {0, 1} for all i, j ∈ N .

Simple FHGs have natural appeal. Politicians may want to be in a party which maximizes the

fraction of like-minded members. In general, for whatever reasons, people may want to be in a

coalition with as large a fraction of people of their own social group as possible. These situations

can be fruitfully modeled and understood as a simple FHG by having the players assign value 1 to

like-minded or otherwise similar people, and 0 to others.

A simple FHG (N ,≿i ) can be represented by a digraph (V ,A) in which V = N and (i, j) ∈ A if

and only if vi (j) = 1. Similarly, if (N ,≿i ) is both symmetric and simple, it can be represented by an

(undirected) graph (V , E) such that V = N and {i, j} ∈ E if and only if vi (j) = vj (i) = 1. With this

representation in mind, we will often think of graphs as simple symmetric FHGs.

4
Let v ′

i (j) = vi (j) − vi (i) for all i , j ∈ N . Then, v ′
i (i) = 0, for all i ∈ N and S ⊆ N , vi (S ) =

∑
j∈S

vi (j )
|S | =∑

j∈S
v ′
i (j )+vi (i )

|S | =
∑
j∈S

v ′
i (i )
|S | + vi (i). Thus, for all S ,T ⊆ N , vi (S ) ≥ vi (T ) if and only if v ′

i (S ) ≥ v ′
i (T ).
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Fig. 1. Example of a simple symmetric FHG. The only core stable partition is {{1, 2, 3}, {4, 5, 6}}. In contrast,
if the graph represents an additively separable hedonic game, then the partition consisting of the grand
coalition is the only core stable partition.

The outcomes of hedonic games are partitions of the players, also known as coalition structures.
Given a partition π = {S1, . . . , Sm} of the players, π (i) denotes the coalition in π of which player i
is a member. We also write vi (π ) for vi (π (i)), which is the utility that i receives in π , reflecting the

hedonic nature of the games we consider. By the same token we obtain preferences over partitions

from preferences over coalitions. We refer to {N } as the grand coalition.
Hedonic games are analyzed using solution concepts, which formalize desirable ways in which the

players can be partitioned (as based on the players’ preferences over the coalitions). If a partition

satisfies a given solution concept, it is considered to be stable in the sense of the solution concept. A

basic requirement for partitions to be acceptable for all players is individual rationality. A partition

π is individually rational if each player weakly prefers his coalition in π over being alone, that is,

for each i ∈ N , π (i) ≿i {i}. Intuitively, if a partition is not individually rational, it cannot be stable,

since one player has an incentive to leave his current coalition and be on his own instead. In this

paper, we will focus on two of the most prominent solution concepts, the core and the strict core,
taken from cooperative game theory. We say that a coalition S ⊆ N (strongly) blocks a partition π if

each player i ∈ S strictly prefers S to his current coalition π (i) in the partition π , that is, if S ≻i π (i)
for all i ∈ S . A partition that does not admit a blocking coalition is said to be in the core. In a similar

vein, we say that a coalition S ⊆ N weakly blocks a partition π if each player i ∈ S weakly prefers S
to π (i) and there exists at least one player j ∈ S who strictly prefers S to his current coalition π (j),
that is, S ≿i π (i) for all i ∈ S and S ≻j π (j) for some j ∈ S . A partition that does not admit a weakly

blocking coalition is in the strict core. Clearly, the strict core is a subset of the core. Moreover,

the core is a subset of the set of individually rational coalitions, since every coalition that is not

individually rational is blocked by a singleton coalition.

Example 3.1. Consider the simple symmetric FHG based on the graph depicted in Figure 1.

In the grand coalition, the utility of each player is 1/2. There is only one core stable partition:

{{1, 2, 3}, {4, 5, 6}}, which yields utility 2/3 for each player. Observe that, when interpreted as an

additively separable hedonic game, this is not a stable partition, as the grand coalition would yield

a higher utility—namely, 3 instead of 2—to all and thus be a blocking coalition.

Some standard graph-theoretic terminology will be useful. The complete undirected graph on

n vertices is denoted by Kn . A graph (V , E) is said to be k-partite if V can be partitioned into k
independent sets V1, . . . ,Vk , that is, v,w ∈ Vi implies {v,w} < E. A k-partite graph is complete if
for all v ∈ Vi andw ∈ Vj we have {v,w} ∈ E if and only if i , j. We write Kn,m for the complete

bipartite graph where one side contains n vertices and the other side containsm vertices. A graph

is regular if each vertex has the same degree.
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(a) An FHGgiven by aweighted digraphwhose
core is empty. All missing edges have weight
−10.
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(b) A symmetric FHG given by a weighted
graph whose core is empty. All missing edges
have weight −24.

Fig. 2. Examples of (symmetric) FHGs with an empty core.

4 NEGATIVE RESULTS
For any game-theoretic solution concept, two natural questions are whether a solution is always

guaranteed to exist, and whether a solution can be found efficiently. For the core of FHGs, the

answer to both of these questions turns out to be negative if we do not restrict the structure of

the underlying graph. In fact, for unrestricted FHGs (that is, if we allow any weighted digraph), it

is easy to construct examples whose core is empty (see Figure 2a). Even if we require the game

to be symmetric, it is not difficult to find examples with an empty core (see Figure 2b). Of course,

the examples given are specifically constructed so as to not admit a core stable outcome, and it is

plausible that “most” FHGs do admit one. Indeed, Weese et al. [2017] randomly sampled 10 million

symmetric FHGs, and all of them had a non-empty core.

If we consider the strict core, it is also easy to construct an example of a simple symmetric FHG

whose strict core is empty: take the FHG represented by a path with five vertices. If a partition

includes a disconnected coalition, then a component blocks. Every connected partition is weakly

blocked by a pair: adjacent singletons block; the grand coalition is blocked by any pair; a partition

including a coalition S of four players is blocked by the remaining singleton and the adjacent player

in S ; a partition including a coalition of three players is weakly blocked by an outer player of S and

the adjacent player outside S ; and a partition of two pairs and a singleton is weakly blocked by the

singleton player and an adjacent player in a pair.

It was open for some time whether there is a simple symmetric FHG whose core is empty. Here,

we present such an example, consisting of a total of 40 players (see Figure 3). It is unclear whether

smaller examples exist. Note that this result subsumes all of the non-existence results mentioned

above.

Theorem 4.1. In simple symmetric FHGs, the core can be empty.

The proofs of this and other results can be found in the appendix.

Now that we have seen that the core of an FHG can be empty, we can move on to some

computational questions. The natural problem to consider is to find a core stable partition. Since

such a partition does not always exist, we can conveniently consider the decision problem of whether

the core of a given FHG is non-empty. It turns out that, without imposing further restrictions,
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Fig. 3. A simple symmetric FHG with 40 players whose core is empty (see Theorem 4.1). An edge between
two encircled cliques indicates that every vertex of one clique is connected to every vertex of the other.

answering this question is computationally difficult, and in particular NP-hard. The examples with

an empty core that we have seen make for convenient gadgets in hardness reductions.

Notice that the problem of checking whether an FHG has non-empty core is not obviously

contained in the class NP: the natural certificate would be a core stable partition, but it is not at all

clear how to check whether a given partition is in the core; naively, this would require checking all

Θ(2n) candidate blocking coalitions. In fact, this problem of verifying whether a partition is in the

core is coNP-complete (we sketch a proof in the appendix, and an alternative proof was given by Liu

and Wei 2017). The natural complexity class for the non-emptiness problem is Σ
p
2
= NP

NP
which

captures the alternation of quantifiers: “does there exist a partition π such that for all coalitions S ,
the coalition S does not block π?”. Indeed, we can show that the non-emptiness problem is complete

for this class, even for simple symmetric FHGs.

Theorem 4.2. Checking whether a simple symmetric FHG has an empty core is Σp
2
-complete.

The proof of this statement is a rather involved reduction from the complement of the MINMAX

CLIQUE problem [Ko and Lin 1995], and uses a notion of ‘subsidies’ to players who are put

in singleton coalitions. FHGs are not the only class of hedonic games for which checking non-

emptiness of the core is Σ
p
2
-complete: additively separable and Boolean hedonic games are other

examples [Peters 2017; Woeginger 2013]; an open question is whether the existence of the strict

core is Σ
p
2
-hard for hedonic games based on enemy aversion [Ota et al. 2017; Rey et al. 2016].

As Woeginger [2013] argues, the fact that finding a core stable outcome is Σ
p
2
-hard means that

this solution concept is computationally much harder to handle than solution concepts like Nash

stability, where the analogous decision problem is contained in NP. Indeed, recent advances in SAT

and ILP solvers mean that many NP-complete problems of moderate size are now easily solvable in

practice; this is not the case for Σ
p
2
-complete problems.

However, Weese et al. [2017] present a heuristic algorithm that attempts to find a core stable

partition by repeatedly searching for a blocking coalition using an ILP solver and implementing

this deviation. They find that this approach is reasonably efficient for real-world examples with up

to 1,000 players.
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5 POSITIVE RESULTS
In this section, we present a number of subclasses of simple symmetric FHGs for which the core is

non-empty. Since these games can be represented by unweighted and undirected graphs, we will

focus on different graph classes. In particular, we show existence results for the following classes

of graphs: graphs with degree at most 2, forests, complete multipartite graphs, bipartite graphs

which admit perfect matchings, regular bipartite graphs, and graphs with girth at least 5. All of our

proofs are constructive in the sense that we show that the core is non-empty by outlining a way to

construct a partition in the core; in each case this construction can be performed in polynomial

time.

For the strict core, our previous example of the path with five vertices shows that the strict core

may be empty, even if the game is represented by a graph with maximum degree 2, by a forest, or

a graph with girth at least 5. However, our positive results for complete multipartite graphs and

bipartite graphs admitting a perfect matching also establish the existence of a partition in the strict

core.

5.1 Graphs with bounded degree
If a graph is extremely sparse, then intuitively it does not admit interesting blocking coalitions.

Indeed, we have the following result.

Theorem 5.1. For simple symmetric FHGs represented by graphs of degree at most 2, the core is
non-empty.

The proof employs a simple greedy algorithm partitioning the players into coalitions of size

at most 3. Such a strategy is successful in this case since the connected components of graphs of

degree at most 2 are paths and cycles, and in this situation, players are relatively happy in a small

coalition together with an immediate neighbor.

Theorem 4.1 shows that the positive result for the degree bound of 2 cannot be extended to a

bound of 11 (which is the maximum degree of the example given there). It might be interesting to

close this gap; but the case of degree 3 already seems difficult.

5.2 Forests
The example of an FHGwith an empty core that we gave above depended crucially on an underlying

cyclic structure of the game. If we do not allow such cycles, the problem disappears:

Theorem 5.2. For simple symmetric FHGs represented by undirected forests, the core is non-empty.

The proof proceeds by rooting each component of the forest, and exploits the fact that the

preferences of a vertex are somewhat opposed to the preferences of its grandparent. Thus, blocking

coalitions would need to be very ‘local’. The algorithm groups the vertices in such a way that each

coalition consists of one parent and a number of its descendants. This produces a partition in which

vertices are locally satisfied and accordingly guarantees its stability.

The conclusion of Theorem 5.2 could be reached in an alternative way. Notice that the coalitions

in any partition in the core of a simple symmetric FHG need to be connected in the underlying

graph: otherwise, a connected component would block. (If there are coalitions consisting of isolated

vertices, we can replace such coalitions by singletons.) Thus, an FHG given by a graph G can be

viewed as a hedonic game with graph structure with communication structure given by G in the

sense of Igarashi and Elkind [2016]. They showed that, by a result due to Demange [2004], the

core of such games is non-empty if G is a forest. While this method works even beyond the simple

symmetric case, it does not yield a polynomial-time algorithm to produce an element of the core.
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Since forests are acyclic, their girth is infinite. Thus, Theorem 5.2 is also implied by Theorem 5.6

below, which shows that FHGs represented by graphs of girth at least 5 have a non-empty core.

However, the proof of Theorem 5.2 is simpler and leads to a faster (linear time) algorithm for finding

a stable partition.

5.3 Bakers and Millers: complete k-partite graphs
In the introduction, we referred to the Bakers and Millers setting, in which the players are of two

different types and each of them prefers the fraction of players of the other type to be as high as

possible. The setting could arise if individuals of the same type are competitors engaging in trade

with individuals of the other type.

This idea can easily be extended to multiple types. Let Θ = {θ1, . . . , θt } be a set of t types that
forms a partition of the set N of players. Let θ (i) denote the type of player i . A hedonic game (N ,≿)
is called a Bakers and Millers game if the preferences of each player i are such that for all coalitions

S,T ∈ Ni ,

S ≿i T if and only if

|S ∩ θ (i)|

|S |
≤

|T ∩ θ (i)|

|T |
.

Thus, a player prefers coalitions in which a larger fraction of players are of a different type. With

this formalization, we see that a Bakers and Millers game with t types is a simple symmetric FHG

represented by a complete t-partite graph with the maximal independent sets representing the types,

that is, a graph (V , E) with V = N and

E = {{i, j} : θ (i) , θ (j)}.

For an example, see Figure 4, which depicts the complete bipartite graph K4,10 with 14 vertices.

There, one type is given by the vertices a, b, c , and d (“letters”), and the other type by the vertices

numbered 0 through 9 (“numbers”).

In a Bakers and Millers game, the grand coalition is always in the strict core: Since the types

partition the player set, observe that for every coalition S we have

|S ∩ θ1 |

|S |
+ · · · +

|S ∩ θt |

|S |
= 1.

Now assume for a contradiction that the grand coalition N is not in the strict core. Then there is a

(weakly blocking) coalition S such that
|S∩θ (i) |

|S | < |N∩θ (i) |
|N |

for some i ∈ S and
|S∩θ (j) |

|S | ≤
|N∩θ (j) |

|N |
for

all j ∈ S . But then

|S ∩ θ1 |

|S |
+ · · · +

|S ∩ θt |

|S |
<

|N ∩ θ1 |

|N |
+ · · · +

|N ∩ θt |

|N |
,

that is, 1 < 1, a contradiction. By generalizing this idea, we obtain the following theorem.

Theorem 5.3. Let (N ,≿) be a Bakers and Millers game with type space Θ = {θ1, . . . , θt } and π =
{S1, . . . , Sm} a partition. Then, π is in the strict core if and only if for all types θ ∈ Θ and all
coalitions S, S ′ ∈ π ,

|S ∩ θ |

|S |
=

|S ′ ∩ θ |

|S ′ |
.

Observe that the condition in Theorem 5.3 for strict core stability is trivially satisfied by the

partition consisting of the grand coalition. Since every strict core stable partition is also core stable,

the following result follows immediately.

Corollary 5.4. For every Bakers and Millers game, the core and strict core are non-empty.
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Informally, Theorem 5.3 and Corollary 5.4 mean that, within each coalition in a strict core stable

partition, the proportions between the types are exactly as they are in the grand coalition. Thus,

every coalition is a reflection of society in this respect. Conversely, every coalition with the same

proportions between the types as the grand coalition is part of some strict core-stable partition. For

the Bakers and Millers game K4,10 (see Figure 4), we find that not only the grand coalition is strict

core stable, but also any bi-partition {X ,Y } in which X and Y each contain two “letters” and five

“numbers”. More generally, if k is a common divisor of |θ1 |, . . . , |θt |, then there is a strict core stable

partition consisting of k coalitions with |θi |/k members of each type θi . Furthermore, observe that

merging any two coalitions with the same proportions between types, preserves these proportions.

Theorem 5.3 can now be rephrased as follows. Let d denote the greatest common divisor of

|θ1 |, . . . , |θt |, which we know can be computed in time linear in t [cf. Bradley 1970]. A partition π
is in the strict core if and only if, for all coalitions S in π , there is a positive integer kS such that

|S ∩ θi | = kS |θi |/d for all types θi . For example, for the grand coalition N we have kN = d . There is
also a partition π in the strict core such that kS = 1 for all coalitions S in π ; no finer partition is in

the strict core.
5

We say that two partitions π and π ′
are identical up to renaming players of the same type if there is a

bijection f : N → N such that for all players i we have θ (i) = θ (f (i)) and π ′ = {{ f (i):i ∈ S} :S ∈ π }.
Using this notion, we can state the following corollary.

Corollary 5.5. For every Bakers and Millers game, there is a unique finest partition in the strict
core (up to renaming players of the same type), which, moreover, can be computed in linear time.

As the strict core is a subset of the core, the “if”-direction of Theorem 5.3 also holds for the core:

every partition π such that
|S∩θ |
|S | =

|S ′∩θ |
|S ′ | for all types θ ∈ Θ and all coalitions S, S ′ ∈ π is in the

core. The converse of this statement, however, does not generally hold: Consider three players 1, 2,

and 3, with 1 belonging to type θ1, while 2 and 3 belong to type θ2. Then, the coalition structure

{{1, 2}, {3}} is in the core but not in the strict core: the coalition {1, 3} would be weakly blocking.

Rather, the only strict core stable partition consists of the grand coalition, as the greatest common

divisor of |θ1 | and |θ2 | is 1.

5.4 Graphs with large girth
The girth of a graph is the length of the shortest cycle in the graph. For example, bipartite graphs

have a girth of at least 4. Graphs with a girth of at least 5 do not admit triangles or cycles of length 4.

FHGs described by such graphs always admit a core partition. The key idea behind this result is

to pack the vertices of the graph representing a fractional game into stars while maximizing the

leximin objective function. In the leximin objective, the goal is to maximize the utility of the agent

with the least utility; then, subject to this, maximize the utility of the agent with the second least

utility, and so on. The resulting partition is in the core.

Theorem 5.6. For simple symmetric FHGs represented by graphs with girth at least 5, the core is
non-empty. Moreover, there always exists a partition into stars that is in the core.

The argument establishing this, while constructive, does not directly yield a polynomial-time

algorithm for finding an element of the core, since it is not clear whether a star packing optimizing

our leximin objective function can be found in polynomial time. In the appendix, we show that

certain local maxima are also core stable, and that a stable outcome of this type can be found in

polynomial time by local search. This also results in a partition into stars.

It is worth observing that there may be stable partitions which are not partitions into stars.

Consider, for example, a game given by a path with four vertices. In this game, the grand coalition

5
A partition π is finer than partition π ′

, if π , π ′
and for every S ∈ π there is some S ′ ∈ π ′

with S ⊆ S ′.
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a

0 1

b

2 3

c

54 6

d

87 9

Fig. 4. The complete bipartite graph K4,10 in which no star packing yields a stable partition. For instance, the
partition indicated by the solid edges is not stable as {a,b, 4, 5, 6, 7, 8} would deviate.

is in the core, but it is not a star packing. The leximin-optimal star packing consists of a matching

into two pairs.

5.5 Bipartite graphs
For FHGs on bipartite graphs (whose girth is always at least 4), it is not always the case that there

are star packings that also yield partitions in the core. For the FHG given by the complete bipartite

graph K4,10 with 14 vertices (see Figure 4), it can be checked that no partition into stars is core

stable. On the other hand, recall that K4,10 is a Bakers and Millers game. Thus, by Theorem 5.3, the

grand coalition is in the core, and so the core is non-empty. By this example, to find a core element,

it is not enough to search for a star packing.

We have not been able to establish whether the core is non-empty for all bipartite graphs, and

this remains an interesting open problem. For certain subclasses of bipartite graphs, positive results

can still be obtained. For example, perfect matchings, if they exist, are in the (strict) core.

Lemma 5.7. For simple symmetric FHGs represented by a bipartite graph, any perfect matching is
in the strict core.

We can then obtain the following result as a corollary of Hall’s Theorem.

Corollary 5.8. For simple symmetric FHGs represented by a regular bipartite graph, the strict
core is non-empty.

It would be desirable to find additional examples of classes of bipartite graphs for which we can

prove that the core is non-empty.
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Fig. 5. A social symmetric FHG in which no core stable partition exists. The weight of an edge {i, j} denotes
vi (j). All missing edges have weight 0.

A APPENDIX: PROOFS
A.1 Empty core
To prove Theorem 4.1, we give a simple symmetric FHG that does not admit a core stable partition.

Since this game is fairly large (40 players), we first illustrate the construction by giving a smaller

example (15 players) from a slightly larger class of games. To this end, we say that an FHG is social
if vi (j) ≥ 0 for all i, j ∈ N [see also Peters and Elkind 2015]. Clearly, every simple FHG is also social.

The FHG depicted in Figure 5 is social and symmetric, but has an empty core. We omit the proof of

the latter statement, since Theorem 4.1 proves a stronger statement.

The simple symmetric FHG with an empty core depicted in Figure 6 is derived from the game

given in Figure 5 by replacing all players ai and ci by a clique of three players and all players bi by
a clique of two players. These cliques are denoted by Ai , Ci , and Bi , respectively. Whenever two

players x and y are connected in the game in Figure 5, any player from the clique X corresponding

to x is connected to any player from the clique Y corresponding to y in the game depicted in

Figure 6. Then, the weight of the edge between x and y is equal to the number of players in X ∪ Y
a player in X (or Y ) is connected to.

Theorem 4.1. In simple symmetric FHGs, the core can be empty.

Proof. We show that the core of the FHG depicted in Figure 6 is empty. For simplicity, we say

that player i ∈ N is connected to player j ∈ N if i’s valuation for j is 1 (and vice versa). It will be
useful to keep in mind that, for all l ∈ {1, . . . , 5}, i ∈ Al is connected to nine other players, j ∈ Bl is
connected to ten players, and k ∈ Cl is connected to seven players. Assume for contradiction that

π is a partition in the core. The first step is to show that each set Al and Cl acts as a ‘superplayer’;

formally, we show that for each l ∈ {1, . . . , 5}, there are S,T ∈ π such that Al ⊆ S and Cl ⊆ T , i.e.,
players in each of the cliques Al and Cl are in the same coalition. We show both statements for

l = 1. The rest follows from the symmetry of the game.

A1 ⊆ S for some S ∈ π : Assume for contradiction that this is not the case. Observe that A1 ∪C1

is a 6-clique. Hence, every player in A1 ∪C1 has a valuation of 5/6 for the coalition A1 ∪C1. Thus, at
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Fig. 6. A simple symmetric FHG with an empty core. For all l ∈ {1, . . . , 5}, Al and Cl denote cliques of three
players and Bl denotes a clique of two players. An edge from one clique to another denotes that every player
in the first clique is connected to every player in the second clique. All depicted edges have weight 1. All
missing edges have weight 0.

least one player i ∈ A1 ∪C1 has a valuation of at least 5/6 for his coalition in π , as otherwiseA1 ∪C1

would be a blocking coalition.

• First consider the case that i ∈ A1. We may choose i such that vi (π ) ≥ vj (π ) for all j ∈ A1.

The valuation of player i for any coalition that contains a player he is not connected to is

at most 9/11 < 5/6, since i is connected to nine players in total. Hence π (i) can only contain

players that i is connected to. But then A1 ∪ π (i) , π (i) is a blocking coalition, since every
player in π (i) is connected to all players in A1 \ π (i) and, for all j ∈ A1, vj (A1 ∪ π (i)) =
vi (A1 ∪ π (i)) > vi (π ) ≥ vj (π ) by the choice of i . This is a contradiction.

• Now consider the case that i ∈ C1. Again, we may choose i such that vi (π ) ≥ vj (π ) for all
j ∈ C1. If π (i) contains a player that i is not connected to, then vi (π ) ≤ 7/9 < 5/6, since i is
connected to seven players in total. Hence, π (i) can only contain players that i is connected
to. With the same reasoning as in the previous case, we get C1 ⊆ π (i), as otherwise C1 ∪ π (i)
would be a blocking coalition. The valuation of player i for any coalition that contains no

player from A1 is at most 4/5 < 5/6, since i is connected to four players that are not contained

in A1. Hence, π (i) ∩A1 = X , ∅. By our initial assumption, it cannot be that X = A1. Thus,

∅ , X ⊊ A1, and so π (i) ∩ B4 , ∅ since vi (π ) ≥ 5/6 and i would not otherwise be connected

to at least five players in π (i).
At least one player k1 in A1 ∪ B1 and at least one player k5 in A1 ∪ B5 has a valuation of at

least 4/5 for his coalition in π , since both sets are 5-cliques and would be blocking coalitions

otherwise. We will show that k1 ∈ B1 and k5 ∈ B5. To this end, observe that vj (π ) ≤ 4/6 for

all j ∈ X , since π (i) ∩ B4 , ∅. Hence, k1,k5 < X . Any player j ∈ A1 \ X is connected to at

most five players that are not contained in π (i) (two from each of B1 and B5 and one from

A1 \ X ). Hence, vj (π ) ≤ 5/7 < 4/5 if π (j) contains a player that j is not connected to. Thus, if
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vj (π ) ≥ 4/5, π (j) can only contain players that j is connected to. But then π (j) ∪ X would be

a blocking coalition. This shows that k1,k2 < A1 \ X , i.e., k1 ∈ B1 and k5 ∈ B5.

Next, we aim to show that π (k1) and π (k5) cannot contain a player that k1 and k5 are not
connected to, respectively. Observe that k1 is connected to at most nine players that are not

in X . We exclude three cases that leave as the only remaining possibility that π (k1) only
contains players that k1 is connected to.

– If π (k1) contains at least two players that k1 is not connected to, then vk1 (π ) ≤ 9/12 < 4/5.

This contradicts the assumption that vk1 (π ) ≥ 4/5.

– If π (k1) contains one player that k1 is not connected to and at least eight players that k1 is
connected to, then π (k1) contains either A2 orC3. In case A2 ⊆ π (k1), it follows that, for all
k ∈ A2, vk (π ) ≤ 5/10 ≤ 2/3. Hence, A2 is a blocking coalition, which is a contradiction. With

the same reasoning, a contradiction is obtained if C3 ⊆ π (k1).
– If π (k1) contains one player that k1 is not connected to and at most seven players that k1 is
connected to, then vk1 (π ) ≤ 7/9 < 4/5, which is a contradiction by the choice of k1.

Analogously, it follows that π (k5) only contains players that k5 is connected to.

To complete the proof for the case i ∈ C1, we now distinguish two cases:

– If B4 ⊆ π (i), it follows that vj (π ) ≤ 4/7 < 2/3 for all j ∈ X . Let k ∈ A1 \ X . If π (k) contains
a player that k is not connected to, then vk (π ) ≤ 3/5 < 2/3, since π (k) cannot contain any

player from π (i) and at most two players from B1 ∪ B5, since k1 ∈ B1, k5 ∈ B5, and π (k1)
and π (k5) cannot contain a player that k1 and k5 are not connected to, respectively. Hence,

X ∪ π (k) is a blocking coalition. If π (k) only contains players that k is connected to, then

π (k) ∪ X is a blocking coalition.

– If |π (i) ∩ B4 | = 1, it follows that |X | = 2, since vi (π ) ≥ 5/6. As π (i) can only contain players

that i is connected to, π (i) has to consist ofC1, one player from B4 and two players fromA1.

Thus, vj (π ) = 4/6 for all j ∈ X = A1 ∩ π (i). At least one player k ∈ A5 ∪ B4 has a valuation

of at least 4/5 for his coalition in π , since the 5-clique A5 ∪ B4 would be a blocking coalition

otherwise. Observe that vj (π ) = 3/6 < 4/5 for j ∈ B4 ∩ π (i). Hence, k < π (i). Assume for

contradiction that k ∈ B4 \ π (i). If π (k) contains a player that k is not connected to, then

vk (π ) ≤ 6/8 < 4/5, since k is connected to only six players that are not in π (i). Hence, π (k)
can only contain players that k is connected to. If A4 ⊆ π (k), then, for all j ∈ A4 ∪ C4,

vj (π ) ≤ 4/5 < 5/6 and the 6-clique A4 ∪C4 would be a blocking coalition. Hence, A4 ⊈ π (k).
Similarly, A5 ⊈ π (k).
We have shown previously that either all players in A1 are in the same coalition or there

is a coalition with all players from C1, two players from A1, and one player from B4.

The analogous conclusion applies to A4, C4, and B2 and A5, C5, and B3. Hence, neither

|π (k) ∩A4 | = 2 nor |π (k) ∩A5 | = 2 is possible. Thus, |π (k) ∩A4 | ≤ 1 and |π (k) ∩A5 | ≤ 1,

which implies that vk (π ) ≤ 2/3 < 4/5. This is a contradiction.

So we get that k ∈ A5. If k ∈ π (k5), then π (k) = π (k5) can only contain players that

k5 is connected to. Then vk (π ) ≥ 4/5 requires that π (k) = A5 ∪ B5. This implies that

vj (π ) ≤ 4/5 for all j ∈ A5 ∪ C5. Thus, the 6-clique A5 ∪ C5 is a blocking coalition, which

is a contradiction. Hence, k5 < π (k). If then π (k) were to contain a player that k is not

connected to, then vk (π ) ≤ 7/9 < 4/5, since k is connected to at most seven players that

are neither in π (i) nor in π (k5). This implies that π (k) can only contain players that k is

connected to. Hence A5 ⊆ π (k), as otherwise A5 ∪ π (k) would be a blocking coalition.

Since vk5 (π ) ≥ 4/5 and |X | = 2, we get that |π (k5) ∩C2 | ≥ 2. If π (k5) ∩A1 , ∅, then, since

vk1 (π ) ≥ 4/5, π (k1) = B1 ∪ A2. This implies that vj (π ) ≤ 4/5 for all j ∈ A2 ∪C2. Thus, the

6-clique A2 ∪C2 is a blocking coalition, which is a contradiction. If π (k5) ∩A1 = ∅, then,

since vk5 (π ) ≥ 4/5, π (k5) = B5 ∪C2. Hence, vj (π ) = 4/5 for all j ∈ C2. Since π (k1) cannot
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contain a player that k1 is not connected to, we have that vj (π ) ≤ 4/5 for all j ∈ A2. Thus,

the 6-clique A2 ∪C2 is a blocking coalition, which is a contradiction.

In both cases, we arrived at a contradiction, which contradicts the assumption that i ∈ C1.

We have thus established that, for all l ∈ {1, . . . , 5}, there is S ∈ π such that Al ⊆ S .
C1 ⊆ T for some T ∈ π : First we show that, for all l ∈ {1, . . . , 5}, there is il ∈ Cl such that

vil (π ) ≥ 4/5. Assume for contradiction that this is not the case. Without loss of generality, we may

assume that l = 1. Observe that at least one player i ∈ B4 ∪C1 has a valuation of at least 4/5 for his

coalition in π , since otherwise the 5-clique B4∪C1 would be a blocking coalition. By assumption, we

then have that vi (π ) ≥ 4/5 for some i ∈ B4 and vj (π ) < 4/5 for all j ∈ C1. In particular, this implies

that π (i) , B4 ∪C1. Thus, π (i) ∩A4 , ∅ or π (i) ∩A5 , ∅. From the first part of the proof, it then

follows that either A4 ⊆ π (i) or A5 ⊆ π (i). If A4 ∪A5 ⊆ π (i), then vj (π ) ≤ 9/13 < 5/6 for all j ∈ A4,

since π (j) = π (i) contains at least three players that j is not connected to (those from A5) and j is
connected to nine players in total. Now consider k ∈ C4. If π (k) = π (i), then A5 ⊆ π (k) and thus,

π (k) contains at least three players that k is not connected to. This implies that vk (π ) ≤ 7/11 < 5/6,

since k is connected to 7 players in total. If π (k) , π (i), then π (k) ∩ A4 = ∅, which implies that

vk (π ) ≤ 4/5 < 5/6, since k is connected to 4 players that are not in A4. In either case, we have that

vk (π ) < 5/6. Hence, the 6-clique A4 ∪C4 is a blocking coalition. Thus, π (i) cannot contain both A4

andA5. On the other hand, π (i) has to contain eitherA4 orA5, since π (i) , B4 ∪C5. In combination,

this implies that π (i) contains at most seven players that i is connected to (one from B4, three

from C1, and three from either A4 or A5). The valuation of player i for any coalition that contains

a player that i is not connected to is thus at most 7/9 < 4/5. This implies that π (i) cannot contain
a player that i is not connected to. Hence, B4 ⊆ π (i) as otherwise B4 ∪ π (i) would be a blocking

coalition. If A4 ⊆ π (i), we then have that vj (π ) ≤ 4/5 < 5/6 for all j ∈ A4. The valuation of k ∈ C4

for any coalition that contains no player from A4 is at most 4/5 < 5/6. Hence, the 6-clique A4 ∪C4 is

a blocking coalition, which is a contradiction. Similarly, a contradiction is derived if A5 ⊆ π (i).
Now assume for contradiction that there is l ∈ {1, . . . , 5} such that, for all T ∈ π , Cl ⊈ T .

Without loss of generality, we may assume that l = 1. Let i ∈ C1 such that vi (π ) ≥ vj (π ) for all
j ∈ C1. In particular, vi (π ) ≥ 4/5 as argued above. The valuation of player i for any coalition that

contains a player that i is not connected to is at most 7/9 < 4/5, since i is connected to seven players

in total. Hence, π (i) cannot contain a player that i is not connected to. But then C1 ∪ π (i) , π (i) is
a blocking coalition, which is a contradiction.

We have established that, for all l ∈ {1, . . . , 5}, there are S,T ∈ π such that Al ⊆ S and Cl ⊆ T .
In the remainder of the proof we successively exclude all remaining partitions.

• First consider the case that there are i ∈ Al and l ∈ {1, . . . , 5} such that π (i) contains a player
that i is not connected to. Without loss of generality, assume that l = 1. We distinguish two

cases.

– If π (i) = A1∪C1∪Y with ∅ , Y ⊆ B4, thenvi (π ) ≤ 5/7 < 4/5 for all i ∈ A1. At least one player

j ∈ A1 ∪ B1 has a valuation of at least 4/5 for his coalition, as otherwise the 5-clique A1 ∪ B1

would be a blocking coalition. By the preceding statement, we get that j ∈ B1. Observe

that π (j) cannot contain a player that j is not connected to, as otherwise vj (π ) ≤ 7/9 < 4/5,

since j is connected to seven players other than those in A1. Thus, B1 ⊆ π (j), as otherwise
B1 ∪ π (j) , π (j) would be a blocking coalition. If π (j) = A2 ∪ B1 ∪ C3, vk (π ) = 4/8

for all k ∈ C3. Then the 3-clique C3 is a blocking coalition, which is a contradiction. If

π (j) = B1 ∪A2, then vk (π ) ≤ 4/5 for all k ∈ A2 ∪C2 and the 6-clique A2 ∪C2 is a blocking

coalition. Hence, π (j) = B1 ∪C3 ∈ π . Similarly, B5 ∪C2 ∈ π . Since j ∈ A2 is connected to

four players that are not in either B1 orC2, this implies that vj (π ) ≤ 4/5 for all j ∈ A2. Since
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vk (B5 ∪ C2) = 4/5 for all k ∈ C2, the 6-clique A2 ∪ C2 is a blocking coalition, which is a

contradiction.

– If π (i) contains a player that i is not connected to and is not of the type excluded in

the previous case, then vi (π ) ≤ 9/11 < 5/6, since i is connected to nine players in total.

Since A1 ⊆ π (i), we have that vj (π ) < 5/6 for all j ∈ A1. Moreover, if C1 ⊆ π (i), then
vk (π ) ≤ 7/9 < 5/6 for all k ∈ C1, since k ∈ C1 is connected to seven players in total. If

C1 ⊈ π (i), then vk (π ) ≤ 4/5 < 5/6. In any case, the 6-clique A1 ∪C1 is a blocking coalition,

which is a contradiction.

• Lastly, consider the complementary case that, for all l ∈ {1, . . . , 5} and i ∈ Al , π (i) only
contains players that i is connected to. We have shown previously that, for all l ∈ {1, . . . , 5},
at least one player jl ∈ Cl has a valuation of at least 4/5 for his coalition. Hence, π (jl ) cannot
contain a player that jl is not connected to, since jl ∈ Cl is connected to seven players in total.

Since, for all l ∈ {1, . . . , 5} and i ∈ Al , π (i) cannot contain a player that i is not connected
to, it is not possible that π (jl ) = Al ∪ Cl ∪ Y for some ∅ , Y ⊆ Bl−2. Therefore, for all
l ∈ {1, . . . , 5}, either π (jl ) = Al ∪Cl or π (jl ) = Bl−2 ∪Cl . Hence, for all l ∈ {1, . . . , 5} and
i ∈ Al , either π (i) = Al ∪Cl or π (i) ⊆ Al ∪ Bl−1 ∪ Bl .
– If Al ∪Cl ∈ π for all l ∈ {1, . . . , 5}, then vj (π ) ≤ 1/2 for all l ∈ {1, . . . , 5} and j ∈ Bl (which
is obtained by the pair Bl ). On the other hand, we have that vi (A1 ∪ B1 ∪ B5) = 6/7 for all

i ∈ A1 and vj (A1 ∪ B1 ∪ B5) = 4/7 ≥ 1/2 for all j ∈ B1 ∪ B5. Hence, A1 ∪ B1 ∪ B5 is a blocking

coalition, which is a contradiction.

– If the previous case does not apply, wemay assumewithout loss of generality thatA1∪Z ∈ π
for some Z ⊆ B1 ∪ B5. If |Z | < 3, then vi (π ) ≤ 4/5 < 5/6 for all i ∈ A1. Since j ∈ C1 is

connected to four players that are not in A1, we also have that vj (π ) ≤ 4/5 < 5/6 for all

j ∈ C1. Hence, the 6-clique A1 ∪C1 is a blocking coalition. This implies that |Z | ≥ 3 and we

may assume without loss of generality that B5 ⊆ Z . It follows that B4 ∪C1 ∈ π , since one
player in C1 has a valuation of at least 4/5 for his coalition. This implies that A5 ∪C5 ∈ π .
Also, A4 ∪C4 ∈ π , as otherwise vi (π ) ≤ 4/5 for all i ∈ A4 ∪C4 and the 6-clique A4 ∪C4 is a

blocking coalition. Furthermore A2 ∪C2,A3 ∪C3 ∈ π , as otherwise B5 ∪C2 and B1 ∪C3

are blocking coalitions, respectively. Hence, vi (π ) = 5/6 for all i ∈ A3 and vj (π ) ≤ 1/2 for all

j ∈ B2 ∪ B3. So A3 ∪ B2 ∪ B3 is a blocking coalition, since vi (A3 ∪ B2 ∪ B3) = 6/7 > 5/6 for

all i ∈ A3 and vj (A3 ∪ B2 ∪ B3) = 4/7 > 1/2 for all j ∈ B2 ∪ B3. Again, this is a contradiction.

In all cases, we derived a contradiction. Since the choice of π in the core was arbitrary, this shows

that the core is empty. □

We remark that the game above is fragile in the sense that a game with non-empty core may be

obtained by deleting a single specific player. This will be useful for the hardness proofs below.

Proposition A.1. In the game shown in Figure 6, delete one player from B2 from the game, so that
now |B2 | = 1. Then the partition π = {A1∪B1∪B5,A2∪C2,A3∪C3,A4∪C4,A5∪C5,B4∪C1,B2,B3}

is in the core of the resulting game.

Proof. Suppose there was a coalition S blocking π . Note that we have vi (π ) ≥ 5/6 for all

i ∈ A1 ∪ · · · ∪A5, and vi (π ) ≥ 4/5 all i ∈ C1 ∪ · · · ∪C5. Thus, because
9/11 < 5/6 and 7/9 < 4/5, such

players i can only be in S if S contains only players that i is connected to. For players in A2, the

only potential such blocking coalition would be B1 ∪A2 ∪ B2 which is not better than A2 ∪C2, so

A2 ∩ S = ∅. Similarly A3 ∩ S = ∅. The players in B4 are only interested in blocking if S contains

players from at least two of the sets A4,A5,C1, which would contradict the property that players

from the latter sets only block in coalitions containing only adjacent players. Hence B4 ∩ S = ∅.

Thus also A4 ∩ S = ∅ and A5 ∩ S = ∅.
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Given that S does not contain any players from A2 ∪ · · · ∪A5, it follows that also Cl ∩ S = ∅ for

l ∈ {2, . . . , 5}. Because none of their neighbors are willing to block we further get that Bl ∩ S = ∅

for l ∈ {2, 3, 4}. Together, it follows that S ⊆ A1 ∪C1 ∪ B1 ∪ B5.

If S contains a player fromC1, then S ⊆ A1 ∪C1, and S cannot be blocking, because for i ∈ S ∩A1,

we have vi (S) ≤ 5/6 < 6/7 = vi (π ). SoC1 ∩ S = ∅. Hence S ⊆ A1 ∪ B1 ∪ B5, but no proper subset can

block π . □

A.2 Hardness results
We will now show that it is computationally hard to decide whether a given FHG admits a non-

empty core. This problem turns out to be Σ
p
2
-complete, that is, complete for the second level of the

polynomial hierarchy, even for simple symmetric FHGs. Our argument is rather involved; shorter

proofs exist when aiming only for NP-hardness and without the restriction to simple symmetric

games [Brandl et al. 2015; Peters and Elkind 2015].

We will start our reduction from the problem MINMAX-CLIQUE, which is Π
p
2
-complete [Ko and

Lin 1995]:

MINMAX-CLIQUE
Instance: An undirected graph H = (V , E) whose vertex set V =

⋃n
i=1

⋃c
j=1Vi , j is

partitioned into n · c cells, thought of as a grid with n rows and c columns, and a target

integer k .
Question: Is it the case that for every way of choosing exactly one Vi , j for each row i ,
the union of the n chosen cells contains a clique of size k?

From the reduction presented by Ko and Lin [1995], it follows that this problem remains Π
p
2
-

complete even if c = 2, all the Vi , j ’s contain the same number of vertices (say |Vi , j | = m), and

k = n. From this, it is easy to see that the problem with k = n + nm
2

is also hard: just add a clique

of 2nm (= |V |) new vertices to H , connect each of the new vertices to every of the old vertices,

and distribute the new vertices into the grid so that each Vi , j contains preciselym of these new

vertices. To see correctness, consider a way of choosing exactly one cell per row in the old graph.

By assumption, the union of those cells contains a clique of size n. In the new graph, we can add

the nm new vertices to that clique, which implies existence of a clique of the required size. (Note

that after this reduction, the value of “m” has doubled. )

Taking the complement of the problem we have now arrived at, we find that the following

problem is Σ
p
2
-complete. (Note the change from “minmax” to “maxmin”.)

MAXMIN-CLIQUE
Instance: An undirected graph H = (V , E) whose vertex set V =

⋃n
i=1

⋃
j=1,2Vi , j is

partitioned into a grid with n rows and two columns, where all cells contain the same

number of vertices, say |Vi , j | =m for all i, j.
Question: Is there a way to choose exactly one of Vi ,1 and Vi ,2 for each row i so that

the union of the n chosen cells does not contain a clique of size n + nm
2
?

We will not give a direct reduction from MAXMIN-CLIQUE to our problem about FHGs, but will

instead consider an intermediate problem first. Later, we show how to extend this to the case we are

actually interested in. Our intermediate problem uses a modification of allowing so-called supported
players, who are unusually happy in a singleton coalition. A similar device also appears in the

Σ
p
2
-hardness proof by Peters [2017] for additively separable hedonic games. The formal definition

of our problem is as follows.

Core-non-emptiness with Supported Players
Instance: An undirected unweighted graphG = (N , E), defining an FHG. This hedonic

game is then modified by identifying a number of supported players S ⊆ N who receive
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a specified subsidy when they are alone, i.e., for each i ∈ S , we set v({i}) = (si − 1)/si
for some given integer si ≥ 4 (encoded in unary).

Question: Does the given hedonic game admit a non-empty core?

Later we will show a reduction from this problem to the case without supported players; there

the technical assumptions that the subsidies satisfy si ≥ 4 and that si is given in unary will become

useful.

Theorem A.2. Core-non-emptiness with Supported Players is Σp
2
-complete.

Proof. In this proof, for an integerm, we write [m] = {1, 2, . . . ,m}.

We reduce from MAXMIN-CLIQUE. So let H = (V , E) be a given graph with vertex partition

V =
⋃n

i=1
⋃

j=1,2Vi , j with |Vi , j | =m for all i and j and with target clique size k = n + nm
2
. We now

construct a game G = (N , Ê) with supported players S .
LetM be a big number; takingM = 20m2n suffices.

We produce the following players.

• For each row i , we introduce a player zi who will eventually be responsible for choosing one

of the cells Vi ,1 or Vi ,2.
• For each cell Vi , j , we introduce a set Xi , j of M supported players. Each of these players

receives a subsidy of (M + 2m)/(M + 2m + 1).
• Each original vertexw ∈ V is also a playerw ∈ N .

• For each original vertexw ∈ V , we introduce a mate w ′
.

• For each w ∈ V , we also introduce a set Cw of k − 3 supported players with subsidy (k −

2)/(k − 1).

• For each player zi , we introduce a set Ozi of 39 players who will form a copy of the game

from Theorem 4.1 with an empty core.

• For each mate playerw ′
, we introduce a set Ow ′ of 39 players who will form a copy of the

game from Theorem 4.1 with an empty core.

If X ⊆ V is a subset of vertices, let’s write X ′ = {w ′
: w ∈ X } for the collection of mates of

vertices in X . Summarizing, we have produced the following set of players:

N = V ∪V ′ ∪ {zi : i ∈ [n]} ∪
⋃

i , j ∈[n]×[2]

Xi , j ∪
⋃
w ∈V

Cw ∪
⋃

w ′∈V ′

Ow ′ ∪
⋃
i ∈[n]

Ozi ,

of which the following are supported:

S =
⋃

i , j ∈[n]×[2]

Xi , j ∪
⋃
w ∈V

Cw .

We also need to construct the set of edges Ê:

• All original edges from E are in Ê.
• For eachw , the set Cw ∪ {w,w ′} forms a clique of size k − 1.

• For each cell Vi , j , the set Xi , j ∪ {zi } forms a clique of sizeM + 1.
• For eachw ∈ Vi , j , bothw andw ′

are connected to all vertices in Xi , j .

• The setsOzi ∪ {zi } andOw ′ ∪ {w ′} form a copy of the game from Theorem 4.1, such that the

distinguished player (zi andw
′
i respectively) is one of the two players in B2.

• There are no other edges; in particular no two mate players are adjacent.

This completes the description of the reduction.
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We now show that G admits a core stable partition if and only if our instance of MAXMIN-

CLIQUE is a ‘yes’-instance.

=⇒ : Suppose the game G admits a core stable partition π . We show how to choose cells

t : [n] → {1, 2} so that

⋃
i Vi ,t (i) contains no clique of size k .

Consider some row i ∈ [n]. Since the game restricted to the players inOzi ∪ {zi } does not possess
a core stable partition, the player zi needs to be together with one of his neighbors outside Ozi ,

i.e., with a neighbor from Xi ,1 ∪ Xi ,2. Say this neighbor x comes from Xi ,1, so x ∈ π (zi ) ∩ Xi ,1. We

show that in fact π (zi ) = {zi } ∪ Xi ,1 ∪V ′
i ,1 ∪Vi ,1.

• ⊇: We know that x ∈ π (zi ). Now x is supported with subsidy (M + 2m)/(M + 2m + 1); since
{x} does not block π , it must be the case that x ’s utility in π is at least as high as its subsidy.

Hence |π (zi )| = |π (x)| ≥ M + 2m + 1, and x must have at least M + 2m neighbors in π (zi ).
Recalling thatm = |Vi , j | for all i and j, and looking at the reduction, we see that x only has

M + 2m neighbors in total, namely Vi ,1 ∪V ′
i ,1 ∪ {zi } ∪Xi ,1 \ {x}, and hence this must form a

subset of π (zi ).
• ⊆: If there are any additional players in π (zi ), then x obtains utility strictly less than (M +
2m − 1)/(M + 2m), and then {x} would block π , invoking his subsidy.

We deduce that for each row i , either π (zi ) = {zi }∪Xi ,1∪V
′
i ,1∪Vi ,1 or π (zi ) = {zi }∪Xi ,2∪V

′
i ,2∪Vi ,2.

This allows us to choose cell Vi ,2 in the former case (setting t(i) = 2) and Vi ,1 in the latter (setting

t(i) = 1). Note that zi is together with the cell that is not chosen.
Now let’s consider the players in Xi ,t (i) corresponding to a chosen cell. Given what we know

so far about π , these players only haveM + 2m − 1 remaining neighbors (since zi is in a different

coalition). Thus, no non-singleton coalition can give such a player utility of at least the subsidy

(M + 2m)/(M + 2m + 1). Hence each player in Xi ,t (i) is in a singleton in π .
Now consider a vertex w ∈ Vi ,t (i) in a chosen cell and look at its mate w ′

. Since the game

restricted to the players in Ow ′ ∪ {w ′} does not possess a core stable partition, the playerw ′
needs

to be together with a neighbor outside Ow ′ , i.e., needs to be together withw and/or a player in Cw .

In fact, we can see thatw ′
needs to be together with at least one player from Cw : if not, thenw ′

obtains utility at most 11/12 (because w ′
has 10 neighbors in Ow ′ plus the neighbor w), and then

Cw ∪ {w ′} is blocking. Thus we have shown that there is c ∈ Cw with c ∈ π (w ′). Since {c} is not
blocking, c’s utility in π must be at least its subsidy (k − 2)/(k − 1). Thus |π (w ′)| = |π (c)| ≥ k − 1

and c needs to have at least k − 2 neighbors in π (w ′). But c has exactly k − 2 neighbors, and so, like

above, we have π (w ′) = {w,w ′} ∪Cw . In particular, eachw ∈ Vi ,t (i) in a chosen cell obtains utility

(k − 2)/(k − 1).

Finally, suppose for a contradiction that the union

⋃
i Vi ,t (i) of the chosen cells contains a

clique K ⊆ V of size k . Then each vertex of K obtains utility (k − 1)/k in K , so K blocks π , a
contradiction. Hence, with our choice of t : [n] → {1, 2}, the set

⋃
i Vi ,t (i) contains no clique of sizek .

⇐= : Suppose there is a way of choosing t : [n] → {1, 2} so that

⋃
i Vi ,t (i) contains no clique of

size k . We construct a partition π of N which is core stable. For each row i ∈ [n]:

• {x} ∈ π for each x ∈ Xi ,t (i).

• {w,w ′} ∪Cw ∈ π for eachw ∈ Vi ,t (i).
• {zi } ∪ Xi ,¬t (i) ∪V ′

i ,¬t (i) ∪Vi ,¬t (i) ∈ π , where ¬t(i) = 3 − t(i) is the not-chosen index.

• {c} ∈ π for each c ∈ Cw forw ∈ Vi ,¬t (i).
• The players in sets Ozi and Ow ′ are partitioned in the way indicated in Proposition A.1.

Let us note first that each player zi receives utilityM/(M + 2m + 1) > 11/12, and also each mate

w ′
either receives utility (k − 2)/(k − 1) > 11/12 or (1 +M)/(M + 2m + 1) > 11/12 sinceM is chosen
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large enough. Because zi andw
′
players only have 10 neighbors in Ozi and Ow ′ , respectively, they

will not block in a coalition that is contained entirely within Ozi ∪ {zi } or Ow ′ ∪ {w ′}, because

those only bring utility at most 10/11.

We now show that π admits no blocking coalitions. To do so, we will go through all the players

to check that they have no incentive to deviate. (We will say that a player i is not blocking if i is not
part of any blocking coalition.) First notice that π is individually rational, and in particular every

supported player receives at least its subsidy. Therefore, no singleton coalition blocks π .

• The players x ∈ Xi ,¬t (i) are in a best-possible coalition: they are together with exactly their

neighbors. Hence, they will never be part of a blocking coalition.

• The players x ∈ Xi ,t (i) (who form singletons in π and currently receive their subsidy) will

not deviate, because the only coalition that gives a utility of at least their subsidy would be

x ’s neighborhood {zi } ∪Xi ,t (i) ∪V ′
i ,t (i) ∪Vi ,t (i), yet this is not a blocking coalition since zi is

not better off in it.

• For each zi , we have excluded all the neighbors x ∈ Xi , j of zi as possible members of a

blocking coalition. This would only leave a blocking coalition contained entirely within

Ozi ∪ {zi }, which is not an improvement for zi as argued above. Hence zi will not block.
• Each c ∈ Cw wherew ∈ Vi ,t (i) is in a best-possible coalition because its coalition is precisely

its neighborhood, and hence will not deviate.

• Each c ∈ Cw wherew ∈ Vi ,¬t (i) (who forms a singleton in π and currently receives its subsidy)

cannot block, because the only coalition that gives utility at least its subsidy would be its

neighborhood {w,w ′} ∪Cw , but this coalition is not blocking because w ′
is not better off

(since (1 +M)/(M + 2m + 1) > (k − 2)/(k − 1) by choice ofM large enough).

• Consider a mate playerw ′
. We have already shown that all of its neighbors, except possibly

w and vertices in Ow ′ , are not part of blocking coalitions. But a blocking coalition contained

in {w,w ′} ∪Ow ′ brings utility at most 11/12 tow ′
(becausew ′

only has 11 neighbors in this

set), and thusw ′
is not better off in such a coalition. Hence no mate player is blocking.

• No player in Ozi or Ow ′ can be part of a blocking coalition by Proposition A.1, since zi and
w ′

, respectively, are not blocking.

• Each w ∈ Vi ,¬t (i) currently receives utility ≥ (1 +M)/(M + 2m + 1) which, for our choice
of M large enough, is at least the utility w could receive in any coalition S ⊆ V consisting

entirely of original vertices (this quantity being at most (|V | − 1)/|V | = (2nm − 1)/2nm).

• Thus, any blocking coalition S that we have not yet excluded must consist entirely of original

vertices in chosen cells, that is S ⊆
⋃n

i=1Vi ,t (i). Because eachw ∈ S currently obtains utility

(k − 2)/(k − 1), S must give each member a utility strictly exceeding this value. We show that

S is a clique in the graph H , and of size ≥ k , which gives a contradiction.

Let r := |S |. Note that r ≤ mn = |
⋃n

i=1Vi ,t (i) |. Suppose that S is not a clique. Then there

exists a vertexw ∈ S which is not connected to every otherw ∈ S . Thus

uw (S) ≤
r − 2

r
≤

mn − 2

mn
<

k − 2

k − 1

,

where the last inequality follows from k > mn
2
+1 by simple algebra. But because S is assumed

to be blocking, we know that (k − 2)/(k − 1) < uw (S), and hence we have a contradiction.

Thus, S must be a clique. Since each w ∈ S obtains utility > (k − 2)/(k − 1) in it, we must

have that |S | ≥ k , a contradiction.

Thus, no blocking coalition exists, and hence π is in the core. □

With this result in place, we can now formally state the following problem, and prove it to be

hard:
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Core-non-emptiness for simple symmetric FHGs
Instance: An undirected unweighted graph G = (N , E), defining an FHG.

Question: Does the given FHG game admit a non-empty core?

Theorem 4.2. Checking whether a simple symmetric FHG has an empty core is Σp
2
-complete.

Proof. We reduce from Core-non-emptiness with Supported Players to Core-non-emptiness for

simple symmetric FHGs. So let G = (N , E) be a FHG modified by having supported players S ⊆ N
where i ∈ S gets subsidy (si − 1)/si where si ≥ 4.

We build a new FHG H = (N ′, E ′) without supported players such that G possesses a core stable

partition if and only if H does.

The player set N ′
of H subsumes every original player from N , so N ⊆ N ′

. In addition, for each

supported player i ∈ S , we add a setCi of (si − 1) new players. Together we have N ′ = N ∪
⋃

i ∈S Ci .

The edge set E ′
of H subsumes the original edges, so E ⊆ E ′

. Also, the setsCi ∪ {i} form a clique

of si players for each i ∈ S . There are no other edges.

This completes the description of the reduction. Before we prove correctness, let us analyze

the preferences of players j ∈ Ci . Clearly, j’s unique most-preferred coalition is Ci ∪ {i}, which is

precisely j’s neighborhood. Ranked second are all coalitions of (si −2) neighbors of j together with j
(that is, the coalitionsCi andCi \ {k} ∪ {i} for some k ∈ Ci \ {j}) which give j utility (si − 2)/(si − 1).

All other coalitions are ranked lower than these: let C be any other coalition containing j.

• If |C | ≤ si − 2, then j obtains utility ≤ (si − 3)/(si − 2) < (si − 2)/(si − 1).

• If |C | = si − 1, then, because C is a coalition different from the ones considered above, j has
at most si − 3 neighbors in C , so obtains utility ≤ (si − 3)/(si − 1) < (si − 2)/(si − 1).

• If |C | = si , then again, becauseC is assumed to be different fromCi ∪ {i}, j has at most si − 2

neighbors in C , so obtains utility ≤ (si − 2)/si < (si − 2)/(si − 1).

• If |C | ≥ si+1, then j can obtain utility at most (si−1)/(si+1), which is worse than (si−2)/(si−1)
for si > 3.

Suppose G has a core stable partition π . Consider the following partition π ′
of H :

π ′ = (π \ {{i} : i ∈ S}) ∪ {Ci ∪ {i} : i ∈ S and {i} ∈ π } ∪ {Ci : i ∈ S and {i} < π }.

Thus, supported players i ∈ S who are in a singleton coalition in π join the coalition Ci ∪ {i} in π ′
.

We claim that π ′
is core stable in H . Note first that sets of form Ci ∪ {i} are not blocking: In

this coalition, player i receives utility (si − 1)/si (which is equal to i’s subsidy) and so if Ci ∪ {i}
was blocking π ′

, then {i} would be blocking π . As we have seen, the coalitions Ci are ranked

second-best for its members, who therefore do not block either. Hence no player from any Ci is

blocking. Hence any potential blocking coalition for π ′
is contained entirely in N , and hence would

also be a blocking coalition for π , which is a contradiction. Hence π ′
is core stable.

Suppose H has a core stable partition π ′
. First note that for each i ∈ S , either Ci ∪ {i} ∈ π ′

or

Ci ∈ π ′
, since otherwise either Ci or Ci ∪ {i} blocks (by our observations about the preferences

of players j ∈ Ci above). Build the following partition π of N : if Ci ∪ {i} ∈ π ′
then put i in a

singleton in π : {i} ∈ π ; and for every X ∈ π ′
with X ⊆ N , also put X ∈ π . The result is core stable

in G: for suppose not, and there is a blocking coalition Y ⊆ N . If Y = {i} is a singleton and i is
supported, thenCi ∪ {i} would block π ′

. In all other cases Y would also block π ′
. Both cases give a

contradiction, and so π is core stable. □

The reduction in the proof of Theorem 4.2 can also be used to show that it is coNP-complete

to verify whether a given coalition structure is core stable in a given simple symmetric FHG. We

only sketch the argument, which is by reduction from clique. Given an instance (G,k) of the clique
problem (which asks whether G contains a clique of size at least k , where we may assume that
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k ≥ n
2
+ 2), we produce an FHG based on the same graph G, and make every vertex a supported

player with subsidy (k − 2)/(k − 1). In this game with supported players, the all-singletons coalition

structure is in the core, unless there is a clique in G of size at least k (whence the clique would

block, giving its members the payoff (k − 1)/k). The approach of Theorem 4.2 can then be used to

get rid of the subsidies.

Liu and Wei [2017] give an alternative hardness proof for the problem of verifying core member-

ship. They show that even checking whether the grand coalition is core stable is coNP-complete,

even for graphs of diameter 2 and which satisfy some further structural constraints. Their reduc-

tion is also from the clique problem. On the other hand, they present heuristics for solving the

verification problem.

A.3 Positive results
Graphs with bounded degree
Theorem 5.1. For simple symmetric FHGs represented by graphs of degree at most 2, the core is

non-empty.

Proof. We present a polynomial-time algorithm to compute a partition in the core. The partition

is computed as follows. First keep finding K3s until no more can be found. This takes time O(
(n
3

)
).

Let us call the set of vertices matched into K3s as V3. We remove V3 from the graph along with

E3—the edges incident to vertices inV3. We then repeat the procedure by deleting K2s instead of K3s.

Let us call the set of vertices matched into pairs by V2. The unmatched vertices V1 = V \ (V2 ∪V3)
are put into singleton coalitions. The partition obtained is π .

In order to prove that π is in the core, consider the potential blocking coalitions. We know that

vertices in V3 cannot be in a blocking coalition because each vertex in V3 is in its most favored

coalition. Also there does not exist a blocking coalition consisting solely of vertices from V1. If
this were the case, then we had not deleted all K2s from (V \V3, E \ E3). Now let us assume that

there exists a i2 ∈ V2 that is in a blocking coalition. A blocking coalition has to be of size 3, since i2
has utility 1/2 in π and utility at most 1/2 in any coalition of size 2 or size at least 4. Moreover, a

blocking coalition cannot contain two vertices from V1, since for this to be the case i2 has to be

connected to one vertex in V2 and two vertices in V1, which violates the degree constraints. Hence,

the coalition is of the form {i1, i2, i
′
2
} where i1 ∈ V1 and i2, i

′
2
∈ V2. If the utility of i2 is greater than

1/2, then the utility of i ′
2
is less than 1/2 since {i1, i2, i

′
2
} does not form a K3. Since i

′
2
obtained utility

1/2 in π , {i1, i2, i
′
2
} is not a blocking coalition. □

Forests
Theorem 5.2. For simple symmetric FHGs represented by undirected forests, the core is non-empty.

Proof. We present an algorithm to compute a partition in the core for an undirected tree. We

may assume that the graph is connected—and therefore a tree—because the algorithm for a tree can

be applied to each connected component separately. An example run of the following algorithm is

indicated in Figure 7.

Root the tree at an arbitrary vertex r ∈ V , and run breadth-first search on the rooted tree. This

partitions V into sets L0, . . . , Lℓ , where Lk consists of all vertices at distance k from r . We now

construct a partition π in the core of the game. For k = ℓ − 1, ℓ − 2, . . . , 0, run through the vertices

in Lk . For each vertex i ∈ Lk that (i) has not been assigned a coalition yet and (ii) has children

in Lk+1 that have not been assigned a coalition yet, add the coalition consisting of i and all its

unassigned children to π . The player i that satisfies (i) and (ii) above is called a boss player. For
k = 0, in the case that all children of r have already been assigned, add the singleton coalition {r }
to π and make r a boss player. Note that every coalition in π contains exactly one boss player.
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Fig. 7. Example of a tree with a core-stable partition as produced by the algorithm indicated in the proof of
Theorem 5.2. Vertices connected by solid edges are in the same coalition. In the terminology of the proof,
gray vertices are boss players.

We claim that π is in the core. First, we prove by induction on k = ℓ, ℓ − 1, . . . , 0 that no boss

player i ∈ Lk is part of a coalition blocking π . The base case k = ℓ is vacuous since Lℓ contains no
boss players. For the induction step, assume the statement holds for some k ≤ ℓ, and consider a

boss player i ∈ Lk−1. By inductive hypothesis, no child of i who is a boss player can be part of a

blocking coalition. Hence the only possible blocking coalition that i prefers to π (i) is the coalition S
consisting of i’s non-boss children and i’s parent, that is, S = π (i) ∪ {pi }, where pi is i’s parent. But
S is worse than π for i’s (non-boss) children. So S is not blocking, and i is not part of any blocking

coalition.

We have established that no blocking coalition contains a boss player. However, no two non-boss

players are adjacent in the tree, and hence no coalition containing only non-boss players can be a

blocking coalition. Hence π is in the core. □

Bakers and Millers: complete k-partite graphs
Theorem 5.3. Let (N ,≿) be a Bakers and Millers game with type space Θ = {θ1, . . . , θt } and π =

{S1, . . . , Sm} a partition. Then, π is in the strict core if and only if for all types θ ∈ Θ and all
coalitions S, S ′ ∈ π ,

|S ∩ θ |

|S |
=

|S ′ ∩ θ |

|S ′ |
.

Proof. First assume that for all types θ ∈ Θ and all coalitions S and S ′ in π we have
|S∩θ |
|S | =

|S ′∩θ |
|S ′ | ,

but that a weakly blocking coalition T for π exists. Then,
|T∩θ (j) |

|T |
≤

|π (j)∩θ (j) |
|π (j) | for all j ∈ T , while

there is some i ∈ T with
|T∩θ (i) |

|T |
< |π (i)∩θ (i) |

|π (i) | . Consider this i . Without loss of generality assume

that θ1, . . . , θk are the types represented in T , that is, those types θ with j ∈ θ for some j ∈ T . By

assumption we have, for all j ∈ T , |π (j)∩θ (j) |
|π (j) | =

|π (i)∩θ (j) |
|π (i) | . Hence,

|T ∩ θ1 |

|T |
+ · · · +

|T ∩ θk |

|T |
<

|π (i) ∩ θ1 |

|π (i)|
+ · · · +

|π (i) ∩ θk |

|π (i)|
.
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Observe that both

|T ∩ θ1 |

|T |
+ · · · +

|T ∩ θk |

|T |
= 1

and

|π (i) ∩ θ1 |

|π (i)|
+ · · · +

|π (i) ∩ θk |

|π (i)|
≤ 1.

A contradiction follows.

For the other direction, assume that there are coalitions S,T ∈ π and a type θ ∈ Θ such that

|S∩θ |
|S | >

|T∩θ |
|T |

. Then, S ∩ θ , ∅ and let i ∈ S ∩ θ . As

|S ∩ θ1 |

|S |
+ · · · +

|S ∩ θt |

|S |
=

|T ∩ θ1 |

|T |
+ · · · +

|T ∩ θt |

|T |
,

there is some type θ ′ ∈ Θ such that
|S∩θ ′ |

|S | <
|T∩θ ′ |

|T |
. Accordingly, T ∩ θ ′ , ∅.

First consider the case in which both S ∩ θ ′ = ∅ and T ∩ θ = ∅. Without loss of generality, we

may assume that |S | ≤ |T |. Observe that |S | < |T ∪ {i}|. The coalitionT ∪ {i} is weakly blocking, as

|(T ∪ {i}) ∩ θ |

|T ∪ {i}|
=

|{i}|

|T ∪ {i}|
<

|{i}|

|S |
≤

|S ∩ θ |

|S |

and

|(T ∪ {i}) ∩ θ ′′ |

|T ∪ {i}|
=

|T ∩ θ ′′ |

|T ∪ {i}|
≤

|T ∩ θ ′′ |

|T |
for every type θ ′′ distinct from θ . (The latter inequality is not strict, as T ∩ θ ′′

may be empty.)

Finally, assume without loss of generality, that T ∩ θ , ∅ and let j ∈ T ∩ θ . Since S and T are

distinct and both in π , also i , j . We show that the coalitionT ′ = (T \ {j}) ∪ {i} is weakly blocking.

Consider an arbitrary type θ ′′ ∈ Θ. Observe that |T | = |T ′ | and |T ∩ θ ′′ | = |T ′ ∩ θ ′′ |, whether

θ ′′ = θ or not. Therefore,
|T∩θ ′′ |

|T |
=

|T ′∩θ ′′ |

|T ′ |
. Accordingly, every player k ∈ T \ {i, j} is indifferent

between T and T ′
. To conclude the proof, observe that

|T ′∩θ |
|T ′ |
=

|π (j)∩θ |
|T |
. Hence,

|π (i) ∩ θ (i)|

|S |
=

|S ∩ θ |

|S |
>

|T ∩ θ |

|T |
=

|π (j) ∩ θ |

|T |
=

|T ′ ∩ θ |

|T ′ |
,

that is, T ′ ≻i S , as desired. □

Graphs with large girth
We show that in FHGs based on graphs with girth at least 5, star packings maximizing a leximin

objective are core stable.

Theorem 5.6. For simple symmetric FHGs represented by graphs with girth at least 5, the core is
non-empty. Moreover, there always exists a partition into stars that is in the core.

Proof. The reader is referred to Figure 8 for a graphical illustration of certain aspects of its

proof.

We write Si for a star with i vertices. Each star Si with i > 2 has one center c and i − 1 leaves

ℓ1, . . . , ℓi−1. We view S2 as having two centers and no leaves. A partition π is a star packing if each

non-singleton coalition induces a star.

We prove that a star packing that maximizes leximin welfare is core stable. Formally, with

each star packing, denoted by π , we associate an objective vector ®x(π ) = (x1, . . . , x |V |) such that

xi ≤ x j if 1 ≤ i ≤ j ≤ |V |, and there is a bijection f : V → {1, . . . , |V |} with vk (π ) = xf (k )
for every k ∈ V . Thus, in ®x(π ) the vertices/players are ordered according to their value for π in

ascending order. We assume these objective vectors to be ordered lexicographically by ≥, e.g.,
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(1/2, 1/2, 1/2, 1/2) ≥ (0, 1/3, 1/3, 2/3) but not vice versa. The goal is to compute a star packing that

maximizes its objective vector. Intuitively, this balances the sizes of the stars in the star packing and

does not leave vertices needlessly on their own. Clearly, star packings maximizing the objective

are guaranteed to exist and in the remainder of the proof we argue that such star packings are in

the core.

Observe first that every graph (V , E) admits a star packing such that every vertex which is not

isolated (that is, which has a neighbor) is contained in some star Si for i ≥ 2. This can be seen

by considering a spanning forest. Thus, every star packing of (V , E) that maximizes the objective

vector must have this property.

Now, let π be a star packing of a graph (V , E) that maximizes the objective vector. For a contra-

diction, assume that there is a coalition S blocking π . Then, S contains no vertices that are isolated

in S , as these obtain utility 0 and, therefore, can not be strictly better off in S than they were in π .
In particular, S consists entirely of vertices that are either centers or leaves of π . Also observe that,

for any two leaves ℓ, ℓ′ in π we have {ℓ, ℓ′} < E. For a contradiction assume that there were such

leaves ℓ, ℓ′. Then, ℓ and ℓ′ must come from different centers, otherwise (V , E) would contain a

triangle. Now consider partition π ′ = {{ℓ, ℓ′}, π ′
1
. . . , π ′

k }, where π
′
i = πi \ {ℓ, ℓ

′}. Notice that π ′
is

a star packing for which the objective vector is larger than the one for π , that is, ®x(π ′) > ®x(π ). To
see this, observe that all leaves in π obtain at least as high a utility in π ′

as in π , that both ℓ and ℓ′

obtain a strictly higher utility in π ′
than in π , and that leaves appear before centers in the ordering

of the objective vectors.

Now three cases can be distinguished: (i) S contains no centers of π , (ii) S contains exactly one

center of π and (iii) S contains more than one center of π .
If (i), S only contains leaves of π , between which we know there are no edges. Hence, every

member of S has utility 0 and S cannot be blocking.

If (ii), we show that ®x(π ) is not a maximal objective vector. Let S consist of one center c and
m leaves ℓ1, . . . , ℓm of π . Since no leaves in π are neighbors, and S does not contain isolated vertices,

S must be a star with c as center and ℓ1, . . . , ℓm as leaves. Observe, moreover, that π (c) , π (ℓi ) for
every leaf ℓi of π in S . Let ℓ denote one of the leaves and c ′ the center of π such that ℓ ∈ π (c ′).
Then, c ′ , c . Consider the partition π ′

such that

π ′(k) =

{
π (c) ∪ {ℓ} if k ∈ π (c) ∪ {ℓ}, and

π (k) \ {ℓ} otherwise.

We claim that ®x(π ′) > ®x(π ), contradicting our initial assumption. Observe that it suffices to prove

that (a) vℓ(π
′) > vℓ(π ) and (b) vk (π

′) ≥ vℓ(π
′) for all k with vk (π

′) < vk (π ).

For (a), observe that, if vc (π ) < vc (S) and c is a center in both π and S , then |π (c) |−1
|π (c) | <

|S |−1
|S | .

Moreover, vℓ(π ) < vℓ(S), that is,
1

|π (ℓ) | <
1

|S | . Accordingly, |π (c)| < |S | < |π (ℓ)|. It follows that

|π ′(ℓ)| = |π (c) ∪ {ℓ}| ≤ S < |π (ℓ)| and thus vℓ(π
′) > vℓ(π ).

For (b), let k be such that vk (π
′) < vk (π ). Then either k = c ′ or k ∈ π (c) \ {c}. As c ′ is a center

and ℓ a leaf in π , c ′ still is a center in π ′
. Hence, vc ′(π

′) ≥ 1/2. Moreover, ℓ is also a leaf in π ′
and

thus vℓ(π
′) < 1/2, proving the case. Now assume that k ∈ π (c) \ {c}. Then, with k and ℓ being both

leaves in π ′(c), vk (π
′) = vℓ(π

′).

If (iii), assume that S contains at least two centers c and c ′ in π . Then, vc (S) > vc (π ) ≥ 1/2 and

vc ′(S) > vc ′(π ) ≥ 1/2. Then, both c and c ′ have more than half the members of S as neighbor. We

distinguish two cases. If c and c ′ are adjacent, then there must be at least one other k ∈ S that is

adjacent to both c and c ′. In that case, (V , E) contains a triangle. If, on the other hand, c and c ′ are not
adjacent, there must be at least two distinct vertices k and k ′

in S that both c and c ′ are adjacent to.
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c1

ℓ1 ℓ2

c2

ℓ4ℓ3 ℓ5

c3

ℓ7ℓ6 ℓ8

Fig. 8. A graph with girth five and a star packing indicated by the solid edges. This star packing does not
have an optimal objective vector: a better one would result if ℓ3 and ℓ8 were to form a star. Note that {ℓ3, ℓ8}
is a blocking coalition.

Then {c,k, c ′,k ′} forms a cycle of length 4. Either case contradicts our initial assumption that (V , E)
has girth at least 5, which concludes the proof. □

The procedure described in the proof above does not immediately yield a polynomial-time

algorithm that produces a core stable partition, since it is unclear whether a leximin star packing

can be found in polynomial time. However, inspecting the proof further, we see that we in fact only

need a local optimum.

Theorem A.3. For simple symmetric FHGs represented by graphs with girth at least 5, an element
of the core can be found in polynomial time.

Proof. The existence proof above showed that if a given star packing π is blocked by some

coalition, then there exists a leximin-better star packing π ′
that could be obtained from π in one of

the following two ways:

(a) two leaves ℓ, ℓ′ from different stars in π with {ℓ, ℓ′} ∈ E are removed from their respective

coalitions and form the new star {ℓ, ℓ′}, or
(b) a leaf ℓ is moved from one star to another.

Our algorithm now proceeds as follows: start by producing some star packing ofG in which every

non-isolated vertex is in a star (such a star packing can be found by considering a spanning forest

of G). Then improve this star packing by using operations (a) and (b) if they lead to a leximin

improvement, until no more such opportunities are available. The resulting star packing is in the

core by the argument in the existence proof above.

It remains to analyze the runtime of this algorithm. Clearly, the initial step and each improvement

step can be executed in polynomial time, so we only need to establish that the algorithm terminates

after a polynomial number of improvement steps.

Define the following potential function for each star packing π :

Φ(π ) =
∑

i ∈V center

|V | +
∑

i ∈V leaf

|V | − |π (i)|.

Note that this potential function is integral, non-negative, and bounded above by |V |2. We show

that every time we perform (a) or (b), the potential strictly increases. This implies that at most |V |2

improvement steps will be required.

If we perform (a), then we convert the two leaves ℓ and ℓ′ into centers and thereby strictly

increase their contribution to Φ. We also decrease the sizes of the stars that ℓ and ℓ′ were part of in
π , which increases the contributions to Φ of the remaining vertices in those stars. Everyone else’s

contribution stays fixed.
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If we perform (b), using the notation of the previous proof, we move ℓ from π (c ′) to π (c). Since
by case (ii)(a) of that proof we thereby increase the utility of ℓ, the leaf ℓ has moved from a large

star to a smaller star; in particular |π (c ′)| ≥ |π (c)| + 2. After the move of ℓ, the contributions to Φ of

the leaves of π (c ′) have each increased by 1, and the contributions of leaves of π (c) have decreased
by 1. Since there are more of the former than of the latter, this is an overall strict improvement. □

Bipartite graphs
Lemma 5.7. For simple symmetric FHGs represented by a bipartite graph, any perfect matching is

in the strict core.

Proof. Let {N1,N2} be the bipartition of N . In a perfect matching π , considered as a partition,

every player has utility 1/2. Suppose there was a coalition S ⊆ N that weakly blocks π . Then
vi (S) ≥ 1/2 for every i ∈ S , andvj (S) > 1/2 for some j ∈ S . Since S is weakly blocking, S must contain

some player i1 ∈ N1 and some player i2 ∈ N2. Since vi1 (S) ≥ 1/2, we get that |N2 ∩ S | ≥ |N1 ∩ S |.
Since vi2 (S) ≥ 1/2, we get that |N1 ∩ S | ≥ |N2 ∩ S |. Thus |N1 ∩ S | = |N2 ∩ S |. But this contradicts
that vj (S) > 1/2, and so S cannot exist. Hence π is in the strict core. □
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