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ABSTRACT
Coalition formation provides a versatile framework for ana-
lyzing cooperative behavior in multi-agent systems. In par-
ticular, hedonic coalition formation has gained considerable
attention in the literature. An interesting class of hedonic
games recently introduced by Aziz et al. [3] are fractional
hedonic games. In these games, the utility an agent assigns
to a coalition is his average valuation for the members of
his coalition. Three common notions of stability in hedo-
nic games are core stability, Nash stability, and individual
stability. For each of these notions we show that stable par-
titions may fail to exist in fractional hedonic games. For
core stable partitions this holds even when all players only
have symmetric zero/one valuations (“mutual friendship”).
We then leverage these counter-examples to show that de-
ciding the existence of stable partitions (and therefore also
computing stable partitions) is NP-hard for all considered
stability notions. Moreover, we show that checking whether
the valuation functions of a fractional hedonic game induce
strict preferences over coalitions is coNP-complete.

Categories and Subject Descriptors
[Theory of computation]: Algorithmic game theory;
[Theory of computation]: Solution concepts in game
theory; [Theory of computation]: Computational com-
plexity and cryptography; [Computing methodologies]:
Multi-agent systems; [Mathematics of computing]:
Graph theory

General Terms
Economics, Theory, and Algorithms

Keywords
Cooperative games; coalition formation; hedonic games;
computational complexity

1. INTRODUCTION
Hedonic games—as introduced by Drèze and Greenberg

[12] and further explored by many others [e.g., 4, 9, 6, 11, 13,
14, 7, 1, 2]—present a natural versatile framework to study
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the formal aspects of coalition formation. In hedonic games,
coalition formation is approached from a game-theoretic an-
gle. The outcomes are coalition structures—partitions of the
agents—over which the agents have preferences. Moreover,
the agents have different individual or joint strategies at
their disposal to affect the coalition structure to be formed.
Various solution concepts—such as the core, the strict core,
and several kinds of individual stability—have been proposed
to analyze these games.

The characteristic feature of hedonic games is a non-ex-
ternalities condition, which incorporates the useful but ar-
guably simplifying assumption that every agent’s prefer-
ences over the coalition structures are fully determined by
his preferences over coalitions he belongs to and do not de-
pend on how the remaining agents are grouped. Neverthe-
less, the number of coalitions an agent can be a member
of is exponential in the total number of agents and the de-
velopment and analysis of concise representations as well
as interesting subclasses of hedonic games are an ongoing
concern in computer science and game theory. Particularly
prominent in this respect are representations in which the
agents are assumed to entertain preferences over the other
agents, which are then systematically lifted to preferences
over coalitions [see e.g., 9, 1].

The work presented in this paper pertains to fractional he-
donic games (FHGs), a subclass of hedonic games in which
every agent is assumed to have cardinal utilities or valu-
ations for the other agents. These induce preferences over
coalitions by considering the average valuation for the mem-
bers of every coalition. The higher this valuation, the more
preferred the respective coalition is. In other work, the
min, max, and sum operators have been used for hedonic
games based on worst agents [9], hedonic games based on
best agents [8], and additively separable hedonic games, re-
spectively [see, e.g., 2].

FHGs can be represented by a weighted directed graph
where the weight of edge (i, j) denotes the valuation of
agent i for agent j. The formal study of FHGs was initi-
ated by Aziz et al. [3] who obtained results for core stability
in various subclasses of FHGs.

Some natural economic scenarios can be adequately mod-
eled as FHGs. Consider, for example, the formation of polit-
ical parties. The valuation of two agents for each other may
be interpreted as to which extent their opinions overlap, e.g.,
the inverse of their distance in the political spectrum. In po-
litical environments, agents need to form coalitions and join
parties to acquire influence. On the other hand, as parties
become larger, the disagreement among their members rises,



unrestricted symmetric simple symmetric

IS − (NP-c.) ? +
NS − (NP-c.) − (NP-c.) +
CS − (NP-h.) − (NP-h.) −

Table 1: Summary of results. “+” indicates that the
existence of stable partitions is guaranteed for the
respective class of games, “−” indicates that there
are FHGs in the respective class of games in which
no stable partition exists, and “NP-h.” and “NP-
c.” indicate NP-hardness and NP-completeness of
deciding whether a stable partition exists, respec-
tively. Aziz et al. [3] showed that core stable parti-
tions in unrestricted FHGs may not exist and Bilò
et al. [5] showed that Nash stable partitions in sim-
ple symmetric FHGs always exist.

making them susceptible to split-offs. Thus, one could as-
sume that agents seek to maximize the average agreement
with the members of their coalition.

In this paper, we study stable partitions in three hierarchi-
cal nested subclasses of FHGs: unrestricted FHGs (arbitrary
valuations), symmetric games (mutually equal valuations),
and simple symmetric games (zero/one valuations). Simple
games, as considered by Aziz et al. [3], can be conveniently
represented as directed graphs.

Our contribution is twofold. First we study for various
stability notions whether a stable partition always exists.
We consider core stability, Nash stability, and individual
stability. The latter two are based on movements of a single
agent, whereas core stability allows a group of agents to de-
viate. We provide a clear picture for which stability notions
a stable partition may fail to exist in the three subclasses of
FHGs introduced above.

In the second part of the paper we examine the compu-
tational complexity of deciding whether a stable partition
exists in a given FHG. Our results suggest a strong connec-
tion to the existence results obtained in the first part. More
precisely, we could show for several cases that when a stable
partition may fail to exist for some stability notion in some
class of FHGs, it is NP-hard to decide whether a given game
in this class admits a stable partition. This also implies
hardness of the important problem of computing a stable
partition and stands in sharp contrast to several subclasses
of FHGs considered by Aziz et al. [3], where existence of a
stable partition was always associated with an efficient algo-
rithm for computing it. We also show that checking whether
the valuation functions of an FHG induce strict preferences
over coalitions is coNP-complete. Our main findings are
summarized in Table 1.

2. RELATED WORK
FHGs were studied for the first time by Aziz et al. [3], who

focused on core stability. They show that some FHGs fail to
admit a core stable partition and that for various subclasses
of FHGs, e.g., games given by complete multipartite graphs
or games given by undirected trees, a core stable partition
always exists. Aziz et al. left open whether simple symmetric
FHGs always admit a core stable partition. We answer this
question in the negative. Bilò et al. [5] started to analyze

FHGs from the viewpoint of non-cooperative game theory.
They show that Nash stable partitions may not exist. Fur-
thermore, they give bounds on the price of anarchy and the
price of stability. For FHGs given by unweighted graphs the
grand coalition is always Nash stable, hence, they examine
whenever finer Nash stable partitions exist in these games.

Our work is connected to both papers. We advance the
results for core stability and Nash stability and initiate the
study of individual stability—a weakening of Nash stabil-
ity. In particular, we show that, even for very restricted
subclasses of FHGs, core stable and Nash stable partitions
may not exist. For games in these classes it turns out to be
NP-hard to decide whether a stable partition exists.

FHGs are related to additively separable hedonic
games [see e.g., 2]. In both, FHGs and additively separa-
ble hedonic games, every agent has a cardinal valuation for
every other agent. In additively separable hedonic games,
the valuation for a coalition is derived by adding the valua-
tions for all agents in the coalition. By contrast, in FHGs,
the valuation for a coalition is derived by adding the valu-
ations for all agents in the coalition and then dividing the
sum by the total number of agents in the coalition. Although
conceptually additively separable hedonic games and FHGs
are similar, their formal properties are quite different. For
example, in unweighted and undirected graphs, the grand
coalition is trivially core stable for additively separable he-
donic games, which is not the case for FHGs. An FHG
approach to social networks with only non-negative weights
may therefore help to detect like-minded and densely con-
nected communities. Aziz et al. [3] discuss the relationship
between FHGs and network clustering in more detail.

Stability in hedonic games gives rise to many computa-
tionally interesting problems, e.g., deciding the existence
of, verifying the stability of, and finding stable partitions.
These questions were extensively studied in the context of
core stability [see, e.g., 20, 22] and additively separable he-
donic games [see, e.g., 2, 21]. Aziz et al. [3] showed hardness
of two decision problems for core stability in FHGs.

Recently, Olsen [18] has examined a variant of simple
symmetric FHGs, i.e., games represented by an unweighted,
undirected graph, and investigated the computation and ex-
istence of Nash stable outcomes. In the games he considered,
however, every maximal matching is core stable and every
perfect matching is a best possible outcome even if there
are large cliques present in the graph. By contrast, in our
setting agents have an incentive to form large cliques.

FHGs are different from but related to another class of
hedonic games called social distance games introduced by
Branzei and Larson [7]. In social distance games, an agent
not only derives utility from agents he likes directly but also
from agents which are at smaller distances from him.

FHGs also exhibit some similarity with the segregation
and status-seeking models considered by Milchtaich and
Winter [17] and Lazarova and Dimitrov [16]. Group forma-
tion models based on types were first considered by Schelling
[19].

3. PRELIMINARIES
Let N be a set {1, . . . , n} of agents or players. A coalition

is a subset of the agents. For every agent i ∈ N , we let Ni
denote the set {S ⊆ N : i ∈ S} of coalitions i is a member
of. Every agent i is equipped with a reflexive, complete,
and transitive preference relation %i over the set Ni. We



use �i and ∼i to refer to the strict and indifferent parts of
%i, respectively. If %i is also anti-symmetric we say that i’s
preferences are strict. A coalition S ∈ Ni is acceptable for
an agent i if i weakly prefers S to being alone, i.e., S %i
{i} and unacceptable otherwise. A hedonic game is a pair
(N,%), where % = (%1, . . . ,%n) is a profile of preference
relations %i, modeling the preferences of the agents.

The valuation function of an agent i is a function vi : N →
R assigning a real value to every agent. A valuation func-
tion vi can be extended to a valuation function over coali-
tions where, for all S ∈ Ni,

vi(S) =

∑
j∈S vi(j)

|S| .

A hedonic game (N,%) is said to be a fractional hedonic
game (FHG) if, for every agent i in N , there is a valuation
function vi such that for all coalitions S, T ∈ Ni,

S %i T if and only if vi(S) ≥ vi(T ).

Hence, every FHG can be compactly represented by a tu-
ple of valuation functions v = (v1, . . . , vn). It can be shown
that every FHG can be induced by valuation functions with
vi(i) = 0 for all i ∈ N . Thus, we assume vi(i) = 0 through-
out the paper. We will frequently associate FHGs with
weighted digraphs G = (N,N × N, v) where the weight of
the edge (i, j) is vi(j), i.e., the valuation of agent i for agent
j.

Besides from unrestricted FHGs, two classes of FHGs will
be of particular interest to us.

• An FHG is symmetric if vi(j) = vj(i) for all i, j ∈ N .

• An FHG is simple if vi(j) ∈ {0, 1} for all i, j ∈ N .

We note that FHGs are not a subclass of additively sep-
arable hedonic games nor vice versa, i.e., there are FHGs
that are not additively separable and vice versa.

The outcomes of hedonic games are partitions of the
agents, or coalition structures. Given a partition π =
{π1, . . . , πm} of the agents, π(i) denotes the coalition in π of
which agent i is a member. We also write vi(π) for vi(π(i)),
which reflects the hedonic nature of the games we consider.
By the same token we obtain preferences over partitions
from preferences over coalitions. We refer to {N} as the
grand coalition.

Hedonic games are analyzed using solution concepts,
which formalize desirable or optimal ways in which the
agents can be partitioned (as based on the agents’ prefer-
ences over the coalitions). In this paper, we consider three
notions of stability.

• We say that a coalition S ⊆ N blocks a partition π,
if every agent i ∈ S strictly prefers S to his current
coalition π(i), i.e., if S �i π(i) for all i ∈ S. A partition
that is not blocked by any coalition is core stable (CS).

• A partition π is Nash stable (NS) if no agent can ben-
efit from joining another (possibly empty) coalition,
i.e., if π(i) %i S ∪ {i} for all S ∈ π ∪ {∅} and i ∈ N .

• A partition π is individually stable (IS) if no agent can
benefit from joining another (possibly empty) coalition
without making some member of the coalition he joins
worse off, i.e., if π(i) %i S ∪ {i} or S �j S ∪ {i} for
some j ∈ S for all S ∈ π ∪ {∅} and i ∈ N .

Note that no partition where one agent is placed in an unac-
ceptable coalition is core stable, Nash stable, or individually
stable, since this agent could benefit from forming his own
coalition, i.e., join the empty coalition.

By definition, every Nash stable partition is also individu-
ally stable. However, there is no logical relationship between
core stability and any of the remaining stability notions de-
fined above. In particular, there exist core stable partitions
which are not individually stable and Nash stable partitions
which are not core stable. Bogomolnaia and Jackson [6]
provided an example for the first statement and the second
statement can be deduced from Example 1.
Example 1. Consider the symmetric FHG given in Fig-
ure 1. Agents are represented by vertices and the valuations
function by weighted edges. The only core stable partition
is {{1, 4}, {2, 3}}. This partition is also individually stable
but not Nash stable, since agent 4 can benefit from join-
ing the coalition {2, 3}. On the other hand, the partition
{{1}, {2, 3, 4}} is Nash (and hence individually) stable, but
not core stable, since it is blocked by the coalition {2, 3}. If
this game where to be interpreted as an additively separable
hedonic game, the grand coalition would be core stable and
Nash stable.
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Figure 1: Example of a symmetric FHG.

4. EXISTENCE OF STABLE PARTITIONS
This section is divided into three subsections, each corre-

sponding to one of the classes of FHGs defined above. In
these sections we discuss the existence of core stable, Nash
stable, and individually stable partitions, respectively.

4.1 Unrestricted FHGs
Aziz et al. [3] and Bilò et al. [5] showed that core stable

partitions and Nash stable partitions may not exist in un-
restricted FHGs. Our first result is that individually stable
partitions also may not exist in unrestricted FHGs.

Theorem 1. In unrestricted FHGs, core stable, Nash
stable, or individually stable partitions may not exist.

Proof. The FHG given in Figure 2 was used by Aziz
et al. [3] to show that core stable partitions may not ex-
ist in unrestricted FHGs. Furthermore it does not admit a
Nash stable or individually stable partition. We show that
no individually stable partition exists. This directly implies
that no Nash stable partition exists. Note that no partition
containing a coalition with three or more agents is individ-
ually stable, since it is unacceptable for all its members.
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Figure 2: An FHG in which no core stable, Nash
stable, or individually stable partition exists. All
missing edges have weight −4.

Also, no partition in which two agents i and i + 1 are in a
singleton coalition is individually stable, since i would join
i + 1 and i + 1 would permit it (or vice versa). Hence, up
to symmetries, the partition π1 = {{1, 2}, {3, 4}, {5}} is the
only remaining candidate for an individually stable parti-
tion. But π1 is not individually stable, since agent 4 can
benefit from joining the singleton coalition {5} and agent 5
would permit it.

4.2 Symmetric FHGs
Symmetry captures the idea that agents mutually benefit

from each other to the same extent. Many economic sce-
narios that can be adequately modeled as FHGs naturally
exhibit symmetry. In our introductory example, the valua-
tion of two agents for each other is determined by their dis-
tance in the political spectrum. Since distance functions are
symmetric by definition, the associated FHG is symmetric,
too. We show that even in the context of symmetric FHGs,
both core stable partitions and Nash stable partitions may
not exist.

Theorem 2. In symmetric FHGs, core stable or Nash
stable partitions may not exist.

Proof. For both statements, we provide games in which
no stable partition exists. In the FHG depicted in Figure 3
no core stable partition exists. The proof is omitted, since
we prove a stronger statement in Theorem 3.

In the FHG depicted in Figure 4 no Nash stable partition
exists. First, note that no partition with agents 2 and 3 in
the same coalition is stable, since it is unacceptable for both
2 and 3. Furthermore, no partition in which agent 1 is in
a singleton coalition is stable, since he prefers every coali-
tion to being alone. Hence, up to symmetries, we only have
to consider π1 = {{1, 2}, {3, 4}}, π2 = {{1, 4}, {2}, {3}},
π3 = {{1, 2, 4}, {3}}, and π4 = {{1, 2}, {3}, {4}}. π1 is not
stable because agent 1 can benefit from joining {3, 4}, π2 is
not stable because agent 2 may join {1, 4}, π3 is not stable
because agent 4 may join {3}, and π4 is not stable because
agent 3 may join {4}.

This result is in contrast to the corresponding statement
for additively separable hedonic games. Bogomolnaia and

1

2

3

4

5

6

7

5

6

7

5

6

7

5

6

Figure 3: A symmetric FHG in which no core stable
partition exists. All missing edges have weight −24.
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Figure 4: A symmetric FHG in which no Nash stable
partition exists.

Jackson [6] proved that every symmetric additively separa-
ble hedonic game admits a core stable partition. It remains
open whether every symmetric FHG admits an individually
stable partition.

4.3 Simple FHGs
In many applications it is reasonable to assume that the

agents’ valuations only take the values zero and one. This
is, for example, the case in social networks or exchange
economies, if agents only distinguish between non-friends
and friends. These so-called simple games can be repre-
sented as unweighted directed graphs. There is an edge from
one agent to another if the former has valuation one for the
latter. Aziz et al. [3] considered bakers and millers games,
which form a subclass of simple games. These games cor-
respond to complete 2-partite graphs. More generally, they
show that for games that correspond to complete k-partite
graphs a core stable partition always exists. An open ques-
tion proposed by Aziz et al. [3] is whether every simple
symmetric FHG admits a core stable partition. We answer
this question in the negative by providing a counter-example
with 40 agents.1

1When only requiring non-negative and symmetric valua-
tions, there is a counter-example with only 15 agents.



Theorem 3. In simple symmetric FHGs, core stable par-
titions may not exist.

Proof. The FHG depicted in Figure 5 does not admit a
core stable partition. For two agents i, j ∈ N we say that i
is connected to j if i’s valuation for j is 1 (and vice versa).
Let π be a core stable partition. The first step is to show
that Al ⊆ S ∈ π and Cl ⊆ T ∈ π for all l ∈ {1, . . . , 5}. We
show both statements for l = 1. The rest follows from the
symmetry of the game.
A1 ⊆ S ∈ π: Assume for contradiction that this is not the

case. SinceA1∪C1 is a 6-clique, at least one agent i ∈ A1∪C1

has a valuations of at least 5/6 for his coalition (otherwise
A1 ∪ C1 is blocking). Assume i ∈ A1. If π(i) contains an
agent i is not connected to, then ui(π) ≤ 9/11 < 5/6 since i is
connected to at most 9 agents in any coalition. Hence π(i)
only contains agents i is connected to. But then A1 ∪π(i) is
blocking, since every agent in A1 is connected to the same
agents as i, a contradiction. Hence i ∈ C1. A1 ∩ π(i) =
∅ implies ui(π) ≤ 4/5. If π(i) contains an agent i is not
connected to, then ui(π) ≤ 7/9 < 5/6, since i is connected to
at most 7 agents in any coalition. Hence, π(i)∩A1 = S 6= ∅
and π(i) only contains agents i is connected to. Thus, C1 ⊆
π(i) (otherwise C1 ∪ π(i) is blocking).

At least one agent k1 in A1 ∪ B1 and at least one agent
k2 in A1 ∪B5 has a valuation of at least 4/5 for his coalition,
since both sets are 5-cliques. k1, k2 6∈ S, since uj(π) ≤ 4/6
for all j ∈ S. If k1 ∈ A1 \ S, then π(k1) only contains
agents k1 is connected to, otherwise uk1(π) ≤ 5/7 < 4/5.
Then π(k1) ∪ S is blocking. Hence k1 ∈ B1. Analogously it
follows that k2 ∈ B5. We show that π(k1) 6= π(k2). Assume
for contradiction that π(k1) = π(k2) = T . If S contains at
least two agents k1 is not connected to, we have uk1(T ) ≤
10/13 < 4/5 (since k1 is connected to at most 10 agents in any
coalition). Hence, T contains one agent k1 is not connected
to, namely k2. The analogous assertion holds for k2. Since
uk2(T ) ≥ 4/5, we have |T | ≥ 10. But then T contains at
least 2 agents k1 is not connected to, since there are only 3
agents that both k1 and k2 are connected to. This implies
that uk1 ≤ 10/13 < 4/5, a contradiction.

If B4 ⊆ π(i), it follows that uj(π) ≤ 4/7 < 2/3 for all
j ∈ S. If j ∈ A1 \ S is in a coalition with an agent j is not
connected to, uj(π) ≤ 3/5 < 2/3, since π(j) cannot contain
an agent from π(i) and from both π(k1) and π(k2) (since
π(k1) 6= π(k2)). Hence S ∪ π(j) is blocking.

If |π(i) ∩ B4| = 1 it follows that |S| = 2 and uj(π) = 4/6
for all j ∈ S. At least one agent k in A5∪B4 has a valuation
of at least 4/5 for his coalition. If k ∈ π(i) it follows that
uk(π) = 3/6 < 4/5, a contradiction. If k ∈ B4 \ π(i), then
π(k) only contains agents k is connected to. If A4 ⊆ π(k) or
A5 ⊆ π(k), then A4 ∪C4 A5 ∪C5 are blocking, respectively.
|π(k) ∩ A4| = 2 or |π(k) ∩ A5| = 2 is not possible since our
previous analysis for A1 and C1 also applies to A4 and C4,
and A5 and C5, respectively. But then, uk(π) ≤ 2/3 < 4/5.
Hence k ∈ A5. This implies that π(k) only contains agents
k is connected to. Hence A5 ⊆ π(k), otherwise A5 ∪ π(k) is
blocking. Also π(k) 6= A5 ∪ B5, because otherwise A5 ∪ C5

is blocking. Hence A5 ∩ π(k2) = ∅. Thus, π(k2) can only
contain agents k2 is connected to. This implies B5 ⊆ π(k2).
As uk2(π) ≥ 4/5, |π(k2) ∩ C2| ≥ 2. Thus, if π(k1) contains
some agent in A2, then A2 ∪C2 is blocking. If π(k2) = B5 ∪
C2, then A2 ∪ C2 is blocking and otherwise C2 is blocking.
This contradicts that π is stable.
C1 ⊆ T ∈ π: At least one agent i in B4 ∪ C1 has a

valuation of at least 4/5 for his coalition (otherwise B4 ∪ C1

is blocking). Assume i ∈ B4 and uj(π) < 4/5 for all j ∈ C1.
Then Al ⊆ π(i) for some l ∈ {4, 5}. But then Al ∪ Cl is
blocking. Hence the assumption is wrong and i ∈ C1. Note
that π(i) cannot contain an agent i is not connected to,
otherwise ui(π) ≤ 7/9 < 4/5, since i is connected to at most
7 agents in any coalition. But then C1 ⊆ π(i), otherwise
C1 ∪ π(i) is blocking.

It cannot be that π(i) ⊆ Al ∪ Bl or π(i) ⊆ Al ∪ Bl−1 for
i ∈ Al, since Al ∪ Cl is blocking for all l ∈ {1, . . . , 5}.

If A1∪C1∪S ∈ π with ∅ 6= S ⊆ B4, then ui(π) ≤ 5/7 < 4/5
for all i ∈ A1. Hence B1 ∪C3, B5 ∪C2 ∈ π, otherwise either
A1∪B1 or A1∪B5 are blocking (ui(A1∪B1) = ui(A1∪B5) =
4/5 for all i ∈ A1). But then ui(π) ≤ 4/5 for all i ∈ A2. Hence
A2 ∪ C2 is blocking, a contradiction. In any other partition
in which some i ∈ A1 is in a coalition with an agent he is
not connected to, we have ui(π) ≤ 9/11 < 5/6 for all i ∈ A1

and uj(π) ≤ 4/5 < 5/6 for all j ∈ C1. Hence A1 ∪ C1 is
blocking. Hence π(i) only contains agents i is connected to
for all i ∈ Al and l ∈ {1, . . . , 5}.

We have shown previously that at least one agent il ∈ Cl
has a valuation of at least 4/5 for his coalition for all l ∈
{1, . . . , 5}. Hence, π(il) cannot contain an agent il is not
connected to. Therefore, either π(il) = Al ∪ Cl or π(il) =
Bl−2 ∪ Cl for all l ∈ {1, . . . , 5}. If Al ∪ Cl ∈ π for all
j ∈ {1, . . . , 5}, then A1 ∪ B1 ∪ B5 is blocking. Hence we
can assume without loss of generality that A1 ∪ S ∈ π with
S ⊆ B1 ∪ B5. If |S| < 3, then A1 ∪ C1 is blocking. Hence
|S| ≥ 3. Without loss of generality, B5 ⊆ S. If follows that
B4 ∪ C1 ∈ π, since one agent in C1 has a valuation of at
least 4/5 for his coalition. This implies that A4 ∪ C4 ∈ π.
Furthermore A2 ∪ C2, A3 ∪ C3 ∈ π, otherwise B5 ∪ C2 or
B1 ∪ C3 are blocking. Then we get A5 ∪ C5 ∈ π. But then
A3 ∪ B2 ∪ B3 is blocking. Hence, π is not core stable, a
contradiction.

5. COMPUTATIONAL COMPLEXITY
We now focus on the computational complexity of various

decision problems associated with FHGs. Since the number
of coalitions an agent can be a member of is exponential in
the number of agents, we assume in this section that the
agents’ preferences are not given explicitly as rankings over
coalitions but implicitly by valuation functions. First, we
will show that, given the valuation functions, it is coNP-
complete to decide whether every agent has strict prefer-
ences over coalitions.

Loosely put, our second main result in this section shows
that whenever in some class of games a stable partition may
fail to exist for some stability notion, it is NP-hard to decide
whether a stable partition exists for a game in this class.
The proof is based on a generic construction which uses the
counter-examples from Section 4 as gadgets.

5.1 Strictness of Preferences
A problem of independent interest is to decide for given

valuation functions whether these induce strict preferences
over coalitions. Clearly, it is easy to verify that an agent
is indifferent between two coalitions. But since the number
of coalitions is exponential in the number of agents, it is
not clear how to efficiently verify that no agent is indifferent
between some pair of coalitions. We will show that it is
unlikely that an efficient algorithm for this problem exists.
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Figure 5: A simple symmetric FHG in which no core
stable partition exists. For all l ∈ {1, . . . , 5}, Al and Cl
denote cliques of 3 agents and Bl denotes a clique of 2
agents. An edge from one clique to another denotes
that every agent in the first clique is connected to
every agent in the second clique. All depicted edges
have weight 1. All missing edges have weight 0.

Theorem 4. It is coNP-complete to decide whether a
given profile of valuation functions induces strict preferences
over coalitions.

Proof. We show that it is NP-complete to decide
whether, for an agent i ∈ N , there are two coalitions
S, T ∈ Ni such that S ∼i T . This implies the statement.
First, note that this problem is clearly in NP, since, given
two sets in Ni, it can be checked in linear time whether i has
the same valuation for both. To prove hardness, we provide
a reduction from an instance M = {m0, . . . ,mk} ⊆ Nk+1 of
equal sum of subsets of equal cardinality (ESS). The answer
to ESS is“Yes” if there are two distinct sets S, T ⊆ {1, . . . , k}
such that |S| = |T | and

∑
i∈Smi =

∑
i∈T mi and “No”

otherwise. Cieliebak et al. [10] showed that ESS is NP-
complete. Without loss of generality we assume m0 = 0.
Let m+ = maxs∈{1,...,k}ms,m− = mins∈{1,...,k}ms, and

C = (k2 + 2k)(m+−m−) + 1. We define G = (N,N ×N, v)
where N = {0, . . . , k} and v({i, j}) = C + mi+j (mod k+1)

for all distinct i, j ∈ {0, . . . , k}.
Without loss of generality, we consider agent 0, who has

valuation C + mi for all i ∈ {1, . . . , k}. Suppose there are
two nonempty, distinct sets S, T ⊆ M such that |S| = |T |,
0 ∈ S ∩ T , and

∑
i∈Smi =

∑
i∈T mi. Then, we have

v0(S) =

∑
i∈S(C +mi)

|S|+ 1
=
|S|C +

∑
i∈Smi

|S|+ 1

=
|T |C +

∑
i∈T mi

|T |+ 1
=

∑
i∈T (C +mi)

|T |+ 1
= v0(T ).

Hence, we have S ∼0 T .

For the other direction, we first state (without proof) that,
for all l ∈ {2, . . . , n},

l − 1

l
(C +m−) >

l − 2

l − 1
(C +m+). (1)

Now suppose there exist two distinct coalitions S, T ∈ N0

such that S ∼0 T . Assume that |S| > |T |. Then,

v0(S) =

∑
i∈S(C +mi)

|S| ≥ (|S| − 1)(C +m−)

|S|

>
(|S| − 2)(C +m+)

|S| − 1
≥ (|T | − 1)(C +m+)

|T |

≥
∑
i∈T (C +mi)

|T | = v0(T ).

The strict inequality follows from (1). This implies S �0 T ,
contradiction our assumption, and hence |S| = |T |. Thus,
S ∼0 T if and only if |S| = |T | and

∑
i∈Smi =

∑
i∈T mi.

5.2 Existence of Stable Partitions
In the initial work on FHGs, Aziz et al. [3] showed hard-

ness of deciding whether a given partition is core stable.
For Nash stability and individual stability, this problem can
easily be solved in polynomial time. In this section, we dis-
cuss problems of a similar spirit. We consider the problem
of deciding whether a given FHG admits a stable partition
for core stability, Nash stability, and individual stability. It
turns out that this problem is hard whenever it is not trivial.
This also implies that finding stable partitions is intractable.

First, we define the corresponding decision problems.

Definition 1. For a stability notion E ∈ {CS ,NS , IS},
the decision problem (SYMM)FHG-E is given by a (symmet-
ric) FHG (N,%). The answer to (SYMM)FHG-E is “Yes” if
there is an E-stable partition in (N,%) and “No” otherwise.

Sung and Dimitrov [20] proved that it is NP-hard to decide
whether a given additively separable hedonic game admits a
core stable, Nash stable, or individually stable partition. To
this end, they provided a polynomial time reduction from
the NP-complete problem exact cover by 3-sets (E3C) [cf.
15]. The construction can be adapted to obtain hardness
results for FHGs. We explain the adaption to SYMMFHG-
NS and FHG-IS.

An instance of E3C is a pair (R, S) where R is a set such
that |R| = 3m for some positive integer m and S is a col-
lection of subsets of R such that |s| = 3 for every s ∈ S.
The answer to E3C is “Yes” if there is a subset of S which
partitions R, i.e., there is S′ ⊆ S such that

⋃
s∈S′ s = R and

s∩s′ = ∅ for all distinct s, s′ ∈ S′. E3C remains NP-complete
even if every r ∈ R occurs in at most three elements of S

[cf. 15]. Furthermore we can assume without loss of gener-
ality that every r ∈ R occurs in at least one element of S,
otherwise the answer to the question is trivially “No”.

Now, we construct for a given instance (R, S) of E3C a
weighted graph representing an FHG that admits a sta-
ble partition if and only the answer to E3C is “Yes”. We
start by constructing a subgraph Gs for every s ∈ S.
For every s = {u, v, w}, Gs = (Ns, Ns × Ns, vs) where
Ns = {τs, σsu, σsv, σsw} and vs(i, j) = 1 for all i, j ∈ Ns.
Figure 6 illustrates such a subgraph.

Every subset S′ ⊆ S can be identified with the set of graphs
{Gs}s∈S′ . Next we compute, for every r ∈ R, the number



τs

σsu

σsv

σsw

Figure 6: The subgraph corresponding to s =
{u, v, w} ∈ S. All edges have weight 1.

lr = |{s ∈ S : r ∈ S}|−1, i.e., the number of 3 sets containing
r after removing an R-partitioning subset S′ form S. Since
we assumed that every r ∈ R is contained in at least one
s ∈ S, we have lr ≥ 0 for every r ∈ R. For every r ∈ R we
add lr graphs Gr,k, k ∈ {1, . . . , lr}. The exact structure of
the Gr,k’s depends on the actual proof, but in general they
have to fulfill the following conditions.

• The FHG induced by Gr,k does not admit a stable
partition

• The set of vertices of Gr,k contains a vertex αkr such
that the FHG induced by Gr,k admits a stable parti-
tion when αkr is removed from the game.

The last step is to connect every σsr to every αkr by an edge of
weight 1 (and vice versa) for every r ∈ R . All vertices which
are not connected by an edge of weight one are connected
by an edge of weight −M , where M is larger than the sum
of the weights of adjacent edges with positive weight for
every vertex. Notice that M does not depend on the given
instance of E3C. For our purposes, M = 20 suffices. The
whole graph now induces an FHG. Notice that this game is
symmetric if all Gr,k’s are symmetric. Figure 7 illustrates
the construction for a small instance of E3C. The Gr,k’s are
obtained from the graph depicted in Figure 2, which is an
example of an FHG that does not admit an individually
stable partition.

The main idea behind the whole construction is the follow-
ing. For every r ∈ R, lr of the σsr ’s are needed to “stabilize”
the Gr,k’s. On the other hand, the Gs’s admit a stable par-
tition only if the whole subgraph forms a coalition or if the
σsr ’s are in a coalition with a corresponding αkr . In a stable
partition, for every r ∈ R, exactly one σsr is not in a coalition
with some αkr , but instead in a coalition consisting of every
vertex in Gs. All these Gs’s together can be identified with
a subset S′ ⊆ S which is a partition of R. A stable partition
exists if and only if such an S′ exists.

Our findings on the computational complexity of check-
ing whether a stable partition exists are summarized in the
following theorem.

Theorem 5. The following hardness results hold:

(i) SYMMFHG-CS is NP-hard,

(ii) SYMMFHG-NS is NP-complete, and

(iii) FHG-IS is NP-complete.
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Figure 7: The graph belonging to the reduction of an
instance (R, S) of E3C, where R = {1, 2, 3, 4, 5, 6} and
S = {{1, 2, 3}, {3, 4, 5}, {4, 5, 6}}. All unlabeled edges
have weight one. All edges that are not depicted
have weight −20.

Proof. Due to space constraints we only give a proof for
(iii) here. First note that it is easy to verify if a partition
is individually stable. For every agent, one can check in
polynomial time if he can deviate without making an agent
in his new coalition worse off. So FHG-IS is in NP.

Now we will go through the reduction described above.
Let (R, S) be an instance of E3C. An instance of FHG-IS is
constructed as follows. Let N = {σsr : s ∈ S, r ∈ s}∪{τs : s ∈
S}∪{αkr , βkr , γkr , δkr , εkr : r ∈ R, 1 ≤ k ≤ lr}. The σsr ’s and τs’s
form the Gs’s and the αkr ’s to εkr ’s the Gr,k’s, respectively.
The agents valuation functions are defined as follows.

(i) For all s ∈ S, r ∈ s : vσs
r
(τs) = vτs(σsr) = 1

(ii) For all s ∈ S, r, r′ ∈ s, r 6= r′ : vσs
r
(σsr′) = vσs

r′
(σsr) = 1

(iii) For all r ∈ R, s ∈ S, r ∈ s, k ∈ {1, . . . , lr} : vσs
r
(αkr ) =

vαk
r
(σsr) = 1



(iv) For all r ∈ R, k ∈ {1, . . . , lr} : vakr (βkr ) = vβk
r

(γkr ) =

vγkr (δkr ) = vδkr (εkr ) = vεkr (αkr ) = 1 and vakr (εkr ) =

vεkr (δkr ) = vδkr (γkr ) = vγkr (βkr ) = vβk
r

(αkr ) = 2.

(v) For all remaining pairs (i, j) we define vi(j) = −20.

The number of agents is 3|S| + |S| + 5(3|S| − |R|) and all
valuation functions are bounded by a constant, so this con-
struction can be computed in polynomial time.

First suppose there exists a subset S′ ⊆ S which is a par-
tition of R. For every r ∈ R, let {s1r, s2r, . . . , slrr } = {s ∈
S \ S′ : r ∈ s} be an enumeration of the sets outside of S′

containing r. Now consider the following partition.

π = {{τs} ∪ {σsr : r ∈ s} : s ∈ S
′} ∪ {{τs} : s ∈ S \ S′}

∪ {{σs
k
r
r , α

k
r}, {βkr , γkr }{δkr , εkr} : r ∈ R, k ∈ {1, . . . , lr}}

We claim that π is individually stable.

• Consider an agent i ∈ {σsr : r ∈ R, s ∈ S}.

– If Sπ(i) = {τs} ∪ {σsr : r ∈ s} then vi(π(i)) = 3/4
and for all Sk ∈ π \ {π(i)} we have vi(Sk ∪{i}) <
3/4, and

– if Sπ(i) = {σs
k
r
r , α

k
r} then vi(π(i)) = 1/2 and for

all Sk ∈ π \ {π(i)} we have vi(Sk ∪ {i}) ≤ 1/2.

So i has no incentive to deviate.

• Consider an agent i ∈ {τs : s ∈ S}. Then vi(π(i)) ≥ 0
and for all Sk ∈ π \ {π(i)} we have vi(Sk ∪ {i}) < 0.
So i has no incentive to deviate.

• Consider an agent i ∈ {αkr , βkr , γkr , δkr , εkr : r ∈ R, k ∈
{1, . . . , lr}}. We have vi(π(i)) > 0 and for all Sk ∈
π\{π(i)} we have vi(Sk∪{i}) < 0. So i has no incentive
to deviate.

Hence, π is Nash stable and thus individually stable.
For the other direction, suppose there exists an individu-

ally stable partition π. For every r ∈ R and k ∈ {1, . . . , lr},
Gr,k is isomorphic to the graph depicted in Figure 2. So
in the FHG we constructed from the E3C instance, a par-
tition can only be stable, if, for every r ∈ R and every
k ∈ {1, . . . , lr}, there exists an agent i ∈ {αkr , βkr , γkr , δkr , εkr}
such that π(i) 6⊆ {αkr , βkr , γkr , δkr , εkr}. By (ii) and (iii) in the
definition of the valuation functions, the only candidate for
this is αkr . From this we directly get

{{βkr , γkr }{δkr , εkr} : r ∈ R, k ∈ {1, . . . , lr}} ⊆ π

and

π(αkr ) ⊆ {αkr} ∪ {σsr : s ∈ S} for all r ∈ R, k ∈ {1, . . . , lr}.

Suppose |π(αkr )| > 2, then there exist distinct s, s′ ∈ S such

that {σsr , σs
′
r } ⊆ π(αkr ). But then π cannot be individually

stable since σsr would rather be alone than a member of
π(αkr ). Hence, for every r ∈ R and k ∈ {1, . . . lr}, there is
an agent σsr such that π(αkr ) = {αkr , σsr}.

By (v) in the definition of the valuation functions, we get
π(τs) ⊆ {τs} ∪ {σsr : r ∈ s}. We can conclude π(τs) = {τs}
or π(τs) = {τs} ∪ {σsr : r ∈ s}, because otherwise there
exists r ∈ R such that vσs

r
(π(σsr)) ≤ 1/2 < 2/3 ≤ vσs

r
(π(τs) ∪

{σsr}) and vi(π(τs) ∪ {σsr}) > vi(π(τs)) for every i ∈ π(τs).
Furthermore, we have, for every i ∈ {σsr : s ∈ S, r ∈ s}, that

π(i) 6= {i}, otherwise vi(π(i)) = 0 < 1/2 ≤ vi(π(τs) ∪ {i})
and vj({τs, i}) > vj({τs}) for all j ∈ π(τs).

Exactly lr agents in {σsr : s ∈ S} form a coalition with
some αkr for every r ∈ R. It follows that, for every r ∈ R,
there is exactly one s ∈ S such that π(σsr) = {τs}∪{σsr′ : r′ ∈
s}. Hence, S′ = {s ∈ S : π(τs) = {τs} ∪ {σsr : r ∈ s}} is a
partition of R.

The construction above does not work for core stability
since the partition given by a solution to the correspond-
ing instance of E3C would be blocked by the subgraphs Gs.
However, Sung and Dimitrov [20] provided a slightly dif-
ferent construction for core stability in additively separable
hedonic games which can be adapted to symmetric FHGs.
The FHG depicted in Figure 3 serves as gadget for this con-
struction.

If there exists a symmetric FHG that does not admit an in-
dividually stable partition, the construction from Theorem 5
can be used to prove NP-completeness of SYMMFHG-IS.
Every smallest symmetric FHG that does not admit an in-
dividually stable partition could serve as a gadget. If, on the
other hand, no such game exists, the answer to SYMMFHG-
IND is trivially “Yes” for every game.

6. CONCLUSIONS
We studied core stability and stability notions based on

deviations of a single agent, i.e., Nash stability and indi-
vidual stability. For these stability notions we examined
whether a stable partition may fail to exist for three classes
of FHGs. In particular, we showed that core stable parti-
tions may not exist in simple symmetric FHGs. This answers
a question proposed by Aziz et al. [3].

In the second part of the paper, we leveraged the non-
existence examples to show that deciding the existence (and
thus also finding) stable partitions for the corresponding no-
tion of stability and class of FHGs is NP-hard. By contrast,
Aziz et al. [3] proposed a number of classes of FHGs in
which stable partitions are guaranteed to exist by providing
polynomial-time algorithms for computing such partitions.
These results suggest a strong connection between the exis-
tence of stable partitions and the hardness of finding stable
partitions. It is an interesting problem whether this connec-
tion can be made more precise and extended to more general
classes of hedonic games.

Since our results show that for large classes of FHGs the
existence of a stable partition cannot be guaranteed, it would
be desirable to find more natural classes for which the ex-
istence of stable partitions is guaranteed. In particular,
the existence of individually stable partitions in symmetric
FHGs remains an open problem.
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