Casting the lot puts an end to disputes and decides between powerful contenders.

— Solomon, Proverbs 18:18

Fishburn's Maximal Lotteries

Felix Brandt

Workshop on Decision Making and Contest Theory Ein Gedi, January 2017

Probabilistic Social Choice

- Voters have complete and transitive preference relations ≽_i over a finite set of alternatives A.
- ▶ A social decision scheme f maps a preference profile $(\ge_1, ..., \ge_n)$ to a lottery $\Delta(A)$.
 - randomization or other means of tie-breaking are inevitable when insisting on anonymity and neutrality.
 - first studied by Zeckhauser (1969), Fishburn (1972),
 Intriligator (1973), Nitzan (1975), and Gibbard (1977)

Felix Brand

Maximal Lotteries

Peter C. Fishburn

- Kreweras (1965) and Fishburn (1984)
 - rediscovered by Laffond et al. (1993), Felsenthal and Machover (1992), Fisher and Ryan (1995), Rivest and Shen (2010)
- Let $(M_{X,y})$ be the majority margin matrix, i.e., $M_{X,y} = |\{i : x \ge_i y\}| |\{i : y \ge_i x\}|.$
- ▶ M admits a (weak) Condorcet winner if M contains a nonnegative row, i.e., there is a standard unit vector v such that $v^T M \ge 0$.

Maximal Lotteries

Peter C. Fishburn

- ▶ A lottery p is maximal if $p^T M \ge 0$.
 - randomized Condorcet winner
 - p is "at least as good" as any other lottery
 - bilinear expected majority margin $p^TM q \ge 0$ for all $q \in \Delta(A)$

$$\begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}^{T} \quad \begin{array}{cccc} a & b & c \\ 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \ge 0$$

Maximal Lotteries

Peter C. Fishburn

- always exist due to Minimax Theorem (v. Neumann, 1928)
- almost always unique
 - set of profiles with multiple maximal lotteries has measure zero
 - always unique for odd number of voters with strict preferences (Laffond et al., 1997)
- do not require asymmetry, completeness, or even transitivity of individual preferences
- can be efficiently computed via linear programming
- known as popular mixed matchings in assignment (aka house allocation) domain (Kavitha et al., 2011)

Examples

Two alternatives

- M can be interpreted as a symmetric zero-sum game.
 - Maximal lotteries are mixed minimax strategies.

The unique maximal lottery is $\frac{3}{5}a + \frac{1}{5}b + \frac{1}{5}c$.

	Maximal Lotteries	Random Serial Dictatorship	Borda's Rule
population-consistency			
agenda-consistency			
cloning-consistency			
Condorcet-consistency			
(SD-) strategyproofness			
(ST-) group-strategyproofness			
(SD-) participation			
(SD-) efficiency			
efficient computability			
randomness			

	Maximal Lotteries	Random Serial Dictatorship	Borda's Rule
population-consistency		only for strict prefs	
agenda-consistency			_
cloning-consistency	even composition-consistency		
Condorcet-consistency			_
(SD-) strategyproofness		even strongly	
(ST-) group-strategyproofness			_
(SD-) participation	even PC-group-participation	even very strongly	
(SD-) efficiency		only for strict prefs otherwise only <i>ex post</i>	
efficient computability		#P-complete in P for strict prefs	
randomness	some	a lot	very little

Population-Consistency W

Whenever two disjoint electorates agree on a lottery, this lottery should also be chosen by the union of both electorates.

1 1	<u>1 1</u>	1	1	2
a b	a b	а	а	b
b c	C	b	С	С
c a	b a	C	b	а
R	S	R	? U	S
$\frac{1}{2}a + \frac{1}{2}b$	$\frac{1}{2}a + \frac{1}{2}b$	1/2 8	a + 1	½ b

- first proposed by Smith (1973), Young (1974), Fine & Fine (1974)
- also known as "reinforcement" (Moulin, 1988)
- famously used for the characterization of scoring rules and Kemeny

Composition-Consistency W

Composition-Consistency

Decomposable preference profiles are treated component-wise.

In particular, alternatives are not affected by the cloning of other alternatives

2	1	3
а	а	b
b'	b	b'
b	b'	а

$$A=\{a,b\}$$

 $B=\{b,b'\}$

Felix Brand

$$R|_A$$

$$R|_{B}$$

$$\frac{1}{2}a + \frac{1}{3}b + \frac{1}{6}b'$$

$$\frac{1}{2}a + \frac{1}{2}b$$

$$\frac{2}{3}b + \frac{1}{3}b'$$

- Laffond, Laslier, and Le Breton (1996)
- cloning consistency precursors: Arrow and Hurwicz (1972),
 Maskin (1979), Moulin (1986), Tideman (1987)

Non-Probabilistic Social Choice

Marquis de Condorcet

- ► All scoring rules satisfy population-consistency. (Smith 1973; Young, 1974)
- ► No Condorcet extension satisfies population-consistency. (Young and Levenglick, 1978)
- Many Condorcet extensions satisfy compositionconsistency. (Laffond et al., 1996)
- No Pareto-optimal scoring rule satisfies compositionconsistency. (Laslier, 1996)
- Population-consistency and composition-consistency are incompatible in non-probabilistic social choice. (Brandl et al., 2016)
- A probabilistic SCF satisfies population-consistency and composition-consistency iff it returns all maximal lotteries.

 (Brandl et al., 2016)

Agenda Consistency V

 $A=\{a,b,c\}$

 $B=\{a,b,d\}$

A lottery should be chosen from two agendas iff it is also chosen in the union of both agendas.

1 1	<u>1 1</u>	1 1
a b	a b	a b
d c	b c	d d
b d	c a	b a
c a		
R	$R _{\mathcal{A}}$	$R _B$
$\frac{1}{2}a + \frac{1}{2}b$	$\frac{1}{2}a + \frac{1}{2}b$	$\frac{1}{2}a + \frac{1}{2}b$

- Sen (1971)'s α (contraction) and γ (expansion)
- at the heart of numerous impossibilities (e.g., Blair et al., 1976; Sen, 1977; Kelly, 1978; Schwartz, 1986)

SD-Participation **W**

No agent can obtain more expected utility (for all vNM representations) by abstaining from an election.

	1	1	2	1		
	а	а	b	С		
	C	b	C	а		
	b	С	а	b		
R						
1	1/3 a + 1/3 b + 1/3 c					

- cannot be satisfied by *resolute* Condorcet extensions (Moulin, 1988)
- satisfied by maximal lotteries

SD-Efficiency W

The expected utility of a voter can only be increased by decreasing the expected utility of another.

- maximal lotteries are SD-efficient
- violated by random serial dictatorship: there can even be lotteries that give strictly more expected utility to all voters!
- maximal lotteries are social-welfare-maximizing lotteries for canonical skew-symmetric bilinear (SSB) utility functions

SD-Strategyproofness

No agent can obtain more expected utility (for all vNM representations) by misreporting his preferences.

1	1	2	1	
а	а	b	С	
С	b	C	а	
b	С	а	b	
R				

$$p = \frac{1}{3}a + \frac{1}{3}b + \frac{1}{3}c$$

$$q = \frac{3}{5}a + \frac{1}{5}b + \frac{1}{5}c$$

- maximal lotteries are not strategyproof with respect to stochastic dominance
 - ightharpoonup q will always yield more expected utility than p

SD-Strategyproofness (ctd.)

- ▶ Maximal lotteries are SD-strategyproof in all profiles that admit a Condorcet winner (Peyre, 2013) <a>Image: Description of the condorcet winner (Peyre, 2013) <a>Image: Description
- - loosely based on Savage's sure-thing principle
 - ignore alternatives that receive the same probability in p and q
 - all remaining alternatives in the support of q should be preferred to all remaining alternatives in the support of p.
- Almost all randomized versions of classic rules fail to satisfy even this weak notion of strategyproofness
 - e.g., Borda, Copeland, STV, Kemeny, Dodgson

References

pnyx.dss.in.tum.de

- Aziz, Brandl, and B. *Universal dominance and welfare for plausible utility functions*. **Journal of Mathematical Economics**, 60:123-133, 2015.
- Aziz, B., and Brill. The computational complexity of random serial dictatorship. Economics Letters, 121(3):341-345, 2013.
- Aziz, B., and Brill. On the tradeoff between efficiency and strategyproofness.
 2016. Working paper.
- Brandl, B., and Hofbauer. Welfare maximization entices participation. 2016. Working paper.
- Brandl, B., and Suksompong. The impossibility of extending random dictatorship to weak preferences. Economics Letters, 141:44-47, 2016.
- Brandl, B., and Seedig. Consistent probabilistic social choice.
 Econometrica, 84(5):1839-1880, 2016.
- Fishburn. *Probabilistic social choice based on simple voting comparisons.* **Review of Economic Studies**, 51(4):683-692, 1984.

