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We consider a notion of rationalizability, where the rationalizing relation
may depend on the set of feasible alternatives. More precisely, we say that
a choice function is locally rationalizable if it is rationalized by a family of
rationalizing relations such that a strict preference between two alternatives
in some feasible set is preserved when removing other alternatives. It is
known that a choice function is locally rationalizable if and only if it satisfies
Sen’s γ. We expand the theory of local rationalizability by proposing a natural
strengthening of γ that precisely characterizes local rationalizability via PIP-
transitive relations. Local rationalizability permits a unified perspective on
social choice functions that satisfy γ, including classic ones such as the top
cycle and the uncovered set as well as new ones such as two-stage majoritarian
choice and split cycle. We give simple axiomatic characterizations of some
of these using local rationalizability and propose systematic procedures to
define social choice functions that satisfy γ.
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1. Introduction

Rational choice theory studies functions that associate each feasible set of alternatives
with a nonempty subset of chosen alternatives. Typically, the choices of rational agents
are supposed to be rationalizable in the sense that there exists an underlying binary
preference relation on the set of all alternatives such that the choice from any feasible
subset consists precisely of the elements that are maximal according to this relation.
When the number of feasible alternatives is finite, a relation can rationalize a choice
function if and only if its strict part is acyclic. Stronger notions of rationalizability can
be obtained by furthermore requiring the rationalizing relation to be quasi-transitive or
transitive.

As Arrow (1951) and others have famously demonstrated, these notions of rationalizable
choice can hardly be sustained in the context of social choice. There are several impos-
sibility results showing that even the weakest form of rationalizability is incompatible
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with mild conditions that are considered indispensable for collective decision-making
(for an overview of the extensive literature, see Kelly, 1978; Sen, 1977, 1986; Schwartz,
1986; Campbell and Kelly, 2002). Sen (1971) has characterized rationalizable choice
functions using two consistency conditions that relate choices from varying feasible sets
to each other, namely conditions α and γ (aka contraction and expansion consistency). α
demands that every chosen alternative remains chosen in every feasible subset in which
it is contained, and γ requires that every alternative that is chosen from two feasible
sets will also be chosen from the union of both sets. While α has been identified as the
main culprit of the impossibility results in social choice (Sen, 1977, 1986), γ and even
strengthenings of γ such as β and β+ appear to be much less harmful. As a matter of
fact, two majoritarian social choice functions—the top cycle and the uncovered set—are
known to satisfy β+ and γ, respectively.

The goal of this paper is to improve our understanding of choice functions that satisfy γ
and its stronger siblings. For one, this opens an avenue for escaping from the notorious
Arrovian impossibilities. Secondly, γ and related consistency conditions are natural and
appealing in their own right. Only few social choice functions are known to satisfy γ.
Among them are variants of the top cycle and the uncovered set (see, e.g., Bordes, 1983),
and two recently proposed functions called split cycle (Holliday and Pacuit, 2023) and
two-stage majoritarian choice (Horan and Sprumont, 2022). Our results illuminate the
similarities of these functions and enable the definition of new functions that satisfy γ.

The key to get a grip on choice functions that satisfy γ is a weakened notion of
rationalizability, where the rationalizing relation may vary depending on the feasible
set. Clearly, without further restrictions, any choice function C would be rationalizable
in this relaxed setting by letting the rationalizing relation RA for feasible set A be the
relation in which each element of C(A) is strictly preferred to each element of A \ C(A).
We therefore impose the following natural restriction on families of rationalizing relations:
for two feasible sets A,B with B ⊆ A and two alternatives x, y ∈ B with x PA y, we
demand that x PB y. In other words, a strict preference between two alternatives is
preserved when reducing the feasible set. Since rationalizing relations are complete, this
is equivalent to demanding that x RB y implies x RA y. We then say that a choice
function C is locally rationalizable if there is a family of acyclic and complete relations
(RA)A that rationalize C in this sense.

A number of authors have independently established illuminating connections between
local rationalizability and choice consistency conditions (Aizerman, 1985; Duggan, 1997;
Tyson, 2008; Duggan, 2019).

• A choice function satisfies γ if and only if it is locally rationalizable (Proposition 1).

• A choice function satisfies γ and ε+ if and only if it is locally rationalized by a
family of quasi-transitive relations (Proposition 2).

• A choice function satisfies β+ if and only if it is locally rationalized by a family of
transitive relations (Proposition 3).

As corollaries of these results, one obtains classic characterizations of rationalizability,
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quasi-transitive rationalizability, and transitive rationalizability by Sen (1971), Schwartz
(1976), and Arrow (1959).

We extend these results by giving a characterization of choice functions that are locally
rationalizable via PIP-transitive relations, an intermediate transitivity notion proposed
by Schwartz (1976) that lies in between quasi-transitivity and full transitivity. Such
functions are characterized by γ+, a new natural strengthening of γ, which requires that
for all feasible sets A,B, C(A) ⊆ C(A ∪B) or C(B) ⊆ C(A ∪B).

All of the above results make reference to families of local revealed preference relations
that are sandwiched in between the base relation and the revealed preference relation of
the choice function at hand. The γ-hull of a given choice function C is defined as the
unique finest coarsening of C that satisfies γ. As shown by Tyson (2013), the γ-hull of C
is locally rationalized by the family of local revealed preference relations of C.

In this paper, we give a comprehensive overview of the known social choice functions
that satisfy γ by specifying their families of locally rationalizing relations. This perspective
allows us to illuminate why these functions satisfy γ and to axiomatically characterize
them using local rationalizability. For example, we give a simple characterization of the
top cycle based on an observation by Bordes (1976): the top cycle is the finest social choice
function satisfying transitive local rationalizability. We also give a new characterization
of Gillies’ uncovered set as the finest social choice function satisfying quasi-transitive local
rationalizability and a condition we call weak idempotency (C(C(A)) = C(A) whenever
|C(A)| = 2). By introducing further technical axioms, we obtain characterizations of
other variants of the uncovered set due to Bordes, McKelvey, and Duggan. We also
leverage local rationalizability to characterize the split cycle rule.

The lens of local rationalizability enables a unified perspective on social choice functions
that satisfy γ. The idea is to view weak majority rule as a directed graph on the set of
alternatives, break majority cycles in the feasible set by removing edges of this graph, and
then return the maximal elements of the feasible set according to the resulting acyclic
graph. Different rules specifying which strict edges ought to be removed lead to different
social choice functions.

• Top cycle: Remove all edges that lie on cycles.

• Untrapped set : Remove all edges that lie on strict cycles.

• Uncovered set : Remove edges that lie on three-cycles.1

• Split cycle: Remove all edges with minimal majority margins from each cycle.

• Two-stage majoritarian choice: Fix a strict order over all alternatives. In each
cycle, remove the edge departing from the maximal alternative w.r.t. the order.

1Which edges are to be deleted from each three-cycle depends on which variant of the uncovered set is
considered. For example, for Duggan’s deep uncovered set, all strict edges are deleted, whereas for
McKelvey’s uncovered set, only strict edges that lie on three-cycles in which at least two edges are
strict are deleted. In the absence of majority ties, all variants coincide.
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Continuing this train of thought, we propose another general method for constructing
social choice functions that satisfy γ. For any choice function C, we define a new
choice function, the γ-core of C, which, in each cycle, removes all outgoing edges from
alternatives that are selected by C. Note that the rule specifying which edges should
be deleted must only depend on the alternatives contained in the cycle. Otherwise, the
resulting social choice function is not guaranteed to satisfy γ. This is, for example, the
case for Kemeny’s rule, ranked pairs, and Schulze’s rule, which share the same idea of
taking maximal elements after breaking majority cycles (see, e.g., Fischer et al., 2016, for
definitions). However, the cycles are not broken locally, which results in functions that
violate γ.

The remainder of this paper is structured as follows. The model and an overview of
results concerning local rationalizability are presented in Section 2. In Section 3, we
extend this theory by characterizing choice functions that are locally rationalizable via
PIP-transitive relations using a new natural strengthening of γ. Section 4 investigates
social choice functions that satisfy γ through the lens of local rationalizabilty. We give
axiomatic characterizations of such functions and introduce the γ-core, a systematic
procedure to generate social choice functions satisfying γ.

2. Preliminaries

In this section, we define the choice-theoretic model, introduce local rationalizability, and
provide an overview of existing results.

2.1. Choice Consistency and Rationalizability

Let U be a nonempty universe of alternatives. In this paper, every nonempty and finite
subset of U is a feasible set. The set of all feasible sets is denoted by U . A choice function
C maps each feasible set A ∈ U to a nonempty subset of A. The set of all choice functions
is denoted by C. For two choice functions C, Ĉ, we say that C is a refinement of Ĉ if
C(A) ⊆ Ĉ(A) for all A ∈ U . Analogously, Ĉ is a coarsening of C. For a collection of
choice functions Ĉ ⊆ C, we say that C ∈ Ĉ is the finest choice function in Ĉ if C is a
refinement of every Ĉ ∈ Ĉ.

If R is a relation, we denote its strict part by P and its symmetric part by I. R is
transitive (quasi-transitive, acyclic, resp.) if for all x, y, z, x1, . . . , xk ∈ U ,

x R y and y R z implies x R z, (transitivity)
x P y and y P z implies x P z, (quasi-transitivity)

x1 P x2, . . . , xk−1 P xk implies x1 R xk. (acyclicity)

Transitivity implies quasi-transitivity, which implies acyclicity.
Let R ⊆ U × U be a relation on U and A a feasible set. The set of maximal elements

in A with respect to R is defined by

max
R

A = {x ∈ A : y P x for no y ∈ A}.
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Note that maxR A is nonempty for all A ∈ U if and only if R is acyclic.
A choice function C is rationalizable (quasi-transitively rationalizable, transitively

rationalizable, resp.) if there is an acyclic (quasi-transitive, transitive, resp.) and
complete relation R on U such that for all feasible sets A,

C(A) = max
R

A. (rationalizability)

In this case we say that C is rationalized by R. Two natural candidates for the rationalizing
relation are the base relation RC (Herzberger, 1973) and the revealed preference relation
RC (Samuelson, 1938; Houthakker, 1950), which, for all alternatives x and y, are given
by

x RC y iff x ∈ C({x, y}), (base relation)
x RC y iff x ∈ C(A) for some A ∈ U with y ∈ A. (revealed preference relation)

The revealed preference relation relates x to y if x is chosen in the presence of y and
possibly other alternatives, whereas the base relation only relates x to y if x is chosen in
the exclusive presence of y. Both the base relation and the revealed preference relation
are complete by definition. The revealed preference relation is furthermore guaranteed to
be acyclic. Whenever C is rationalizable, the base relation and the revealed preference
relation coincide and rationalize C.

We now define four choice consistency conditions. For all feasible sets A and B,

(α) : if B ⊆ A, then C(A) ∩B ⊆ C(B) (Chernoff, 1954)
(γ) : C(A) ∩ C(B) ⊆ C(A ∪B) (Sen, 1971)

(ε+) : if C(A) ⊆ B ⊆ A, then C(B) ⊆ C(A) (Bordes, 1983)
(β+) : if B ⊆ A and C(A) ∩B ̸= ∅, then C(B) ⊆ C(A) (Bordes, 1976)

Contraction consistency conditions specify under which circumstances an alternative
chosen from some feasible set is still chosen from a feasible subset. Similarly, expansion
consistency conditions specify under which circumstances a chosen alternative is chosen
from a feasible superset. While α is a contraction consistency condition, γ, ε+ and β+

are expansion consistency conditions.2 β+ is typically seen as the strongest (non-trivial)
expansion consistency condition. It implies both γ and ε+, which are logically independent
of each other. Choice theory has identified a number of fundamental relationships between
consistency and rationalizability. Let C be an arbitrary choice function.

C satisfies α and γ iff C is rationalizable. (Sen, 1971)
C satisfies α, γ, and ε+ iff C is quasi-transitively rationalizable. (Schwartz, 1976)

C satisfies α and β+ iff C is transitively rationalizable. (Bordes, 1976)
2β+ was first considered by Bordes (1976). It is stronger than Sen’s β, but equivalent to β in the

presence of α. Bordes (1983) introduced ε+ as a strengthening of ε by Blair et al. (1976). It is also
known as Aïzerman (Moulin, 1986), the weak superset property (Brandt, 2011), and α̂⊆ (Brandt
et al., 2018). ε+ can be derived as the “expansion part” of Postulate 5∗ introduced by Chernoff (1954).
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2.2. Local Rationalizability and Local Revealed Preference

We now define a weakening of rationalizability, which allows the rationalizing relation to
vary depending on the feasible set. Formally, there is a family of rationalizing relations
(RA)A∈U , one for each feasible set, such that RB ⊆ RA whenever B ⊆ A. We also
define, for every choice function C, a corresponding family of revealed preference relations
(RA

C)A∈U by restricting the witness for a preference in RA
C to subsets of A.

Tyson refers to local rationalizability as admitting a satisficing representation while
Duggan uses the term pseudo-rationalizability. However, the latter is already used by
Moulin (1980) for a different notion in choice theory. We think the term ‘local’ aptly
describes that the rationalizing relation may depend on the feasible set.

Definition 1 (Local rationalizability). A choice function C is locally rationalizable if
there is a family of relations (RA)A∈U such that for all feasible sets A,

(i) RA ⊆ A×A is acyclic and complete,

(ii) C(A) = maxRA A, and

(iii) RB ⊆ RA for all feasible sets B ⊆ A.

In this case, we say that C is locally rationalized by (RA)A.

Conditions (i) and (ii) are analogous to the case of standard rationalizability. Condition
(iii) implies that a strict preference between two alternatives in some feasible set is
preserved when removing other alternatives. Since all relations RA are complete and
hence x RA y if and only if not y PA x, Condition (iii) can be reformulated as

(iii’) PA ∩ (B ×B) ⊆ PB for all feasible sets B ⊆ A.

The crucial difference to classic rationalizability is that a strict preference between two
alternatives can be revoked by introducing new alternatives. Without Condition (iii),
all choice functions would satisfy local rationalizability. Standard rationalizability via
a global relation R implies local rationalizability by letting RA = R|A for each feasible
set A.3

At first glance, it seems difficult to verify whether a choice function is locally rationaliz-
able because there is a very large number of families of potentially rationalizing relations.
It turns out that a rather natural candidate for such a family is obtained by extending
the concept of revealed preference to families of relations that depend on the feasible set.

Definition 2 (Local Revealed Preference Relations). Let C be a choice function and
A a feasible set with x, y ∈ A. We write x RA

C y if and only if there is some feasible set
B ⊆ A with x ∈ C(B) and y ∈ B. We call RA

C the local revealed preference relation on A
and (RA

C)A∈U the family of local revealed preference relations.
3Remarkably, if we replace the subset in Condition (iii) with a superset, then we obtain a dual definition

that characterizes α for countable U . However, the results for local rationalizability can be structured
much more elegantly than the corresponding theory for α. For example, there is not always a unique
inclusion-minimal family of rationalizing relations, and quasi-transitivity does not add anything to
acyclicity in this context.
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The difference to classic revealed preference is that we now locally restrict our witness
B to be a subset of A, while the classic notion allows for arbitrary witnesses.

It follows from Definition 2 that a strict local revealed preference between alternatives
x and y in A holds if and only if y is not chosen from any subset that contains x, i.e.,

x PA
C y iff y /∈ C(B) for all B ⊆ A with x, y ∈ B. (1)

It is easily seen that the base relation of C is equivalent to the local revealed preference
relations of two-element sets, that is, for all x, y ∈ U , x RC y if and only if x R

{x,y}
C y.

Moreover, all local revealed preference relations are sandwiched in between the base
relation and the revealed preference relation, i.e., for all A ∈ U ,

RC ∩ (A×A) ⊆ RA
C ⊆ RC . (2)

The first inclusion holds because every two-element feasible set can serve as a witness,
and the second follows from RU

C = RC .
The following lemma shows that the family of local revealed preference relations (RA

C)A
already satisfies all but one of the conditions required for local rationalizability.

If the alternatives in A′ ⊆ A form a PA
C -cycle, RA′

C does not permit a maximal element
in A′. Hence, all relations in (RA

C)A have to be acyclic. Completeness follows from
Equation (2) and the completeness of the base relation. Finally, Condition (iii) of
Definition 1 holds because, if x is chosen in the presence of y in some subset of B ⊆ A,
then it is also chosen in some subset of A.

Lemma 1 (Tyson, 2008). Let C be a choice function. Then, (RA
C)A satisfies Condition

(i) and (iii) of Definition 1.4

The following example illustrates the difference between local rationalizability and
rationalizability.

Example. Let U = {x, y, z} and C be defined on all non-singleton subsets as follows.

A C(A)

{x, y, z} {x, y}
{x, y} {x}
{y, z} {y}
{x, z} {x}

For B := {x, y}, we have x PB
C y. On the other hand, we have y RC x, since y is chosen

from A := {x, y, z}. Hence, we have y ∈ maxRC
B, but y /∈ maxRB

C
B. Despite x PB

C y,
we still have y IAC x and thus y ∈ maxRA

C
A. In summary, C is not rationalizable but

does satisfy local rationalizability.

When assuming α, all revealed preference relations are restrictions of the same relation
to the given feasible set, and our generalized notion of revealed preference coincides with

4On top of that, the inclusion from left to right in Condition (ii) (C(A) ⊆ maxRA A) is satisfied.
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the classic one. To see this, let x be chosen from some subset of A that contains y. Then,
by α, x will also be chosen from {x, y}.

Lemma 2. Let C be a choice function that satisfies α. Then, RA
C = RC ∩ (A×A) for

all feasible sets A.

2.3. Characterizations

The unifying theme of the following propositions is that expansion consistency is deeply
intertwined with local rationalizability, even without imposing contraction consistency.
Three classic characterizations of rationalizability can be obtained as corollaries.

In contrast to our original belief, we are not the first to consider local rationalizability
and discover the following propositions. Propositions 1, 2, and 3 were first noted by
Duggan (1997, Thm. 1) and then published by Duggan (2019, Thms. 7, 8, and 9).
Independently, Tyson (2008, Thms. 6, 7, and 2) obtained the same results, as well as
the preceeding Lemma 1. The core of Proposition 1 goes back to even earlier work by
Aizerman (1985, Thm. 4). We extend these results in Section 3. In order to have a
self-contained presentation with consistent notation, we provide proofs of these statements
in the appendix.

We start with the most central characterization, showing the equivalence between local
rationalizability and γ. This equivalence will be leveraged to construct (social) choice
functions that satisfy γ in Section 4.

Proposition 1. A choice function satisfies γ if and only if it is locally rationalizable.
Moreover, any such function is rationalized by its family of local revealed preference
relations.

The family of locally revealed preference relations is not the only family of relations
locally rationalizing a choice function. This is hardly surprising because locally ratio-
nalizing relations for larger feasible sets may contain additional indifferences that are
irrelevant for the set of maximal elements. Note that these indifferences are not in conflict
with Condition (iii) of Definition 1.

It can be shown that the family of local revealed preference relations is the finest family
of locally rationalizing relations in the following sense: we say that (RA)A is finer than
(R̃A)A, if RA ⊆ R̃A for all A ∈ U . Thus, when restricting attention to locally rationalizing
relations that are minimal in this sense, uniqueness of local revealed preference is retained.

We can use the characterization of γ to obtain a classic result by Sen (1971) as a corollary.
Since the latter involves α, we need the additional observation that rationalizability
implies α. To see this, let R be a relation that rationalizes choice function C and
x ∈ C(A) ∩B. Then, for all y ∈ B, x R y. Hence, x ∈ C(B).

Lemma 3. Every rationalizable choice function satisfies α.

As a corollary, we now obtain the characterization by Sen (1971), which states that a
choice functions is rationalizable iff it satisfies α and γ. In this case, the rationalizing
relation coincides with the base relation. To see this, observer that for any rationalizable
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choice function C, Proposition 1 and Lemma 3 imply that C satisfies α and γ. Conversely,
if C satisfies α and γ, Proposition 1 and Lemma 2 imply that RC rationalizes C.

As it turns out, requiring that all locally rationalizing relations are quasi-transitive
leads to choice functions that not only satisfy γ but also ε+.

Proposition 2. A choice function satisfies γ and ε+ if and only if it is locally rationalized
by a family of quasi-transitive relations.

It follows from Proposition 1 that every quasi-transitively locally rationalizable choice
function is rationalized by its family of local revealed preference relations. Additionally,
this constitutes the finest family of quasi-transitive locally rationalizing relations. Note
that other families of rationalizing relations may not be quasi-transitive.

Again, we obtain a classic characterization as a corollary: Schwartz (1976) states that
a choice function is quasi-transitively rationalizable if and only if it satisfies α, γ, and ε+.
To see this, let C be a quasi-transitively rationalizable choice function. By Proposition 2
and Lemma 3, C satisfies α, γ, and ε+. For the converse direction, let C satisfy α, γ,
and ε+. Then by Proposition 2 and Lemma 2 we have that RC is quasi-transitive and
rationalizes C.

It turns out that choice functions that are locally rationalized via transitive relations
are characterized by the strongest expansion consistency condition β+.

Proposition 3. A choice function satisfies β+ if and only if it is locally rationalized by
a family of transitive relations.

It follows from Proposition 1 that every transitively locally rationalizable choice function
is rationalized by its family of local revealed preference relations. Again, this constitutes
the finest family of transitive locally rationalizing relations. Note that other families
of rationalizing relations may fail to be transitive. Interestingly, Bordes (1976) already
observed that β+ implies that the revealed preference relation is transitive.

This time, we obtain the characterization of Arrow (1959) and Bordes (1976) as a
corollary, which states that a choice function satisfies α and β+ if and only if it is
transitively rationalizable. Too see this, let C be a transitively rationalizable choice
function. By Proposition 3 and Lemma 3, C satisfies α and β+. Conversely, let C satisfy
α and β+. Then by Proposition 3 and Lemma 2 we have that RC is transitive and C is
rationalized by RC .

2.4. Gamma Hull

Whenever a choice function does not satisfy γ, we can ‘repair’ inconsistencies by adding
elements to the choice sets. It turns out that there is a unique minimal way of turning
any choice function into one that satisfies γ. To this end, first let G be a nonempty set
of choice functions such that C∗(A) :=

⋂
C∈GC(A) ̸= ∅ for all A ∈ U . Then, C∗ is a

well-defined choice function that satisfies γ if all choice functions contained in G do. To
see this, let x ∈ C∗(A) ∩ C∗(B) for some A,B ∈ U . Now, consider an arbitrary C ∈ G.
By definition, x ∈ C(A) ∩C(B). Since C satisfies γ, we have x ∈ C(A ∪B), and since C
was arbitrary, we conclude x ∈ C∗(A ∪ B). Note that C∗ is a refinement of all choice
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functions in G. We are now ready to define the γ-hull of a choice function C, i.e., the
unique finest coarsening of C that satisfies γ.

Definition 3 (γ-hull). Let C be a choice function and G := {Ĉ ∈
C : Ĉ satisfies γ and C ⊆ Ĉ}. Then, the γ-hull Cγ is a choice function given by

Cγ(A) :=
⋂
Ĉ∈G

Ĉ(A) for all A ∈ U .

While the existence and uniqueness of such a coarsening are already noteworthy, Tyson
(2013) gave a very simple characterization of the γ-hull: for any choice function C,
the γ-hull of C is locally rationalized by the family of local revealed preference relations
(RA

C)A. The proof can be found in the appendix.

Proposition 4 (Tyson, 2013). For any choice function C and feasible set A, Cγ(A) =
maxRA

C
A.

We will consider the γ-hulls of common social choice functions in Section 4.5.

3. Gamma+ and PIP-Transitive Local Rationalizability

In this section, we expand the theory of local rationalizability by proposing a strengthening
of γ that precisely characterizes choice functions that are locally rationalizable via PIP-
transitive relations.

Schwartz (1976) has proposed a transitivity notion called PIP-transitivity that lies
in between quasi-transitivity and full transitivity. He argues that, in some cases, this
notion represents human behavior more accurately than standard transitivity. Schwartz
states that while transitivity is equivalent to representation by a utility function u,
PIP-transitivity is equivalent to representation by a utility function u and a non-negative
discriminatory function δ. The idea is that some a is only perceived to be strictly better
than some b, if the increase in utility is noticeable, which is modeled by u(a) > u(b)+δ(b).

Let R be a relation on U . We say that R is PIP-transitive if for all (not necessarily
distinct) x, y, z, w ∈ U ,

x P y, y I z, and z P w implies x P w. (PIP-transitivity)

Graphically, this condition can be represented as below. The wiggly line represents
indifference, while the arrows stand for strict preference. The double edge from x to w
denotes the consequence of the implication.

x y

zw
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We now propose a new expansion consistency condition called γ+ and show that it is
equivalent to local rationalizability by families of PIP-transitive relations.

Definition 4. A choice function C satisfies γ+ if for all feasible sets A,B,

C(A) ⊆ C(A ∪B) or C(B) ⊆ C(A ∪B). (γ+)

Clearly, γ+ implies γ since C(A)∩C(B) is a subset of both C(A) and C(B). Moreover,
γ+ implies ε+. To see this, let C(A) ⊆ B ⊆ A. Then we use γ+ with B̂ = B and
Â = A \B. It must be that C(B̂) ⊆ C(A), as C(Â) ∩ C(A) = ∅.5

Analogous to the previous results, we present a characterization of local rationalizability
via PIP-transitive relations using γ+.

Theorem 1. A choice function satisfies γ+ if and only if it is locally rationalized by a
family of PIP-transitive relations.

Proof. Let C be a choice function. For the direction from left to right, let C satisfy γ+.
Since γ+ implies γ, C is locally rationalized by (RA

C)A. Let A be a feasible set. We now
show that the local revealed preference relation RA

C is PIP-transitive. Let x PA
C y, y IAC z,

and z PA
C w.

x y

zw

It follows from Equation (1) that w cannot be chosen from subsets of A when z is
present, and the same holds for y when x is present. We now need to show that x PA

C w,
i.e., w cannot be chosen from subsets of A in the presence of x. To this end, let Â ⊆ A
with x,w ∈ Â. Further, let B̂ ⊆ A be a witness for y IAC z, i.e., y ∈ C(B̂) and z ∈ B̂.
Now, apply γ+ to Â and B̂. Since y ∈ C(B̂) and x is present in Â∪ B̂, it cannot be that
C(B̂) ⊆ C(Â ∪ B̂). Therefore, it has to be that C(Â) ⊆ C(Â ∪ B̂). Since w /∈ C(Â ∪ B̂)
due to the presence of z, we conclude that w /∈ C(Â).

For the other direction, let (RA)A locally rationalize C and let all relations be PIP-
transitive. Let A,B be feasible sets and assume for contradiction that neither C(A) nor
C(B) is a subset of C(A∪B). Then, there are a ∈ C(A)\C(A∪B) and b ∈ C(B)\C(A∪B).
Hence there is some x ∈ A ∪ B with x PA∪B a and some y ∈ A ∪ B with y PA∪B b.
Since a ∈ C(A), it must be that x ∈ B, and since b ∈ C(B), we have that b RB x. By
local rationalizability, we even have b RA∪B x. There are now two possibilities. First,
it could be that b PA∪B x. By applying quasi-transitivity, we then obtain the following
relationships for RA∪B.

5γ+ is even stronger than the conjunction of γ and W4, a condition that was introduced by Schwartz
(1976) for characterizing PIP-transitivity together with α.
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transitive local rationalizability iff β+

��

PIP-transitive local rationalizability iff γ+

zz %%
quasi-transitive local rationalizability iff γ

��

and ε+

(acyclic) local rationalizability iff γ

OO

Figure 1: Equivalences between local rationalizability and expansion consistency.

y b

xa

Otherwise, we have b IA∪B x, which entails the following relationships for RA∪B since
PIP-transitivity can be applied.

y b

xa

Since b ∈ C(B), it must be that y ∈ A. Moreover, it follows from a ∈ C(A) that
a RA y. By local rationalizability, we thus get a RA∪B y, the desired contradiction to
y PA∪B a in both cases.

An overview of the characterizations of different notions of local rationalizability via
choice consistency conditions is given in Figure 1.

4. Applications to Social Choice

In social choice theory, which studies choice functions that are based on the preference
relations of multiple agents, choices between pairs of alternatives—or, equivalently, the
base relation—are typically given by majority rule. The problem is how these choices
should be extended to arbitrary feasible sets in some reasonable and consistent way (see,
e.g., Laslier, 1997; Brandt et al., 2016). Few social choice functions are known to satisfy γ.
The notion of local rationalizability sheds more light on why this is the case. Any such
function is induced by a family of locally rationalizing relations satisfying the conditions
given in Definition 1. Formally, let R be a complete relation on U and C be a choice
function. We say that C is based on R if RC = R.
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In this section, we identify the families of locally rationalizing relations of common
social choice functions that satisfy γ. The functions are grouped by their degree of local
rationalizability, from transitive local rationalizability to (acyclic) local rationalizability.
On top of that, we give axiomatic characterizations of many social choice functions
using local rationalizability. In order to illustrate the new notion of PIP-transitive local
rationalizability, we introduce a social choice function called the alternating cycle. Finally,
we study the γ-hull and the γ-core of social choice functions. The latter is a new method
to construct social choice functions that satisfy γ.

We will view the weak majority relation R as a directed graph with a strict edge from
x to y when x P y. As specified in Definition 1, the recurring theme is to “locally” remove
strict edges until all majority cycles are broken. Table 1 gives an overview of locally
rationalizable social choice functions discussed in the subsequent sections.

local rationalizability social choice function

transitive top cycle
PIP-transitive alternating cycle
quasi-transitive uncovered set∗, uncaptured set
acyclic untrapped set, two-stage majoritarian choice, split cycle

Table 1: Overview of locally rationalizable social choice functions. Functions in italics
are characterized via local rationaliability. We characterize four variants of the
uncovered set: the Gillies, Bordes, McKelvey, and deep uncovered set (∗).

4.1. Transitive Local Rationalizability

In order to circumvent Arrow’s impossibility, Bordes (1976) has studied a setting where
pairwise choices are given and the expansion part of transitive rationalizability (β+)
extends these choices to feasible sets of cardinality greater than two. Bordes postulates
that “the essence of the rationality concept is that choices on large sets must depend
‘in a positive way’ on choices on two-element sets.” Eventually, Bordes arrives at a
characterization of a social choice function known as the top cycle. The top cycle has
been reinvented several times and is known under various names such as Good set (Good,
1971), Smith set (Smith, 1973), weak closure maximality (Sen, 1977), and GETCHA
(Schwartz, 1986). We simplify and rewrite Bordes’ characterization using transitive local
rationalizability.

Let the base relation R be given and define the locally rationalizing relation for a
feasible set A as follows.

x RA y iff there are x1, . . . , xk ∈ A s.t. x = x1 R · · · R xk = y. (Transitive closure)

This family of relations locally rationalizes the top cycle. Since RA is defined as the
transitive closure of R, the top cycle naturally satisfies β+ and is based on R. Moreover,
it is the finest such function.
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Proposition 5. Let R be a complete relation on U . Among all choice functions based on
R, the top cycle is the finest choice function satisfying transitive local rationalizability.

Proof. Let RA be the transitive closure of R in A as defined above. By definition,
each of these relations is transitive. Now let (R̂A)A transitively locally rationalize some
choice function C based on R. Let x, y ∈ A such that x RA y. Then, there is a
path x = x1 R · · · R xk = y in A. Since R ∩ (A × A) ⊆ R̂A, this directly implies
x = x1 R̂

A x2 R̂
A . . . R̂A xk = y. By transitivity of R̂A, we thus have x R̂A y. This shows

that RA ⊆ R̂A and, in particular, implies that the top cycle is a refinement of C.

4.2. PIP-Transitive Local Rationalizability

We propose a new majoritarian social choice function that is locally rationalizable using
PIP-transitive relations and a refinement of the top cycle. Intuitively, we remove an edge
y P x if it is contained in a cycle that may contain indifferences but two indifferences can
only appear consecutively right before y, i.e., y P x . . . xk−2 I xk−1 I y is allowed. Since
the indifference relation is reflexive, we, roughly speaking, only delete edges on cycles in
which every second edge is strict.

Let the base relation R be given. We define RA as follows.

x RA y iff there are x1, . . . , xk ∈ A s.t. x = x1 R · · · R xk = y,

where xi I xi+1 implies xi+1 P xi+2 for all i < k − 2.

We will refer to the social choice function defined by these relations as the alternating
cycle.

Proposition 6. The alternating cycle satisfies γ+.

Proof. It is easy to check that (RA)A satisfies all requirements for local rationalizability
and the alternating cycle is thus well-defined. To show PIP-transitivity, let a PA b RA

c PA d. We need to show that a PA d, i.e., that no alternating path exists from d to a.
By b RA c, there must be some path Pb,c from b to c where I can only occur consecutively
in the last step. Now, let Pd,x be a path starting from d and ending at any x ∈ A where
I does not occur consecutively, which we denote by a dotted line.

a b c d

y x

It suffices to show that a P x. We will do this by combining the two existing paths.
First, let y ∈ A be the last alternative before c on the path Pb,c. Since c PA d and y R c,
it must be that y P d. Thus, we define the path Pb,x by starting at b and walking along
Pb,c until we arrive at y, then using y P d, and finally walk along Pd,x. Note that since
we connect the paths using a strict edge, Pb,x has no consecutive occurrences of I. If it
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were that x I a, we could extend this path in one step to a path from b to a that has no
consecutive occurrences of I except for at the last step. This is not possible by a PA b
and hence a P x, which concludes the proof of PIP-transitivity.

4.3. Quasi-Transitive Local Rationalizability

In this section, we discuss quasi-transitively locally rationalizable social choice functions
that fail to be PIP-transitively locally rationalizable: the Gillies uncovered set, the Bordes
uncovered set, the McKelvey uncovered set, the deep uncovered set, and the uncaptured
set.

4.3.1. Gillies Uncovered Set

Let the base relation R be given and consider the following family of locally rationalizing
relations.

x RA y iff x R y or there is some z ∈ A with x R z P y. (Covering relation)

This relation is known as the Gillies covering relation (Gillies, 1959; Duggan, 2013)
and locally rationalizes a choice function known as the (Gillies) uncovered set. For
each feasible set, the uncovered set contains the maximal elements with respect to the
corresponding covering relation and is thus based on R. Moreover, we see that for some
given x, y, we have x PA y (“x covers y in A”), if and only if x P y and for all z ∈ A with
z P x we have that z P y. Thus, if some x covers some y in some feasible set, then the
same holds true for all feasible subsets containing x and y. By definition, the covering
relation is quasi-transitive.

We now give a characterization of the uncovered set using quasi-transitive local
rationalizability and one additional axiom.6 We say that a choice function C is weakly
idempotent if

C(C(A)) = C(A) for all A ∈ U with |C(A)| = 2. (Weak idempotency)

The stronger—unrestricted—version of idempotency (C(C(A)) = C(A) for all A ∈ U) is
not satisfied by the uncovered set (it is, for example, satisfied by the much cruder top
cycle; see Section 4.1)

Proposition 7. Let R be a complete relation on U . Among all choice functions based
on R, the uncovered set is the finest one satisfying quasi-transitive local rationalizability
and weak idempotency.

Proof. We first show that the uncovered set satisfies quasi-transitive local rationalizability
and weak idempotency. By definition, the family of covering relations (RA)A locally
rationalizes the uncovered set. To show that RA is quasi-transitive, let A be a feasible

6Other characterizations of the uncovered set using inclusion-minimality, either for strict base relations
or McKelvey’s variant of the uncovered set, were given by Moulin (1986), Dutta and Laslier (1999),
and Peris and Subiza (1999).
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set and x, y, z ∈ A with x PA y and y PA z. It then needs to be shown that x PA z.
Since y covers z and x P y, we have that x P z. Further, let w be given with w P x.
Since x covers y, we also have that w P y. Moreover, since y covers z, w P z. Hence,
x PA z. Now, assume for contradiction that the uncovered set violates weak idempotency.
This implies that {x, y} is the uncovered set in some A ∈ U , even though x P y. Since x
cannot cover y in A, there has to be some z ∈ A such that y R z P x. Moreover, since z is
not in the uncovered set, it has to be covered by some alternative in A. Quasi-transitivity
of the covering relation implies that x PA z or y PA z. However, both cases are at
variance with z P x P y.

In order to show that the uncovered set is the finest choice function satisfying the
desired axioms, let C be a choice function based on R that satisfies quasi-transitive
local rationalizability and weak idempotency. The family of quasi-transitive locally
rationalizing relations is given by (RA)A. It then needs to be shown that the uncovered
set is a refinement of C. To this end, let x be in the uncovered set of A. We will show
that x ∈ C(A) by repeatedly applying γ on a collection of 2-element and 3-element sets
in which x is selected and whose union is A. First note that for all y ∈ A with x R y,
x ∈ C({x, y}). The more difficult case is that of y ∈ A with y P x. It follows from the
assumption that x is uncovered that there is z ∈ A such that z P y and x R z. Now, let
B := {x, y, z}. If C(B) = {y}, then transitivity of PB implies y PB z, which contradicts
z P y. Similarly, C(B) = {z} entails z PB x, which contradicts x R z. Moreover, it
follows from weak idempotency that C(B) ̸= {y, z}. As a consequence, x ∈ C(B). We
have thus found a By ∈ U for every alternative y ∈ A such that x, y ∈ By and x ∈ C(By).
Repeated application of γ then shows that x ∈ C(A).

4.3.2. Further Variants of the Uncovered Set

Several variants of covering relations and uncovered sets have been proposed in the
literature (see, e.g., Bordes, 1983; Brandt and Fischer, 2008; Duggan, 2013). We follow
Duggan’s terminology here. The Bordes uncovered set is defined by replacing the second
condition in the definition of the covering relation with ‘x P z R y’. Similar to the proof of
Proposition 7, it can be shown that the Bordes uncovered set is the finest choice function
satisfying quasi-transitive local rationalizability and a technical condition requiring that
for all A ∈ U with |A| = 3,

if y ∈ C(A) and x PC y, then x ∈ C(A). (∗)

The McKelvey uncovered set is defined by replacing the second condition in the definition
of the covering relation with ‘x R z P y or x P z R y’. It follows from a characteriza-
tion by Peris and Subiza (1999) that the McKelvey uncovered set is the finest choice
function satisfying quasi-transitive local rationalizability, weak idempotency, and (∗).
The McKelvey uncovered set contains both the Gillies and the Bordes uncovered set.
Duggan (2013) introduced a coarsening of the McKelvey uncovered set that he calls
the deep uncovered set. Here, the second condition in the definition of the covering
relation is replaced with ‘x R z R y’. Proposition 7 can be adapted to characterize
the deep uncovered set: it is the finest choice function satisfying quasi-transitive local
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rationalizability and a strengthening of (∗) which requires that for all A ∈ U with |A| = 3,
y ∈ C(A) and x RC y implies x ∈ C(A).7

4.3.3. Uncaptured Set

The following social choice function proposed by Duggan (2007) aims at removing edges
from three-cycles in which the preceding or subsequent edge is strict, and in four-cycles
in which both the preceding and subsequent edge are strict. Formally, define the family
of local rationalizing relations for a feasible set A as follows.

x RA y iff x R y or there are z, w ∈ A with x R z P y, or

x P z R y, or

x P z R w P y.

Duggan refers to the resulting social choice function as the uncaptured set. It satisfies
both γ and ε+, which can be demonstrated by proving that for all feasible sets A, RA

is quasi-transitive. Let A be a feasible set with x PA y PA z for some x, y, z ∈ A. We
need to show x PA z, which consists of three parts. First, we must exclude three-cycles
with a strict edge ending in x. Let a ∈ A with a P x. Then, by x PA y, a P y. Now,
y PA z implies a P z. Second, we exclude three-cycles with a strict edge starting in z.
Let a ∈ A with z P a. Then, y P a by y PA z. x PA y now implies x P z. Last, we need
to exclude four-cycles in which only the opposing edge can be weak. Let a, b ∈ A such
that z P a R b. Since y PA z, it must be that y R b. Thus, x R b by x PA y, concluding
the proof.

4.4. Local Rationalitability

In this section, we discuss three social choice functions that are locally rationalizable
but fail to be quasi-transitively locally rationalizable: the untrapped set, two-stage
majoritarian choice, and split cycle.

4.4.1. Untrapped set

Let the base relation R be given and define the local rationalizing relation for a feasible
set A as follows.

x RA y iff x R y or there are x1, . . . , xk ∈ A s.t. x = x1 P · · · P xk = y.

This is known as the trapping relation (Duggan, 2007) and induces the untrapped set.
To prove well-definedness, first let feasible sets B ⊆ A with x, y ∈ B and x RB y be
given. By definition, it must be that x RA y. For acyclicity, let A be a feasible set with
x1, . . . , xk ∈ A and x1 P

A · · · PA xk. It needs to be shown that x1 R
A xk. Observe that

x PA y if and only if x P y and there is no path w.r.t. P in A from y to x. Consequently,
7Other variants of the uncovered set that take into account weights of pairwise comparisons have been

studied by Dutta and Laslier (1999) and Pérez-Fernández and De Baets (2018).
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it must be that PA ⊆ P , which directly implies x1 P · · · P xk. As desired, this leads to
x1 R

A xk by definition of RA.8

4.4.2. Two-stage majoritarian choice

Let R be majority rule for a given preference profile and ≥ ⊆ U × U a fixed linear order
over U . Now define the local rationalizing relation for feasible set A by letting

x RA y iff x R y or (x > y and there is z ∈ A s.t. z P y and z > y).

Clearly, for two feasible sets A and B with B ⊆ A, x RB y implies x RA y. For the
strict part of the local preference relation, we have x PA y if and only if x P y and
(x > y or x ∈ maxP∩>(A)). Now assume for contradiction that RA is not acyclic for
some A. Then we have x1 PA · · · PA xk PA x1 = xk+1. For B := {x1, . . . , xk}, we
still have x1 PB · · · PB xk PB x1 by Condition (iii’). Now consider two cases. First,
assume there is some i with xi > xi+1. By renaming the alternatives we can assume
without loss of generality that i = 1. Then, x2 ̸∈ maxP∩>(B) and hence x2 > x3. It
follows by induction that x2 > x3 > · · · > xk > x1, which contradicts the acyclicity of
≥. Otherwise, xi ∈ maxP∩>(B) for all i with 1 ≤ i ≤ k. Strictness of ≥ then implies
that x1 < x2 < · · · < xk < x1, which again contradicts the acyclicity of ≥. The choice
function locally rationalized by (RA)A is based on R. It was recently introduced for
antisymmetric R by Horan and Sprumont (2022) as two-stage majoritarian choice. We
lift the restriction on the base relation while maintaining local rationalizability. Note
that for antisymmetric relations, the choice function is single-valued for all feasible sets.

4.4.3. Split cycle

In order to define split cycle, we not only need the base relation R but also an order over
pairs of alternatives ⊵ ⊆ (U × U)2. These orders occur naturally in social choice and are
typically induced by majority margins, i.e., the number of agents who prefer the former
to the latter minus the number of agents who prefer the latter to the former.

Then we can define a locally rationalizing relation for feasible set A by letting9

x RA y iff x R y or there are x1, . . . , xk ∈ A s.t. x = x1 R · · · R xk = y and
(xi, xi+1) ⊵ (y, x) for all i < k.

By contraposition, this means x PA y if and only if x P y and for all weak base relation
cycles (x1, . . . , xk) in A with x1 = y, xk = x, there is some i < k with (x, y) ▷ (xi, xi+1).
Clearly, if x PA y, then x PB y for all B ⊆ A with x, y ∈ B. Further, PA is acyclic. To
see this, let x1 P

A · · · PA xk. Assume for contradiction xk PA x1. Then we have a base
8The untrapped set is conceptually an expansion-consistent version of GOTCHA aka the Schwartz set

(Schwartz, 1986). The latter chooses the maximal elements with respect to the transitive closure of
the strict majority relation. However, the closure does not respect the weak base relation, and the
function hence violates γ.

9Observe that if x P y, then (x, y) ▷ (v, w) for all v, w with v I w. Hence, in contrast to the γ-core, an
equivalent definition is to demand that x = x1 P · · · P xk = y.
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relation cycle (x1, . . . xk) in A. Setting xk+1 = x1, one of the pairs (xi, xi+1) must be
minimal with respect to ⊵, a contradiction to xi P

A xi+1. The choice function locally
rationalized by (RA)A, based on R, is called split cycle and was recently proposed by
Holliday and Pacuit (2023). Split cycle is similar to Tideman’s ranked pairs (Tideman,
1987) and Schulze’s rule (Schulze, 2011), but satisfies some additional desirable properties,
most notably γ. Proposition 1 provides an intuitive explanation of this behavior.

In the following, we give a characterization of split cycle using local rationalizability. It
is inspired by a characterization of split cycle as a “variable-election collective choice rule
(VCCR)” due to Holliday and Pacuit (2021). The theory of local rationalizability allows
us to split their axiom “coherent IIA” into two parts, namely local rationalizability and
“crucial defeat”. The advantage of this representation is that local rationalizability is the
only required variable-agenda axiom while crucial defeat can be formulated for a fixed
agenda. By Proposition 1, the former condition is equivalent to γ, a well-established
axiom in social choice theory.

To prepare the characterization, let O denote the set of all complete, transitive orders
⊵ on U × U , such that (x, y) ⊵ (v, w) if and only if (w, v) ⊵ (y, x) for all x, y, v, w ∈ U .
Then each ⊵ ∈ O induces a complete relation on U by setting x R⊵ y if and only if
(x, y) ⊵ (y, x). We then say that a choice function C is based on ⊵, if RC = R⊵. The
strict part of ⊵ is denoted by ▷, the symmetric part by .

=. As mentioned above, such
transitive orders naturally arise via majority margins in the context of social choice. A
majority tie between x and y then corresponds to (x, y)

.
= (y, x). If, instead, x would

beat y with a majority margin larger than the one with which v beats w, then this
corresponds to (x, y) ▷ (v, w) ▷ (w, v) ▷ (y, x).

An extended choice function is a family of choice functions (C( ·,⊵))⊵∈O, such that for
each ⊵, C( ·,⊵) is based on ⊵. We say that an extended choice function (C( ·,⊵))⊵∈O
satisfies local rationalizability if each C( ·,⊵) is locally rationalizable. Split cycle is
denoted by (SC ( ·,⊵))⊵∈O. The characterization of split cycle requires two axioms on
top of local rationalizability. The first one is the familiar notion of neutrality : for all
permutations π on U , C(π(A), π(⊵)) = π(C(A,⊵)).10

In order to define the second axiom, we need some more terminology. Let ⊵, ⊵∗ ∈ O
and x, y ∈ U be given, such that x R⊵ y and x R⊵∗ y. Further, let ⊵ be identical to
⊵∗ in all comparisons where (x, y) and (y, x) are not involved. We then say that ⊵∗ is
obtained from ⊵ by decreasing the intensity of (x, y), if for all e ∈ U × U , we have that

e ⊵ (x, y) implies e ⊵∗ (x, y) and e ▷ (x, y) implies e ▷∗ (x, y).

The axiom of crucial defeat then requires that for all A ∈ U and ⊵ ∈ O, if x /∈ C(A,⊵),
then there is some y ∈ A with (y, x) ▷ (x, y) such that for any ⊵∗ obtained by decreasing
the intensity of some e ̸= (y, x), x /∈ C(A,⊵∗).

Proposition 8. Split cycle is the finest extended choice function satisfying local ratio-
nalizability, crucial defeat, and neutrality.

10By π(⊵) we denote the relation ⊵′ such that (x, y) ⊵ (v, w) if and only if (π(x), π(y)) ⊵′ (π(v), π(w)).
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Proof. Let SA denote the strict part of the split cycle relation on A ∈ U w.r.t. R⊵. This
means that x SA y iff in any cycle in A containing (y, x), there is some e ∈ A×A such
that (y, x) ▷ e and e is contained in the cycle. First, we show that split cycle satisfies the
axioms. Local rationalizability follows immediately from the definition. For neutrality,
let π : U → U be a permutation, ⊵ ∈ O and A a feasible set. Let x′ ∈ A. Then
x′ ∈ π(SC (A,⊵)), iff there is x ∈ A with π(x) = x′ and x ∈ SC (A,⊵). By definition,
it is equivalent that for all y ∈ A with y P⊵ x, there must be some cycle C ⊆ A with
respect to R⊵ containing (y, x), such that for all e ̸= (y, x) contained in the cycle we
have e ⊵ (y, x). Let y′ := π(y). Then, this is equivalent to the existence of a cycle
C ′ with respect to Rπ(⊵) such that for all e′ ≠ (y′, x′) we have e′ π(⊵) (y′, x′). This
holds with the identities C ′ = π(C) and e′ = π(e). By definition, this is equivalent
to x′ ∈ SC (π(A), π(⊵)). As desired, this implies SC (π(A), π(⊵)) = π(SC (A,⊵)). For
crucial defeat, let x ∈ A, x /∈ SC (A,⊵). Then, there must be y ∈ A with y SA x (w.r.t.
⊵). Let ⊵∗ be obtained from ⊵ by decreasing the intensity of some e∗ ̸= (y, x). It suffices
to show that y SA x (w.r.t. ⊵∗). To this end, consider an arbitrary cycle in A containing
(y, x) and let e ∈ A×A such that (y, x) ▷ e and e is contained in the cycle. If e∗ ̸= e, then
it must be that (y, x) ▷∗ e, since the relations are identical up to comparisons involving
e∗. Otherwise, e∗ = e. Then (y, x) ▷ e∗ implies (y, x) ▷∗ e∗. Since the cycle containing
(y, x) in A was arbitrary and by definition of split cycle, x /∈ SC (A,⊵∗).

Now, let C be an extended choice function satisfying the axioms. It suffices to show
that split cycle is a refinement of C. Assume for contradiction that there are ⊵ ∈ O,
A ∈ U , and x ∈ A such that x ∈ SC (A,⊵) but x /∈ C(A,⊵). Let y ∈ A be given by
crucial defeat. By assumption, it is impossible that y SA x. Further, first assume without
loss of generality that there is no z ̸= y in A with z P⊵ x. Then there must be some
cycle (y, x, x2, . . . , xk, y) in A in which (y, x) is minimal w.r.t. ⊵. Now, we modify ⊵
to arrive at some ⊵∗ as follows. We decrease the intensity of each e = (xi, xi+1) such
that e

.
=∗ (y, x). For all other e = (v, w) ∈ U × U with e ̸= (y, x), (x, y), we decrease

their intensity until (v, w) .
=∗ (w, v) to finally obtain ⊵∗. Note that this is possible, as

after each decrement, by assumption, only y is a feasible candidate for crucial defeat,
and we are therefore allowed to keep decreasing the intensity of any e ̸= (y, x), (x, y). By
crucial defeat, it must be that x /∈ C(A,⊵∗). By construction, we have x R⊵∗z for all
z ∈ A \ {y}. By local rationalizability, y PA

C x. Let B := {y, x, x2, . . . , xk} ⊆ A. Then,
x /∈ C(B,⊵∗). By neutrality, z /∈ C(B,⊵∗) for all z ∈ B. This is a desired contradiction
to the nonemptiness of C.

In case that there is z1 ̸= y1 with y1 P⊵ x and z1 P⊵ x, we apply crucial defeat. This
allows us to decrease the intensity to (z1, x)

.
=1 (x, z1) while still having x /∈ C(A,⊵1).

Once more by crucial defeat, there must be y2 P⊵1 x. If there still is z2 ̸= y2, we can
again decrease the intensity to (z2, x)

.
=2 (x, z2) while maintaining x /∈ C(A,⊵2). When

iterating this argument, finiteness of the feasible set implies that we eventually terminate
with only one element left.
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4.5. Gamma Hulls of Social Choice Functions

The γ-hull, as defined in Definition 3 and characterized in Proposition 4, allows us to
turn any social choice function that violates γ into its finest coarsening that satisfies γ.
Perhaps surprisingly, the γ-hulls of many common social choice functions are different
from their known coarsenings that satisfy γ and thus yield new unexplored social choice
functions. This is, for example, the case for the γ-hulls of Borda’s rule, Copeland’s rule,
and the essential set, all of which are different from each other and any rule known to us
(see, e.g., Brandt et al., 2016; Fischer et al., 2016, for definitions). It follows from the
well-known inclusion of Copeland’s rule in the top cycle that the γ-hull of Copeland’s
rule is contained in the top cycle (see Section 4.1). Furthermore, it can be shown that
the γ-hull of the essential set is sandwiched in between the Gillies uncovered set and
the McKelvey uncovered set (see Section 4.3). On the other hand, the γ-hull of the
omninomination rule (which returns all top-ranked alternatives) is the Pareto rule. To
see this, simply observe that an alternative x is chosen in some subset containing y if and
only if not all voters rank y above x. This example illustrates two observations. First,
every social choice function that satisfies α has a rationalizable γ-hull. Secondly, if a
social choice function satisfies ε+, then so does its γ-hull. As a direct consequence, we can
reinterpret Theorem 1 and 2 of Aizerman and Malishevski (1981): every quasi-transitively
rationalizable social choice function simply reshapes the input profile and then chooses
on all feasible sets according to the Pareto rule on that profile.

4.6. Gamma Core of Social Choice Functions

The γ-hulls of common social choice functions are rather coarse. In this section, we
propose another method to define choice functions that satisfy γ.

To this end, let R be given and consider an arbitrary choice function f . The idea of f is
to identify the worst elements in a feasible set and then break each cycle by removing the
outgoing edges of alternatives returned by f . Formally, we define a locally rationalizing
relation for feasible set A by letting

x RA y iff x R y or there are x1, . . . , xk ∈ A s.t. x = x1 P · · · P xk = y and
y ∈ f({x1, . . . , xk}).

(RA)A locally rationalizes the choice function Ċf (A) := maxRA A, which we refer to as
the strict γ-core of f . By definition, Ċf is always a refinement of the untrapped set (see
Section 4.1). As a consequence, Ċf fails to be quasi-transitive and thus violates ε+. This
can be circumvented by modifying the definition of the locally rationalizing relations to

x RA y iff x R y or there are x1, . . . , xk ∈ A s.t. x = x1 R · · · R xk = y and
y ∈ f({x1, . . . , xk}).

The resulting choice function Cf (A) := maxRA A is called the γ-core of f . We then have
Ċf ⊆ Cf , where the latter is always a refinement of the top cycle. Many existing social
choice functions can be written as the γ-core of natural choice functions f :
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• If f(A) = A for all A ∈ U , then Cf is the top cycle.

• If f(A) = argmin
x∈A

|{y ∈ A : x R y}|, then Cf is the Gillies uncovered set.

• If f(A) = max≥A for some fixed linear order ≥ ⊆ U × U , then Cf is two-stage
majoritarian choice.

The γ-core procedure also enables the definition of new social choice functions satisfying
γ. For example, already in small instances we observed that the γ-core of the choice
function that returns all alternatives with minimal Borda score is different from any other
social choice function that we are familiar with.
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A. Omitted Proofs.

This appendix contains all proofs omitted in the main body of the paper.

Proposition 1. A choice function satisfies γ if and only if it is locally rationalizable.
Moreover, any such function is rationalized by its family of local revealed preference
relations.

Proof. Let C be a choice function. For the direction from right to left, assume that (RA)A
locally rationalizes C and let x ∈ C(A)∩C(B). Now consider an arbitrary y ∈ A∪B. If
y ∈ A, then x ∈ C(A) implies x RA y. Otherwise, y ∈ B, and x RB y because x ∈ C(B).
In both cases, we can apply condition (iii) of Definition 1 to obtain x RA∪B y. Since y was
arbitrary, we have x RA∪B y for all y ∈ A ∪B. Hence, x ∈ maxRA∪B A ∪B = C(A ∪B).

For the direction from left to right, we will leverage the family of local revealed
preference relations (RA

C)A. Assume that C satisfies γ and let A be a feasible set. By
Lemma 1 we only need to show that C(A) = maxRA

C
A. For the inclusion from left

to right, let x ∈ C(A). We then have by definition that x RA
C y for all y ∈ A and

consequently that x ∈ maxRA
C
A. For the inclusion from right to left, let x be maximal in

A. Now, let y ∈ A be given. By maximality of x and completeness of RA
C , we know that

x RA
C y. Hence, there is some By ⊆ A such that x ∈ C(By) and y ∈ By. Since A is finite

and y was arbitrary, we can repeatedly apply γ to obtain x ∈ C(∪y∈ABy) = C(A).

Proposition 2. A choice function satisfies γ and ε+ if and only if it is locally rationalized
by a family of quasi-transitive relations.

Proof. For the direction from left to right, let C be a choice function satisfying γ and ε+.
By Proposition 1, we already know that the local revealed preference relations locally
rationalize C. In addition, we now show that each of these relations is quasi-transitive.
Let A be a feasible set and x, y, z ∈ A such that x PA

C y and y PA
C z. It needs to be shown

that x PA
C z or, in other words, that z is not chosen from any subset of A that contains

x. For this, consider an arbitrary B ⊆ A with x, z ∈ B. Note that if y ∈ B, we directly
obtain z /∈ C(B) from Definition 2. Otherwise, set By := B ∪ {y}. By x, y ∈ By, we
have y /∈ C(By), which implies C(By) ⊆ B ⊆ By. It follows from ε+ that C(B) ⊆ C(By).
Since By ⊆ A and y, z ∈ By, we have z /∈ C(By). Hence we can conclude z /∈ C(B).
Since B was arbitrary, we obtain x PA

C z.
For the other direction, let (RA)A be a family of quasi-transitive preference relations

which locally rationalizes choice function C. We already know that C satisfies γ by
Proposition 1. For ε+, let A,B be feasible sets such that C(A) ⊆ B ⊆ A. It needs to be
shown that C(B) ⊆ C(A). In other words, it suffices to show that for any z ∈ B \ C(A),
it holds that z /∈ C(B). Since z /∈ C(A), there must be some x1 ∈ A, such that x1 P

A z.
If x1 ∈ B, then by local rationalizability x1 PB z and hence z /∈ C(B). Otherwise, by
C(A) ⊆ B, it must be that x1 /∈ C(A). Hence there must be x2 ∈ A with x2 PA x1. It
follows from the quasi-transitivity of RA that x2 PA z. Using induction, quasi-transitivity
of RA, and finiteness of A, there must eventually be some xℓ ∈ B with xℓ P

A z. Hence,
xℓ P

B z and thus z /∈ C(B).
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Proposition 3. A choice function satisfies β+ if and only if it is locally rationalized by
a family of transitive relations.

Proof. For the direction from left to right, let C be a choice function satisfying β+.
Since β+ implies γ, Proposition 1 applies and C must be locally rationalized by its
family of local revealed preference relations. Now, let A be a feasible set. We show
that RA

C is transitive. Let x, y, z be given such that there are feasible sets B1, B2 ⊆ A
with x ∈ C(B1), y ∈ C(B2), y ∈ B1, and z ∈ B2. It needs to be shown that there is
some feasible D ⊆ A such that D contains z and x is chosen from D. Let D := B1 ∪B2.
Observe that by β+ and B1 ⊆ D, if C(D) ∩B1 ̸= ∅, then x ∈ C(D). If C(D) ∩B2 = ∅,
this follows from nonemptiness of choice sets. Otherwise, β+ applied on B2 ⊆ D and
y ∈ C(B2) implies y ∈ C(D). Since y ∈ B1, this concludes the first half of the proof.

For the direction from right to left, let (RA)A locally rationalize C such that all relations
are transitive. Now, let A,B be feasible sets such that B ⊆ A and fix y ∈ C(A) ∩B ̸= ∅.
Moreover, let x ∈ C(B). Then by completeness of RB and maximality of x in B we
obtain x RB y. By local rationalizability, we also have x RA y. Maximality of y in A
yields y RA z for all z ∈ A. Transitivity now implies x RA z for all z ∈ A. Hence x is
maximal in A and it follows that x ∈ C(A).

Proposition 4 (Tyson, 2013). For any choice function C and feasible set A, Cγ(A) =
maxRA

C
A.

Proof. For the inclusion from left to right, Lemma 1 and Proposition 1 imply that maxRA
C

is locally rationalized by (RA
C)A and hence satisfies γ. Since Cγ is a refinement of all

coarsenings of C that satisfy γ, it suffices to show that C(A) ⊆ maxRA
C

for all A. To
this end, let x ∈ C(A) for some A ∈ U . Then, x RA

C y for all y ∈ A. In other words,
x ∈ maxRA

C
(A).

For the inclusion from right to left, let x ∈ maxRA
C
(A). Then, x is maximal with

respect to RA
C and for all y ∈ A, there is By ∈ U such that y ∈ By ⊆ A and x ∈ C(By).

It follows that x ∈ C(By) ⊆ Cγ(By) since C ⊆ Cγ . Moreover, since Cγ satisfies γ,
x ∈ Cγ(

⋃
y∈ABy) = Cγ(A).
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