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Now the notion of domination on which we rely is, indeed, not transitive. [. . . ] This
lack of transitivity, especially in the above formalistic presentation, may appear to be
an annoying complication and it may even seem desirable to make an effort to rid the
theory of it. Yet the reader who takes another look at the last paragraph will notice
that it really contains only a circumlocution of a most typical phenomenon in all social
organizations. The domination relationships between various imputations x, y, z, . . . —
i.e. between various states of society—correspond to the various ways in which these
can unstabilize—i.e. upset—each other. That various groups of participants acting as
effective sets in various relations of this kind may bring about cyclical dominations—e.g.,
y over x, z over y, and x over z—is indeed one of the most characteristic difficulties
which a theory of these phenomena must face.

Thus our task is to replace the notion of the optimum—i.e. of the first element—by
something which can take over its functions in a static equilibrium. This becomes
necessary because the original concept has become untenable. We first observed its
breakdown in the specific instance of a certain three-person game [. . . ] But now we
have acquired a deeper insight into the cause of its failure: it is the nature of our
concept of domination, and specifically its intransitivity. This type of relationship is not
at all peculiar to our problem. Other instances of it are well known in many fields and
it is regretted that they have never received a generic mathematical treatment. We
mean all those concepts which are in the general nature of a comparison of preference
or superiority, or of order, but lack transitivity: e.g., the strength of chess players in a
tournament, the paper form in sports and races, etc.

J. von Neumann and O. Morgenstern, 1944
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The essence of the rationality concept is that choice on large sets must

depend “in a positive way” on choices in two-element sets.

G. Bordes, 1976 1
Introduction

Given a finite set of alternatives and choices between all pairs of alternatives, how to
choose from the entire set in a way that is faithful to the pairwise comparisons? This
simple, yet captivating, problem is studied in the literature on tournament solutions. A
tournament solution thus seeks to identify the “best” elements according to some binary
dominance relation, which is usually assumed to be asymmetric and complete. As the
ordinary notion of maximality may return no elements due to cyclical dominations,
numerous alternative solution concepts have been devised and axiomatized (see, e.g.,
Moulin, 1986; Laslier, 1997). The contribution of this thesis is threefold.

• A new methodology for defining tournament solutions based on the notions of max-
imal qualified subsets and minimal stable sets is proposed. This unifying framework
clarifies the relationships between known tournament solutions, sheds more light
on the enigmatic tournament solution TEQ , and yields the definition of a new
tournament solution called ME . These results are presented for the first time in
this thesis (Chapters 2 to 6).

• The computational complexity of most tournament solutions is analyzed. While
some tournament solutions can be computed very efficiently (e.g., in linear time),
others are shown to be NP-hard and thus computationally infeasible. These find-
ings are of relevance to theoreticians who study and compare tournament solutions
based on formal properties and to practitioners who wish to algorithmically imple-
ment tournament solutions. The results of this analysis were published by Brandt
and Fischer (2008), Brandt et al. (2009a), and Brandt et al. (2009b) and are sum-
marized in Chapter 7.

• The applicability of tournament solutions to three elementary cases of decision-
making is demonstrated. In particular, Chapter 8 addresses collective decision-
making (social choice theory), adversarial decision-making (theory of zero-sum
games), and coalitional decision-making (cooperative game theory). Theorem 22
in Section 8.3 first appeared in a paper by Brandt and Harrenstein (2009).

In the remainder of this chapter, we outline the techniques and results of the three
parts listed above.
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1 Introduction

1.1 Extensions of Maximality

We approach the tournament choice problem using a methodology consisting of two lay-
ers: qualified subsets and stable sets. Our framework captures most known tournament
solutions (notable omissions are the Slater set and the Markov set).

The point of departure for our methodology is to collect the maximal elements of
so-called qualified subsets because the set of all alternatives may not admit a maximal
element. Examples of families of qualified subsets are subsets with at most two elements,
maximal subsets that admit a maximal element, and maximal transitive subsets. The
corresponding three tournament solutions are the set of all alternatives except the mini-
mum, the uncovered set (Fishburn, 1977; Miller, 1980), and the Banks set (Banks, 1985).
It is shown that the Banks set is the finest tournament solution definable via qualified
subsets and can be axiomatically characterized using a single consistency condition and
minimality. Generalizing an idea by Dutta (1988), we then propose a method for refining
any suitable solution concept S by defining minimal sets that satisfy certain conditions
of internal and external stability with respect to S. When applying this method to the
concepts mentioned above, we obtain the minimal dominating set, better known as the
top cycle (Good, 1971; Smith, 1973), the minimal covering set (Dutta, 1988), and a new
tournament solution that we call the minimal extending set (ME).

Assuming that every tournament admits a unique minimal stable set with respect
to the Banks set, which we conjecture to be the case, ME is contained in both the
minimal covering set and the Banks set and satisfies a number of desirable properties.
In this respect, ME bears some resemblance to Schwartz’s tournament equilibrium set
TEQ (Schwartz, 1990), whose characteristics depend on a similar conjecture made by
Schwartz (Laffond et al., 1993a; Houy, 2009a,b). We show that Schwartz’s conjecture is
stronger than ours and has a number of interesting consequences such as that TEQ can
also be represented as a minimal stable set and is strictly contained in ME . As a result
we obtain three new axiomatic characterizations of TEQ .

We also briefly discuss a quantitative version of our framework, which considers qual-
ified subsets that are maximal in terms of cardinality rather than set inclusion. We thus
obtain the Copeland set (Copeland, 1951) and—using a slightly modified definition of
stability—the bipartisan set (Laffond et al., 1993b).

1.2 Computational Aspects

Since tournament solutions are usually studied in economics, computational considera-
tions are often ignored or not addressed in a rigorous and formal way. Nevertheless, the
effort required to compute a tournament solution is of great importance for if comput-
ing a tournament solution is intractable, its applicability is seriously undermined. For
all major tournament solutions defined in the first part of the thesis, we address the
following questions:

• Is there a polynomial-time algorithm for computing the tournament solution?
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1.3 Applications to Decision-Making

• If so, can it even be computed in linear time and/or is it first-order definable (and
thus contained in the complexity class AC0)?

• If not, can we show NP-hardness of the membership decision problem?

Unsurprisingly, there is a strong correlation between the number of attractive prop-
erties a tournament solution satisfies and its computational complexity. The minimal
covering set and the bipartisan set are particularly noteworthy in this context as they
satisfy a large number of attractive properties, yet are barely computable in polynomial
time.

1.3 Applications to Decision-Making

Tournament solutions have numerous applications in diverse areas such as sports com-
petitions (see, e.g., Ushakov, 1976; de Mello et al., 2005), webpage and journal ranking
(see, e.g., Kóczy and Strobel, 2007; Brandt and Fischer, 2007), biology (see, e.g., Landau,
1951a,b, 1953), and psychology (see, e.g., Schjelderup-Ebbe, 1922; Slater, 1961). In this
thesis, we focus on applications related to fundamental problems in decision-making,
namely

• collective decision-making (social choice theory),

• adversarial decision-making (theory of zero-sum games), and

• coalitional decision-making (cooperative game theory).

In social choice theory, we characterize a setting where social choice functions and tourna-
ment solutions coincide. Indeed, most well-known tournament solutions were introduced
as social choice functions based on the pairwise majority relation. We then establish a
similar equivalence for certain game-theoretic solution concepts in a subclass of two-
player zero-sum games. Interestingly, many tournament solutions correspond to well-
known game-theoretic solution concepts within this particular class of games. Finally,
we discuss how tournament solutions may be applied as solution concepts for cooperative
game theory. This connection is not as elaborate as the previous two as it requires the
generalization of tournament solutions to directed graphs in order to obtain a meaningful
equivalence.
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Tournaments form perhaps the most interesting class of directed graphs

and have a very rich theory, a theory which has no analog in the theory of

undirected graphs.

K. B. Reid and L. W. Beineke, 1978 2
Preliminaries

The core of the problem studied in the literature on tournament solutions is how to
extend choices in sets consisting of only two elements to larger sets. Thus, our primary
objects of study will be functions that select one alternative from any pair of alterna-
tives. Any such function can be conveniently represented by a tournament, i.e., a binary
relation on the entire set of alternatives. Tournament solutions then advocate different
views on how to choose from arbitrary subsets of alternatives based on these pairwise
comparisons (see, e.g., Laslier, 1997, for an excellent overview of tournament solutions
and their properties).

2.1 Tournaments

Let X be a universe of alternatives. For notational convenience we assume that N ⊆ X.
The set of all finite subsets of set X will be denoted by F0(X) whereas the set of all
non-empty finite subsets of X will be denoted by F(X). A (finite) tournament T is a pair
(A,≻), where A ∈ F0(X) and ≻ is an asymmetric and complete (and thus irreflexive)
binary relation on X, usually referred to as the dominance relation.1 Intuitively, a ≻ b
signifies that alternative a is preferable to b. The reflexive closure of the dominance
relation will be denoted by �. The dominance relation can be extended to sets of
alternatives by writing A ≻ B when a ≻ b for all a ∈ A and b ∈ B. We further write
D(X) ⊆ X ×X for the set of all dominance relations on X and T (X) = F(X) ×D(X)
for the set of all tournaments on X.

For a relation R, we define Rk recursively by letting R1 = R and Rk+1 = Rk ∪
{(a, b) | (a, c) ∈ Rk and (c, b) ∈ R for some c}. The transitive closure of R is defined as
R∗ =

⋃
k∈N

Rk. For a set B, a relation R, and an element a, we denote by DB,R(a) the
dominion of a in B, i.e.,

DB,R(a) = { b ∈ B | a R b},

and by DB,R(a) the dominators of a in B, i.e.,

DB,R(a) = { b ∈ B | b R a}.

1This definition slightly diverges from the common graph-theoretic definition where ≻ is defined on
A rather than X. However, it facilitates the sound definition of tournament functions (such as
tournament solutions or concepts of qualified subsets).
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2 Preliminaries

Whenever the tournament (A,≻) is known from the context and R is the dominance
relation ≻ or B is the set of all alternatives A, the respective subscript will be omitted
to improve readability.

The order of a tournament T = (A,≻) refers to its number of alternatives |A|. A
tournament T = (A,≻) is called regular if |D(a)| = |D(b)| for all a, b ∈ A. Only
tournaments of odd order can be regular and regular tournaments of arbitrary odd
order are easily constructed.

Let T = (A,≻) and T ′ = (A′,≻′) be two tournaments. A tournament isomorphism of
T and T ′ is a bijective mapping π : A→ A′ such that a ≻ b if and only if π(a) ≻′ π(b).
A tournament T = (A,≻) is called homogeneous (or vertex-transitive) if for every pair
of alternatives a, b ∈ A there is a tournament automorphism π : A → A of T such that
π(a) = b.

2.2 Components and Decompositions

An important structural concept in the context of tournaments is that of a component. A
component is a subset of alternatives that bear the same relationship to all alternatives
not in the set.

Definition 1. Let T = (A,≻) be a tournament. A non-empty subset B of A is a
component of T if for all a ∈ A \ B either B ≻ a or a ≻ B. A decomposition of T is a
set of components {B1, . . . , Bk} of T such that A =

⊎k
i=1 Bi.

The null decomposition of a tournament T = (A,≻) is {A}; the trivial decomposition
consists of all singletons of A. Any other decomposition is called proper. A tournament is
said to be decomposable if it admits a proper decomposition. Given a particular decom-
position, the summary of a tournament is defined as the tournament on the individual
components rather than the alternatives.

Definition 2. Let T = (A,≻) be a tournament and B̃ = {B1, . . . , Bk} a decomposition
of T . The summary T̃ = (B̃, ≻̃) of T is the tournament such that for any i, j ∈ {1, . . . , k}
with i 6= j,

Bi ≻̃ Bj if and only if Bi ≻ Bj.

Conversely, a new tournament can be constructed by replacing each alternative with
a component.

Definition 3. Let B1, . . . , Bk ⊆ X be disjoint sets and T̃ = ({1, . . . , k}, ≻̃), T1 =
(B1,≻1), . . . , Tk = (Bk,≻k) tournaments. The product of T1, . . . , Tk with respect to T̃ ,
denoted by Π(T̃ , T1, . . . , Tk), is the tournament (A,≻) such that A =

⊎k
i=1 Bi and for

all bi ∈ Bi, bj ∈ Bj,

bi ≻ bj if only if i = j and bi ≻i bj , or i 6= j and i ≻̃ j.

Components can also be used to simplify the graphical representation of tournaments.
We will denote components by gray ellipses. Furthermore, omitted edges in figures that
depict tournaments are assumed to point downwards by convention (see, e.g., Figure 4.1
on page 26).
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2.3 Tournament Functions

2.3 Tournament Functions

A central aspect of this thesis will be functions that, for a given tournament, yield one
or more subsets of alternatives. We will therefore define the notion of a tournament
function. A function on tournaments is a tournament function if it is independent of
outside alternatives and stable with respect to tournament isomorphisms.

Definition 4. Let Z ∈ {F0(X),F(X),F(F(X))}. A function f : T (X) → Z is a
tournament function if

(i) f(T ) = f(T ′) for all tournaments T = (A,≻) and T ′ = (A,≻′) such that ≻|A =
≻′|A, and

(ii) f((π(A),≻′)) = π(f(A,≻)) for all tournaments (A,≻), (A′,≻′), and tournament
isomorphisms π : A→ A′ of (A,≻) and (A′,≻′).

For a given set B ∈ F(X) and tournament function f , we overload f by also writ-
ing f(B), provided the dominance relation is known from the context. For two tourna-
ment functions f and f ′, we write f ′ ⊆ f if f ′(T ) ⊆ f(T ) for all tournaments T .

2.4 Tournament Solutions

The first tournament function we consider is the maximum function max≺ : T (X) →
F0(X), which is defined as

max
≺

((A,≻)) = {a ∈ A | a � A}.

Due to the asymmetry of the dominance relation, the maximum function returns at most
one alternative in any tournament. Moreover, maximal—i.e., undominated—and maxi-
mum elements coincide. In social choice theory, the maximum of a majority tournament
is commonly referred to as the Condorcet winner. Obviously, the dominance relation
may contain cycles and thus fail to have a maximal element. For this reason, a variety of
concepts have been suggested to take over the maximum’s role of singling out the “best”
alternatives of a tournament. Formally, a tournament solution S is defined as a function
that associates with each tournament T = (A,≻) a non-empty subset S(T ) of A.

Definition 5. A tournament solution S is a tournament function S : T (X) → F(X)
such that max

≺
(T ) ⊆ S(T ) ⊆ A for all tournaments T = (A,≻).2

The set S(T ) returned by a tournament solution for a given tournament T is called
the choice set of T whereas A \ S(T ) consists of the unchosen alternatives. Since tour-
nament solutions always yield non-empty choice sets, they have to select all alternatives
in homogeneous tournaments. If S′ ⊆ S for two tournament solutions S and S′, we say
that S′ is a refinement of S or that S′ is finer than S.

2Laslier (1997) is slightly more stringent here as he requires the maximum be the only element in S(T )
whenever it exists.
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2 Preliminaries

2.5 Properties of Tournament Solutions

The literature on tournament solutions has identified a number of desirable properties
for these concepts. In this section, we will define six of the most typical properties.3

In a more general context, Moulin (1988) distinguishes between monotonicity and inde-
pendence conditions, where a monotonicity condition describes the positive association
of the solution with some parameter and an independence condition characterizes the
invariance of the solution under the modification of some parameter.

In the context of tournament solutions, we will further distinguish between properties
that are defined in terms of the dominance relation and properties defined in terms of
the set inclusion relation. With respect to the former, we consider monotonicity and
independence of unchosen alternatives. A tournament solution is monotonic if a chosen
alternative remains in the choice set when extending its dominion and leaving everything
else unchanged.

Definition 6. A tournament solution S satisfies monotonicity (MON) if a ∈ S(T )
implies a ∈ S(T ′) for all tournaments T = (A,≻), T ′ = (A,≻′), and a ∈ A such that
≻|A\{a} = ≻′|A\{a} and D≻(a) ⊆ D≻′(a).

A solution is independent of unchosen alternatives if the choice set is invariant under
any modification of the dominance relation between unchosen alternatives.

Definition 7. A tournament solution S is independent of unchosen alternatives (IUA)
if S(T ) = S(T ′) for all tournaments T = (A,≻) and T ′ = (A,≻′) such that ≻|S(T )∪{a} =
≻′|S(T )∪{a} for all a ∈ A.

With respect to set inclusion, we consider a monotonicity property to be called the
weak superset property and an independence property known as the strong superset
property. A tournament solution satisfies the weak superset property if an unchosen
alternative remains unchosen when other unchosen alternatives are removed.

Definition 8. A tournament solution S satisfies the weak superset property (WSP) if
S(B) ⊆ S(A) for all tournaments T = (A,≻) and B ⊆ A such that S(A) ⊆ B.

The strong superset property states that a choice set is invariant under the removal
of alternatives not in the choice set.

Definition 9. A tournament solution S satisfies the strong superset property (SSP) if
S(B) = S(A) for all tournaments T = (A,≻) and B ⊆ A such that S(A) ⊆ B.

The difference between WSP and SSP is precisely another independence condition
called idempotency. A solution is idempotent (IDE) if the choice set is invariant under
repeated application of the solution concept, i.e., S(S(T )) = S(T ) for all tournaments

3Our terminology slightly differs from the one by Laslier (1997) and others. Independence of unchosen

alternatives is also called independence of the losers or independence of non-winners. The weak

superset property has been referred to as ǫ+ or the Aı̈zerman property.
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2.5 Properties of Tournament Solutions

T . When S is not idempotent, we define Sk(T ) = S(Sk−1(T )) inductively by letting
S1(T ) = S(T ) and S∞(T ) =

⋂
k∈N

Sk(T ).
The four properties defines above (MON, IUA, WSP, and SSP) will be called basic

properties of tournament solutions. The conjunction of MON and SSP implies IUA. It is
therefore sufficient to show MON and SSP in order to prove that a tournament solution
satisfies all four basic properties.

Two further properties considered in this thesis are composition-consistency and ir-
regularity. A tournament solution is composition-consistent if it chooses the “best”
alternatives from the “best” components.

Definition 10. A tournament solution S is composition-consistent (COM) if for all
tournaments T , T1, . . . , Tk, and T̃ such that T = Π(T̃ , T1, . . . , Tk), S(T ) =

⋃
i∈S(T̃ ) S(Ti).

Finally, a tournament solution is irregular if it is capable of excluding alternatives in
regular tournaments.

Definition 11. A tournament solution S satisfies irregularity (IRR) if there exists a
regular tournament T = (A,≻) such that S(T ) 6= A.

13





The social sciences may be characterized by the fact that in most of their

problems numerical measurements seem to be absent and considerations

of space are irrelevant.

J. G. Kemeny, 1959 3
Qualified Subsets

In this chapter, we will define a class of tournament solutions that is based on identifying
significant subtournaments of the original tournament, such as maximal subtournaments
that admit a maximal alternative.

3.1 Concepts of Qualified Subsets

A concept of qualified subsets is a tournament function that, for a given tournament
T = (A,≻), returns subsets of A that satisfy certain properties. Each such set of sets
will be referred to as a family of qualified subsets. Two natural examples of concepts
of qualified subsets are M, which yields all subsets that admit a maximum, and M∗,
which yields all non-empty transitive subsets. Formally,

M((A,≻)) = {B ⊆ A | max
≺

(B) 6= ∅},

M∗((A,≻)) = {B ⊆ A | max
≺

(C) 6= ∅ for all non-empty C ⊆ B}.

For given k ∈ N, we will also consider bounded variants of M and M∗, viz. the tour-
nament functions Mk and M∗

k such that Mk(T ) = {B ∈ M(T ) | |B| ≤ k} and
M∗

k(T ) = {B ∈ M∗(T ) | |B| ≤ k} for all tournaments T . Furthermore, the short
notation [B, a] will be used to denote the set B ⊎ {a} with max≺(B ⊎ {a}) = {a}.
M, M∗, Mk, and M∗

k are all examples of concepts of qualified subsets, which are
defined as follows.

Definition 12. Let Q : T (X) → F(F(X)) be a tournament function such that
M1(T ) ⊆ Q(T ) ⊆ M(T ). Q is a concept of qualified subsets if it meets the follow-
ing three conditions for any tournament T = (A,≻).

(Closure) Q(T ) is downward closed with respect toM: Let Q ∈ Q(T ). Then, Q′ ∈ Q(T )
if Q′ ⊆ Q and Q′ ∈M(T ).

(Independence) Qualified sets are independent of outside alternatives: Let A′ ∈ F(X)
and Q ⊆ A ∩A′. Then, Q ∈ Q(A) if and only if Q ∈ Q(A′).

(Fusion) Qualified sets may be merged under certain conditions: Let [Q1, a], [Q2, a] ∈
Q(T ). Then [Q1 ∪ Q2, a] ∈ Q(T ) if Q1 \ Q2 ≻ Q2 and there is a tournament
T ′ ∈ T (X) and Q ∈ Q(T ′) such that |Q1 ∪Q2 ∪ {a}| ≤ |Q|.

1

1The latter condition is only required to enable bounded qualified subsets.
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3 Qualified Subsets

Note that, in particular, all singletons are qualified. Whether a set is qualified only
depends on its internal structure (due to independence and the isomorphism condition
of Definition 4).

For any concept of qualified subsets Q and any given k ∈ N, Qk : T (X) → F(F(X))
is a tournament function such that Qk(T ) = {B ∈ Q(T ) | |B| ≤ k}. It is easily verified
that Qk is a concept of qualified subsets. Furthermore, M and M∗ (and thus also Mk

and M∗
k) are concepts of qualified subsets. Since only tournaments of order 4 or more

may be intransitive and admit a maximal element at the same time, Mk = M∗
k for

k ∈ {1, 2, 3}.

3.2 Maximal Elements of Maximal Qualified Subsets

For any concept of qualified subsets, we can now define a tournament solution that yields
the maximal elements of all inclusion-maximal qualified subsets, i.e., all qualified subsets
that are not contained in another qualified subset.

Definition 13. Let Q be a concept of qualified subsets. Then, the tournament solution
SQ is defined as

SQ(T ) = {max
≺

(B) | B ∈ max
⊆

(Q(T ))}.

Since any family of qualified subsets contains all singletons, SQ(T ) is guaranteed to be
non-empty and contains the Condorcet winner whenever one exists. As a consequence,
SQ is well-defined as a tournament solution. In several proofs, we will make use of
the following fact, which follows from closure: Whenever a 6∈ SQ(T ), there is some
b ∈ SQ(T ) for every qualified subset [Q, a] such that b ≻ [Q, a] and [Q ∪ {a}, b] ∈ Q(T ).
The following tournament solutions can be restated via appropriate concepts of qualified
subsets.

Condorcet non-losers. SM2
is arguably the largest non-trivial tournament solution.

It chooses every alternative that dominates at least one other alternative. We will
sometimes refer to this concept as Condorcet non-losers (CNL) as it selects everything
except the minimum (or Condorcet loser) whenever such a minimum exists and there is
more than one alternative.

Uncovered set. SM(T ) returns the uncovered set UC (T ) of a tournament T , i.e.,
the set consisting of the maximal elements of inclusion-maximal subsets that admit a
maximum. This concept is usually defined in terms of a subrelation of the dominance
relation called the covering relation (Fishburn, 1977; Miller, 1980). See also Section 7.2.

Banks set. SM∗(T ) yields the Banks set BA(T ) of a tournament T (Banks, 1985).
M∗(T ) contains subsets that not only admit a maximum, but can be completely ordered
from maximum to minimum so that all of their non-empty subsets admit a maximum.
SM∗(T ) thus returns the maximal elements of inclusion-maximal transitive subsets.
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3.2 Maximal Elements of Maximal Qualified Subsets

Every tournament solution defined via qualified subsets satisfies the weak superset
property and monotonicity.

Proposition 1. Let Q be a concept of qualified subsets. Then, SQ satisfies WSP and
MON.

Proof. Let T = (A,≻) be a tournament, a 6∈ SQ(A), and A′ ⊆ A such that SQ(T ) ∪
{a} ⊆ A′. For WSP, we need to show that a 6∈ SQ(A′). Let [Q, a] ∈ Q(A′). Due to
independence, [Q, a] ∈ Q(A). Since a 6∈ SQ(A), there has to be some b ∈ SQ(A) such
that [Q∪{a}, b] ∈ Q(A). Again, independence implies that [Q∪{a}, b] ∈ Q(A′). Hence,
a 6∈ SQ(A′).

For MON, observe that a ∈ SQ implies that there exists [Q, a] ∈ max⊆(Q(T )). Define
T ′ = (A,≻′) by letting T ′|A\{a} = T |A\{a} and a ≻′ b for some b ∈ A with b ≻ a. Clearly,
[Q, a] is contained in Q(T ′) due to independence and the fact that b 6∈ Q. Now, assume
for contradiction that there is some c ∈ A such that [Q ∪ {a}, c] ∈ Q(T ′). Since a ≻′ b,
c 6= b. Independence then implies that [Q ∪ {a}, c] ∈ Q(T ), a contradiction.

Proposition 1 implies several known statements such as that CNL, UC , and BA satisfy
MON and WSP. All three concepts are known to fail IDE (and thus SSP). CNL trivially
satisfies IUA whereas this is not the case for UC and BA (see Laslier, 1997). We also
obtain some straightforward inclusion relationships, which define an infinite hierarchy of
tournament solutions ranging from CNL to BA.

Proposition 2. SM∗ ⊆ SM, SM∗
k
⊆ SMk

, SQk+1
⊆ SQk

, and SQk
⊆ SQ for any concept

of qualified subsets Q and k ∈ N.

Proof. All inclusion relationships follow from the following observation. Let T be a
tournament and Q and Q′ concepts of qualified subsets such that for every [Q, a] ∈
max⊆(Q(T )), there is [Q′, a] ∈ max⊆(Q′(T )). Then, SQ ⊆ SQ′ .

It turns out that the Banks set is the finest tournament solution definable via qualified
subsets. In order to show this, we introduce a variant of WSP that we call dominion
contraction. Dominion contraction prescribes that a choice set may not grow when an
alternative and its entire dominion are removed from the tournament.

Definition 14. A tournament solution S satisfies dominion contraction (DCON) if S(A\
D�(a)) ⊆ S(A) for all tournaments T = (A,≻) and a ∈ A.

Since A \D�(a) = D(a), an alternative definition of DCON requires that S(D(a)) ⊆
S(A) for all a ∈ A, i.e., the choice set of every dominator set is contained in the original
choice set. It follows from the non-emptiness of choice sets, that at least one alternative
from any dominator set is contained in S(A).

Lemma 1. Let Q be a concept of qualified subsets. Then, SQ satisfies DCON.

Proof. Let (A,≻) be a tournament and a ∈ A an alternative. Further let B = A\D�(a).
We show that b ∈ SQ(B) implies that b ∈ SQ(A). Let [Q, b] be a maximal qualified subset
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3 Qualified Subsets

in B, i.e., [Q, b] ∈ max⊆(Q(B)). If [Q, b] ∈ max⊆(Q(A)), we are done. Otherwise, there
has to be some c ∈ A such that c ≻ [Q, b] and [Q∪{b}, c] ∈ Q(A). Furthermore, [Q, b] ≻ a
and a ≻ c because otherwise [Q ∪ {b}, c] would be qualified in B as well. We can now
merge the qualified subsets [Q, b] and [{a}, b] according to the fusion condition. We claim
that [Q∪{a}, b] ∈ max⊆(Q(A)). Assume for contradiction that there is some d ∈ A such
that d ≻ [Q∪ {a}, b] and [Q∪ {a, b}, d] ∈ Q(A). Since d 6∈ D�(a), Independence implies
that [Q ∪ {a, b}, d] ∈ Q(B). This is a contradiction because [Q, b] was assumed to be a
maximal qualified subset of B.

Theorem 1. The Banks set is the finest tournament solution satisfying DCON.

Proof. Let S be a tournament solution that satisfies DCON and T = (A,≻) a tourna-
ment. We first show that BA(T ) ⊆ S(T ). For any a ∈ BA(T ), there has to be maximal
transitive set [Q, a] = {q1, q2, . . . , qn} ⊆ A such that qi ≻ qj for all 1 ≤ j < i ≤ n.
We show that B = (((A \ D�(q1)) \ D�(q2)) \ . . . ) \ D�(qn)) = {a}. Since a ≻ Q,
a ∈ B. Assume for contradiction that b ∈ B with b 6= a. Then b ≻ Q and either
[Q∪ {b}, a] or [Q∪ {a}, b] is a transitive set, which contradicts the maximality of [Q, a].
Since S(B) = S({a}) = {a}, the repeated application of DCON implies that a ∈ S(A).
The statement now follows from Lemma 1.

Since all tournament solutions SQ for some concept of qualified subsets Q satisfy
DCON, BA ⊆ SQ.
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Thus our solutions S correspond to such “standards of behavior” that have

an inner stability: once they are generally accepted they overrule everything

else and no part of them can be overruled within the limits of the accepted

standards.

J. v. Neumann and O. Morgenstern, 1944 4
Stable Sets

In this chapter, we propose a general method for refining any suitable solution concept S
by formalizing the stability of sets of alternatives with respect to S. This method is based
on the notion of stable sets introduced by von Neumann and Morgenstern (1944) and
generalizes the concept of a minimal covering set by Dutta (1988).

4.1 Stability and Directedness

The intuition underlying stable sets is that any choice set should comply with internal
and external stability in some well-defined way. First, there should be no reason to
restrict the selection by excluding some alternative from it and, secondly, there should be
an argument against each proposal to include an outside alternative into the selection.1

In our context, external stability with respect to some tournament solution S is defined
as follows.

Definition 15. Let S be a tournament solution and T = (A,≻) a tournament. Then,
B ⊆ A is externally stable in T with respect to tournament solution S (or S-stable)
if a /∈ S(B ∪ {a}) for all a ∈ A \ B. The set of S-stable sets for a given tournament
T = (A,≻) will be denoted by SS(T ) = {B ⊆ A | B is S-stable in T}.

Externally stable sets are guaranteed to exist since the set of all alternatives A is
trivially S-stable in (A,≻) for any S. We say that a set B ⊆ A is internally stable with
respect to S if S(B) = B. We will focus on external stability for now because we will see
later that certain conditions imply the existence of a unique minimal externally stable
set, which also satisfies internal stability. We define Ŝ(T ) to be the tournament solution
that returns the union of all inclusion-minimal S-stable sets in T , i.e., the union of all
S-stable sets that do not contain an S-stable set as a proper subset.

Definition 16. Let S be a tournament solution. Then, the tournament solution Ŝ is
defined as

Ŝ(T ) =
⋃

min
⊆

(SS(T )).

1A large number of solution concepts in the social sciences spring from similar notions of internal
and/or external stability (see, e.g., von Neumann and Morgenstern, 1944; Nash, 1951; Shapley, 1964;
Schwartz, 1986; Dutta, 1988; Basu and Weibull, 1991; Duggan and Le Breton, 1996b). Wilson (1970)
refers to stability as the solution property.
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4 Stable Sets

It is easily verified that Ŝ is well-defined as a tournament solution as there are no S-
stable sets that do not contain the Condorcet winner whenever one exists. We will only
be concerned with tournament solutions S that (presumably) admit a unique minimal
S-stable set in any tournament. It turns out it is precisely this property that is most
difficult to prove for all but the simplest tournament solutions. A tournament T contains
a unique minimal S-stable set if and only if SS(T ) is a directed set, i.e., for any two sets
B,C ∈ SS(T ) there is a set D ∈ SS(T ) contained in both B and C. We say that SS

is directed when SS(T ) is a directed set for all tournaments T . Throughout this thesis,
directedness of a set of sets S is shown by proving the stronger property of closure under
intersection, i.e., B ∩ C ∈ S for all B,C ∈ S. A set of sets S pairwise intersects if
B ∩ C 6= ∅ for all B,C ∈ S. We will prove that, for any concept of qualified subsets
Q, SSQ

is closed under intersection if and only if SSQ
pairwise intersects. In order to

improve readability in the following, we will use the short notation SQ for SSQ
.

Theorem 2. Let Q be a concept of qualified subsets. Then, SQ is closed under inter-
section if and only if SQ pairwise intersects.

Proof. The direction from left to right is straightforward since the empty set is not
stable. The opposite direction is shown by contraposition, i.e., we prove that SQ does
not pairwise intersect if SQ is not closed under intersection. Let T = (A,≻) be a
tournament and B1, B2 ∈ SQ(T ) be two sets such that C = B1 ∩ B2 6∈ SQ(T ). Since C
is not SQ-stable, there has to be a ∈ A \ C such that a ∈ SQ(C ∪ {a}). In other words,
there has to be a set Q ⊆ C such that [Q, a] ∈ max⊆(Q(C ∪ {a})). Define

B′
1 = {b ∈ B1 | b ≻ Q} and B′

2 = {b ∈ B2 | b ≻ Q}.

Clearly, (B′
1 \ B′

2) ∩ C = ∅ and (B′
2 \ B′

1) ∩ C = ∅. Assume without loss of generality
that a 6∈ B1. It follows from the stability of B1, that B1 has to contain an alternative
b1 such that b1 ≻ [Q, a]. Hence, B′

1 is not empty. Next, we show that B′
1 ∩ B′

2 =
∅. Assume for contradiction that b ∈ B′

1 ∩ B′
2. If b ≻ a, independence implies that

[Q ∪ {a}, b] ∈ Q(C ∪ {a}), which contradicts the fact that [Q, a] is a maximal qualified
subset in C ∪ {a}. If, on the other hand, a ≻ b, the set [Q ∪ {b}, a] is isomorphic to
[Q ∪ {a}, b1], which is a qualified subset of B1 ∪ {a}. Thus, [Q ∪ {b}, a] ∈ Q(C ∪ {a}),
again contradicting the maximality of [Q, a]. Independence, the isomorphism of [Q, a]
and [Q, b1], and the stability of B2 further require that there has to be an alternative
b2 ∈ B2 such that b2 ≻ [Q, b1]. Hence, B′

1 and B′
2 are disjoint and non-empty.

Let a′ ∈ B′
2 and R be a maximal subset of B′

1∪Q such that [R, a′] ∈ Q(B′
1∪Q∪{a′}).

We claim that Q has to be contained in R. Assume for contradiction that there exists b ∈
Q \R. Clearly, [Q, a] and [Q, a′] are isomorphic. It therefore follows from independence
that [Q, a′] ∈ Q(B′

1∪Q∪{a′}) and from closure that [(Q∩R)∪{b}, a′] ∈ Q(B′
1∪Q∪{a′}).

Due to the stability of B1, [R, a′] is not a maximal qualified subset in B1∪{a
′}, i.e., there

exists a qualified subset that contains more elements. We may thus merge the qualified
subsets [R, a′] and [(Q∩R)∪{b}, a′] according to the fusion condition because R\Q ≻ Q
and consequently R\Q ≻ (Q∩R)∪{b}. We then have that [R∪{b}, a′] ∈ Q(B′

1∪Q∪{a′}),
which yields a contradiction because R was assumed to be a maximal set such that
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4.1 Stability and Directedness

[R, a′] ∈ Q(B′
1 ∪ Q ∪ {a′}). Hence, Q ⊆ R. Due to the stability of B1 in T , there

has to be a c ∈ B1 such that c ≻ [R, a′]. Since B′
1 contains all alternatives in B1

that dominate Q ⊆ R, it also contains c. Independence then implies that [R, a′] 6∈
max⊆(Qk(B′

1 ∪Q ∪ {a′})).
Thus, B′

1 ∪ Q is stable in B′
1 ∪ B′

2 ∪ Q. Since Q is contained in every maximal set
R ⊆ B′

1 ∪ Q such that [R, a′] ∈ Q(B′
1 ∪ Q ∪ {a′}) for some a′ ∈ B′

2, B′
1 (and by an

analogous argument B′
2) remains stable when removing Q. This completes the proof

because B′
1 and B′

2 are two disjoint SQ-stable sets in B′
1 ∪B′

2.

Dutta has shown by induction on the tournament order that tournaments admit no
disjoint SM-stable sets (so-called covering sets).

Theorem 3 (Dutta, 1988). SM pairwise intersects.

Dutta (1988) also showed that covering sets are closed under intersection, which now
also follows from Theorem 2.2

Naturally, finer solution concepts also yield smaller minimal stable sets (if their unique-
ness is guaranteed).

Proposition 3. Let S and S′ be two tournament solutions such that SS′ is directed and
S′ ⊆ S. Then, Ŝ′ ⊆ Ŝ and SS pairwise intersects.

Proof. The statements follow from the simple fact that every S-stable set is also S′-
stable. Let B ⊆ A be a minimal S-stable set in tournament (A,≻). Then, a 6∈ S(B∪{a})
for any a ∈ A \B and, due to the inclusion relationship, a 6∈ S′(B ∪ {a}) ⊆ S(B ∪ {a}).
As a consequence, B is S′-stable and has to contain the unique minimal S′-stable set
since SS′ is directed. SS pairwise intersects because two disjoint S-stable sets would also
be S′-stable, which contradicts the directedness of SS′ .

As a corollary of the previous statements, the set of SMk
-stable sets for any k is closed

under intersection.

Theorem 4. SMk
is closed under intersection for all k ∈ N.

Proof. Let k ∈ N. We know from Proposition 2 that SM ⊆ SMk
and from Theorem 3

and Theorem 2 that SM is directed. Proposition 3 implies that SMk
pairwise intersects.

The statement then straightforwardly follows from Theorem 2.

Interestingly, SM2
, the set of all dominating sets, is not only closed under intersection,

but in fact totally ordered with respect to set inclusion.
We conjecture that the set of all SM∗-stable sets also pairwise intersects and thus

admits a unique minimal element. However, the combinatorial structure of transitive
subtournaments within tournaments is surprisingly rich and it seems that a proof of
the conjecture would be significantly more difficult than Dutta’s. So far, it is not even

2As Dutta’s definition requires a stable set to be internally and externally stable, he actually proves
that the intersection of any pair of coverings sets contains a covering set. A simpler proof, which
shows that externally SM-stable sets are closed under intersection, is given by Laslier (1997).
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4 Stable Sets

known whether SM∗
4
-stable sets pairwise intersect. As will be shown in Chapter 5, the

conjecture that SM∗-stable sets pairwise intersect is a weakened version of a conjecture
by Schwartz (1990).

Conjecture 1. SM∗ is closed under intersection.

Using Theorem 2, the conjecture entails that SM∗
k

for any k ∈ N is also closed under
intersection. Since tournaments with less than four alternatives may not contain a
maximal element and a cycle at the same time, this trivially holds for k ≤ 3.

Two well-known examples of minimal stable sets are the top cycle of a tournament,
which is the minimal stable set with respect to SM2

, and the minimal covering set, which
is the minimal stable set with respect to SM.

Minimal dominating set. The minimal dominating set (or top cycle) of a tournament

T = (A,≻) is given by TC (T ) = ŜM2
(T ) = ĈNL, i.e., it is the smallest set B such that

B ≻ A \B (Good, 1971; Smith, 1973).

Minimal covering set. The minimal covering set of a tournament T is given by
MC (T ) = ŜM(T ) = ÛC , i.e., it is the smallest set B such that for all b ∈ A \ B, there
exists a ∈ B so that every alternative in B that is dominated by b is also dominated
by a (Dutta, 1988).

The proposed methodology also suggests the definition of a new tournament solution
that has not been considered before in the literature.

Minimal extending set. The minimal extending set of a tournament T is given by
ME(T ) = ŜM∗(T ) = B̂A, i.e., it is the smallest set B such that no a ∈ A \ B is the
maximal element of a maximal transitive subset in B ∪ {a}.

The minimal extending set will be further analyzed in Section 4.3.

4.2 Properties of Minimal Stable Sets

If SS is directed—and we will only be concerned with tournament solutions S for which
this is (presumably) the case—Ŝ satisfies a number of desirable properties.

Proposition 4. Let S be a tournament solution such that SS is directed. Then, Ŝ
satisfies WSP and IUA.

Proof. Clearly, any minimal S-stable set B remains S-stable when losing alternatives are
removed or when edges between losing alternatives are modified. In the latter case, B
also remains minimal. In the former case, the minimal S-stable set is contained in B.

It can be shown that the stable sets of a stable set are stable when the underlying
tournament solution is defined via a concept of qualified subsets Q. This lemma will
prove very useful when analyzing ŜQ.
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4.2 Properties of Minimal Stable Sets

Lemma 2. Let T = (A,≻) be a tournament and Q a concept of qualified subsets. Then,
SQ(B) ⊆ SQ(A) for all B ∈ SQ(A).

Proof. We prove the statement by showing that the following implication holds for all
B ⊆ A, C ∈ SQ(B), and a ∈ A:

a 6∈ SQ(B ∪ {a}) =⇒ a 6∈ SQ(C ∪ {a}).

To see this, let a 6∈ SQ(B ∪ {a}) and assume for contradiction that there exist [Q, a] ∈
max⊆Q(C ∪ {a}). Then there has to be b ∈ B such that b ≻ [Q, a] and [Q ∪ {a}, b] ∈
Q(B ∪{a}) because [Q, a] 6∈ max⊆Q(B ∪{a}). Now, if b ∈ C, closure and independence
imply that [Q ∪ {a}, b] ∈ Q(C ∪ {a}), contradicting the maximality of [Q, a]. If, on
the other hand, b ∈ B \ C, then there has to be c ∈ C such that c ≻ [Q, b] and
[Q ∪ {b}, c] ∈ Q(C ∪ {b}). No matter whether c ≻ a or a ≻ c, Q ∪ {a, c} is isomorphic
to [Q ∪ {b}, c] and thus also a qualified subset, which again contradicts the assumption
that [Q, a] was maximal.

We are now ready to show a number of appealing properties of unique minimal stable
sets when the underlying solution concept is defined via a concept of qualified subsets.

Theorem 5. Let Q be a concept of qualified subsets such that SQ is directed. Then,

(i) ŜQ ⊆ S∞
Q ,

(ii) SQ(ŜQ(T )∪{a}) = ŜQ(T ) for all tournaments T = (A,≻) and a ∈ A (in particular,
ŜQ(T ) is internally stable),

(iii) ŜQ satisfies SSP, and

(iv)
̂̂
SQ = ŜQ.

Proof. Let T = (A,≻) be a tournament. The first statement of the theorem is shown by
proving by induction on k that Sk

Q(T ) is an SQ-stable set. For the basis, let B = SQ(T ).
Then, SQ(B ∪ {a}) ⊆ B for any a ∈ A \ B due to WSP of SQ (Proposition 1) and
thus B is SQ-stable. Now, assume that B = Sk

Q(T ) is SQ-stable and let C = SQ(B).
Again, WSP implies that a 6∈ SQ(C ∪ {a}) for any a ∈ B \ C, i.e., C ∈ SQ(B). We can
thus directly apply Lemma 2 to obtain that C = Sk+1

Q (T ) ∈ SQ(T ). As the minimal
SQ-stable set is contained in every SQ-stable set, the statement follows.

Regarding internal stability, assume for contradiction that SQ(ŜQ(T )) ⊂ ŜQ(T ). How-
ever, Lemma 2 implies that SQ(ŜQ(T )) is SQ-stable, contradicting the minimality of
ŜQ(T ). The remainder of the second statement follows straightforwardly from internal
stability. If SQ(ŜQ(T ) ∪ {a}) = C ⊂ ŜQ(T ) for some a ∈ A \ ŜQ(T ), WSP implies that
SQ(ŜQ(T )) ⊆ C, contradicting internal stability.

Regarding SSP, let B = ŜQ(T ) and assume for contradiction that C = ŜQ(A′) ⊂ B
for some A′ with B ⊆ A′ ⊂ A. Clearly, C is SQ-stable not only in A′ but also in B,
which implies that C ∈ SQ(B). According to Lemma 2, C is also contained in SQ(A),
contradicting the minimality of ŜQ(T ).
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4 Stable Sets

Finally, for
̂̂
SQ(T ) = ŜQ(T ), we show that every SQ-stable set is ŜQ-stable and that

every minimal ŜQ-stable set is SQ-stable set. The former follows from ŜQ(T ) ⊆ SQ(T ),
which was shown at the beginning of this proof. For the latter statement, let B ∈
min⊆(SbSQ

(T )). We first show that ŜQ(B ∪ {a}) = B for all a ∈ A \ B. Assume for

contradiction that ŜQ(B ∪ {a}) = C ⊂ B for some a ∈ A \ B. Since ŜQ satisfies SSP,
ŜQ(B ∪ {a}) = C for all a ∈ A \ B. As a consequence, C is ŜQ-stable in B ∪ {a}
for all a ∈ A \ B and, due to the definition of stability, also in A. This contradicts
the assumption that B was the minimal Ŝ-stable set. Hence, ŜQ(B ∪ {a}) = B for all
a ∈ A \ B. By definition of ŜQ, this implies that a 6∈ SQ(B ∪ {a}) and thus that B is
SQ-stable.

The second statement of Theorem 5 yields the following fixed-point characterization
of ŜQ, unifying internal and external stability.

Corollary 1. Let Q be a concept of qualified subsets such that SQ is directed and T =
(A,≻) a tournament. Then ŜQ(T ) is the unique inclusion-minimal set B ⊆ A such that

B = {a ∈ A | a ∈ SQ(B ∪ {a})}.

There may very well be more than one internally and externally SQ-stable set. For
example, Theorem 5 implies that S∞

Q (T ) is internally and externally SQ-stable.

We have already seen that ŜQ satisfies some of the properties defined in Section 2.5.
It further turns out that Ŝ inherits monotonicity and composition-consistency from S.

Proposition 5. Let S be a tournament solution such that SS is directed and S satisfies
MON. Then, Ŝ satisfies MON as well.

Proof. First observe that monotonicity implies that weakening a losing alternative can-
not make this alternative a winner. Formally, a 6∈ S(T ) implies a 6∈ S(T ′) for any two
tournaments T = (A,≻) and T ′ = (A,≻′) with ≻ |A\{a} =≻′ |A\{a} and D≻′(a) ⊆ D≻(a).

Now, let T = (A,≻) be a tournament with a, b ∈ A, a ∈ Ŝ(T ), and b ≻ a, and let the
relation ≻′ be identical to ≻ except that a ≻′ b. Denote T ′ = (A,≻′) and assume for
contradiction that a 6∈ Ŝ(T ′). Then, there has to be some S-stable set B ⊆ A \ {a} in
T ′. If b 6∈ B, then B would also be an S-stable set in T , contradicting a ∈ Ŝ(T ). If, on
the other hand, b ∈ B, B would also be S-stable in T since weakening a cannot make it
a winner, which implies a 6∈ S((B ∪ {a},≻)).

Proposition 6. Let S be a tournament solution that satisfies COM. Then, Ŝ satisfies
COM as well.

Proof. Let S be a composition-consistent tournament solution and T = (A,≻) =
Π(T̃ , T1, . . . , Tk) a product tournament with T = ({1, . . . , k}, ≻̃), T1 = (B1,≻1), . . . ,
Tk = (Bk,≻k). For a subset C of A, let Ci = C ∩ Bi for all i ∈ {1, . . . , k} and
C̃ =

⋃
i : Ci 6=∅{i}. We will prove that C ⊆ A is S-stable if and only if

(i) C̃ is S-stable in T̃ , and
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(ii) Ci is S-stable in Ti for any i ∈ {1, . . . , k}.

Consider an arbitrary alternative a ∈ A \ C. For C to be S-stable, a should not be
contained in S(C ∪ {a}). Since S is composition-consistent, a may be excluded for two
reasons. First, a may be contained in an unchosen component, i.e., a ∈ Bi such that
i 6∈ S(C̃ ∪ {i}). Secondly, a may not be selected despite being in a chosen component,
i.e., a ∈ Bi such that i ∈ S(C̃ ∪ {i}) and a 6∈ S(Ci ∪ {a}). This directly establishes the
claim above and consequently that Ŝ is composition-consistent.

Propositions 4, 5, 6, Theorem 5, and Theorem 4 allow us to deduce several known
statements about TC and MC , in particular that both concepts satisfy all basic prop-
erties and that MC is a refinement of UC∞ and satisfies COM.

We conclude this section by generalizing the axiomatization of the minimal covering
set (Dutta, 1988) to abstract minimal stable sets. One of the cornerstones of the axiom-
atization is S-exclusivity, which prescribes under which circumstances a single element
may be dismissed from the choice set.3

Definition 17. A tournament solution S′ satisfies S-exclusivity if, for any tournament
T = (A,≻), S′(T ) = A \ {a} implies that a 6∈ S(A).

If S always admits a unique minimal S-stable set and Ŝ satisfies SSP, which is always
the case if S is defined via qualified subsets, then Ŝ can be characterized by SSP, S-
exclusivity, and inclusion-minimality.

Proposition 7. Let S be a tournament solution such that SS is directed and Ŝ satisfies
SSP. Then, Ŝ is the finest tournament solution satisfying SSP and S-exclusivity.

Proof. Let S be a tournament solution as desired and S′ a tournament solution that
satisfies SSP and S-exclusivity. We first prove that Ŝ ⊆ S′ by showing that S′(T ) is
S-stable for any tournament T = (A,≻). Let B = S′(A) and a ∈ A \B. It follows from
SSP that S′(B ∪ {a}) = B and from S-exclusivity that a 6∈ S(B ∪ {a}), which implies
that B is S-stable. Since Ŝ is the unique inclusion-minimal S-stable set, it has to be
contained in all S-stable sets. The statement now follows from the fact that Ŝ satisfies
SSP and S-exclusivity.

For example, TC is the finest tournament solution satisfying SSP and CNL-exclusivity,
MC is the finest tournament solution satisfying SSP and UC -exclusivity, and ME is the
finest tournament solution satisfying SSP and BA-exclusivity.

4.3 The Minimal Extending Set

As mentioned in Section 4.1, the minimal extending set is a new tournament solution
that has not been considered before. In analogy to UC -stable sets, which are known
as covering sets, we will call BA-stable sets extending sets. B is an extending set of

3UC -exclusivity is the property γ∗∗ used in the axiomatization of MC (Laslier, 1997).
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4 Stable Sets

tournament T = (A,≻) if, for any a 6∈ B, every transitive path (or so-called Banks
trajectory) in B∪{a} with maximal element a can be extended, i.e., there is b ∈ B such
that b dominates every element on the path. In other words, B ⊆ A is an extending set
if for all a ∈ A \B, a /∈ BA(B ∪ {a}).

If Conjecture 1 is correct, ME satisfies all properties defined in Section 2.5 and is a re-
finement of BA due to Propositions 4 and 5 and Theorem 5. Assuming that Conjecture 1
holds, Proposition 3 furthermore implies that ME is a refinement of MC since every cov-
ering set is also an extending set. We refer to Figure 4.1 for an example tournament T
where ME(T ) happens to be strictly contained in MC (T ).4

a1 a2

a3

a4 a5

a6

a7 a8

a9

a10

Figure 4.1: Example tournament T = (A,≻) where MC and ME differ (MC (T ) = A
and ME (T ) = A \ {a10}). a10 only dominates a3, a6, and a9.

A remarkable property of ME is that, just like BA, it is capable of ruling out alter-
natives in regular tournaments, i.e., it satisfies IRR. No irregular tournament solution
is known to satisfy all four basic properties. However, if Conjecture 1 were true, ME
would be such a concept.

4This is also the case for a tournament given by Dutta (1990).
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I represent collective-choice processes by mathematical objects that depict

relatively little of those processes’ structural complexity; this enhances the

generality of my conclusions.

T. Schwartz, 1986 5
Retentiveness and Stability

Motivated by cooperative majority voting, Schwartz (1990) introduced a tournament
solution based on a notion he calls retentiveness. It turns out that retentiveness bears
some similarities to stability. For example, the top cycle can be represented as a minimal
stable set as well as a minimal retentive set, albeit using different underlying tournament
solutions.

5.1 The Tournament Equilibrium Set

The intuition underlying retentive sets is that alternative a is only “properly” dominated
by alternative b if b is chosen among a’s dominators by some underlying tournament
solution S. A set of alternatives is then called S-retentive if none of its elements is
properly dominated by some outside alternative with respect to S.

Definition 18. Let S be a tournament solution and T = (A,≻) a tournament. Then,
B ⊆ A is retentive in T with respect to tournament solution S (or S-retentive) if B 6= ∅
and S(D(b)) ⊆ B for all b ∈ B. The set of S-retentive sets for a given tournament
T = (A,≻) will be denoted by RS(T ) = {B ⊆ A | B is S-retentive in T}.

S-retentive sets are guaranteed to exist since the set of all alternatives A is trivially
S-retentive in (A,≻) for any tournament solution S. In analogy to Definition 16, the
union of minimal S-retentive sets defines a tournament solution.

Definition 19. Let S be a tournament solution. Then, the tournament solution S̊ is
defined as

S̊(T ) =
⋃

min
⊆

(RS(T )).

It is easily verified that S̊ is well-defined as a tournament solution as there are no
S-retentive sets that do not contain the Condorcet winner whenever one exists.

As an example, consider the tournament solution SM1
that always returns all alter-

natives, i.e., SM1
((A,≻)) = A. The unique minimal retentive set with respect to SM1

is the top cycle, that is TC = ŜM2
= S̊M1

.
Schwartz introduced retentiveness in order to recursively define the tournament equi-

librium set (TEQ) as the union of minimal TEQ-retentive sets. This recursion is well-
defined because the order of the dominator set of any alternative is strictly smaller than
the order of the original tournament.
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5 Retentiveness and Stability

Definition 20 (Schwartz, 1990). The tournament equilibrium set (TEQ) of a tourna-
ment T is defined recursively as TEQ(T ) = ˚TEQ(T ).

In other words, TEQ is the unique fixed point of the ◦-operator.

Schwartz conjectured that every tournament admits a unique minimal TEQ-retentive
set. Despite several attempts to prove or disprove this statement (e.g., Laffond et al.,
1993a; Houy, 2009a), the statement has remained a conjecture. A recent computer
analysis failed to find a counter-example in all tournaments of order 12 or less and a
fairly large number of random tournaments (Brandt et al., 2009b).

Conjecture 2 (Schwartz, 1990). RTEQ is directed.

The following statement is easily appreciated.

Proposition 8. Let S be an arbitrary tournament solution. Then, the union of two S-
retentive sets and the non-empty intersection of two S-retentive sets is also S-retentive.

Proof. Let T = (A,≻) be a tournament and B1, B2 ∈ RS(T ). S(D(a)) ⊆ B1 for all
a ∈ B1 and S(D(a)) ⊆ B2 for all a ∈ B2. Consequently, S(D(a)) ⊆ B1 ∪ B2 for all
a ∈ B1 ∪ B2 and hence B1 ∪ B2 ∈ RS(T ). Now, let B1 ∩ B2 6= ∅ and a ∈ B1 ∩ B2.
Retentiveness of B1 and B2 implies that S(D(a)) ⊆ B1 and S(D(a)) ⊆ B2. Hence,
S(D(a)) ⊆ B1 ∩B2 and B1 ∩B2 ∈ RS(T ).

It follows from Proposition 8 that Conjecture 2 is equivalent to the statement that
there are no two disjoint TEQ-retentive sets in any tournament.

In Section 3.2, the Banks set was characterized as the finest tournament solution
satisfying DCON. It turns out that, if RTEQ is directed, TEQ is the finest tournament
solution satisfying a very natural weakening of DCON, where the dominion contraction
property is only required to hold for alternatives contained in the choice set.

Definition 21. A tournament solution S satisfies weak dominion contraction (WDCON)
if S(A \ (D�(a))) ⊆ S(A) for all tournaments T = (A,≻) and a ∈ S(A).

Since SQ satisfies DCON for any concept of qualified subsets Q, ŜQ satisfies WDCON

if SSQ
is directed.

Proposition 9. Let Q be a concept of qualified subsets such that SSQ
is directed. Then,

ŜQ satisfies WDCON.

Proof. Let T = (A,≻) be a tournament, B = ŜQ(T ), b ∈ B, and C = B \ D�(b).
We show that C is SQ-stable in A \D�(b). Let a ∈ A \ (B ∪D�(b)) and consider the
tournament restricted to C ∪ {a}. We know from B’s stability that SQ(B ∪ {a}) ⊆ B.
Furthermore, since SQ satisfies DCON (Lemma 1), SQ(C ∪ {a}) ⊆ C, which shows that
C is SQ-stable and thus contains the minimal SQ-stable set.

Consequently, TC and MC satisfy WDCON and ME satisfies WDCON if Conjecture 1
holds. Some insight reveals that WDCON is strongly related to retentiveness.
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5.2 TEQ as a Minimal Stable Set

Lemma 3. A tournament solution S satisfies WDCON if and only if S(T ) is S-retentive
for any tournament T .

Proof. Let T = (A,≻) be a tournament. WDCON demands that S(A \D�(a)) ⊆ S(A)
for any a ∈ S(A). Since A \ D�(a) = D(a), this is equivalent to S(D(a)) ⊆ S(A) for
any a ∈ S(A), which precisely characterizes S-retentiveness of S(A).

Together with Proposition 9 we thus have that every SQ-stable set is ŜQ-retentive,
i.e., SSQ

⊆ RbSQ
.

Unfortunately, and somewhat surprisingly, it is not known whether TEQ satisfies any
of the basic properties defined in Section 2.5. However, Laffond et al. (1993a) and Houy
(2009a,b) have shown that TEQ satisfies any of the basic properties if and only if RTEQ

is directed, and is strictly contained in the minimal covering set MC if RTEQ is directed.
We show that, given that Conjecture 2 is true, TEQ is the finest tournament solution
satisfying WDCON and thus a refinement of all tournament solutions SQ where Q is a
concept of qualified subsets.

Theorem 6. If RTEQ is directed, then TEQ is the finest tournament solution satisfying
WDCON.

Proof. Let S be a tournament solution that satisfies WDCON. We prove by induction on
the tournament order n that S(T ) is TEQ-retentive for any tournament T . The basis
is straightforward. For the induction step we may assume that S(T ) is TEQ-retentive
for all tournaments T of order n or less. Now, consider a tournament T of order n + 1
and let a ∈ S(T ). Since D(a) contains at most n alternatives, S(D(a)) is known to
be TEQ-retentive and thus contains the unique minimal TEQ-retentive set in D(a)
(the existence of which follows from the directness of RTEQ ). Hence, S(T ) is TEQ-
retentive and consequently contains TEQ(T ). The fact that TEQ satisfies WDCON

follows straightforwardly from Lemma 3.

Corollary 2. Let Q be a concept of qualified subsets such that SQ is directed and assume
that RTEQ is directed. Then, TEQ ⊆ ŜQ.

Proof. The statement follows directly from Theorem 6 and Proposition 9.

In particular, we have TEQ ⊆ME if RTEQ is directed. This leaves open the question
of whether TEQ and ME are actually different solution concepts. The tournament given
in Figure 5.1 demonstrates that this is indeed the case.

5.2 TEQ as a Minimal Stable Set

A natural question is whether TEQ itself can be represented as a minimal stable set.
The following two lemmas establish that this is indeed the case if RTEQ is directed. We

first show that every S-retentive set is S̊-stable if S satisfies WSP.

Lemma 4. Let S be a tournament solution that satisfies WSP. Then, RS ⊆ SS̊
.
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5 Retentiveness and Stability

a1

a2

a3

a4

a5

a6

a7

a8

Figure 5.1: Example tournament T = (A,≻) where ME and TEQ differ (ME (T ) = A
and TEQ(T ) = A \ {a5}). In particular, A \ {a5} is no extending set since
a5 ∈ BA(A) via the non-extendable transitive set {a5, a6, a7, a8}.

Proof. Let T = (A,≻) be a tournament and B an S-retentive set in A. If B = A,
the statement is trivially satisfied. Otherwise, let a ∈ A \ B. We first show that
B is S-retentive in B ∪ {a}. Let b be an arbitrary alternative in B. S-retentiveness
implies S(D(b)) ⊆ B and WSP implies S(DB∪{a}(b)) ⊆ S(D(b)). As a consequence,

S(DB∪{a}(b)) ⊆ B, and thus B is S-retentive in B ∪ {a}. It remains to be shown
that a is not contained in another minimal S-retentive subset of B ∪ {a}. Assume for
contradiction that a is contained in some minimal S-retentive set. If {a} itself were an
S-retentive set, a would be the Condorcet winner in B∪{a}, contradicting the fact that
B is S-retentive in B ∪ {a}. Now let C ⊂ B ∪ {a} with a ∈ C and |C| > 1 be a minimal
S-retentive set. According to Proposition 8, B ∩C is also S-retentive, contradicting the
minimality of C. It follows that B is S̊-stable.

Assuming the directedness of RTEQ , it can be shown that every TEQ-stable set is
also TEQ-retentive.

Lemma 5. If RTEQ is directed, then STEQ ⊆ RTEQ .

Proof. Let T = (A,≻) be a tournament. It is sufficient to prove the following statement:
Let B ⊆ A, b1, b2 ∈ A \ B, C1 = TEQ(B ∪ {b1}), and C2 = TEQ(B ∪ {b2}) such that
b1 6∈ C1 and b2 6∈ C2. Then C1 = C2 = C and C is TEQ-retentive in B ∪ {b1, b2}.

We may assume that b1 6= b2 since the statement is trivially satisfied if b1 = b2. We
prove the statement by induction on the size of B. For the basis, let B = {b}. We then
have b ≻ b1 and b ≻ b2, which makes b a Condorcet winner in {b, b1, b2} and hence a
TEQ-retentive subset of {b, b1, b2}. Now assume that the statement holds for any set of
size up to k. Let |B| = k + 1 and b1, b2, C1, and C2 be defined as in the statement.
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5.2 TEQ as a Minimal Stable Set

Directedness of RTEQ is equivalent to TEQ satisfying SSP (Laffond et al., 1993a). Since
b1 6= b2, SSP implies that C1 = C2 = C. Let a ∈ C, C ′

1 = TEQ(DB∪{b1}(a)), and C ′
2 =

TEQ(DB∪{b2}(a)). If b1 6∈ D(a) or b2 6∈ D(a), TEQ(DB∪{b1,b2}(a)) ⊆ C ′
1 = C ′

2 = C ′

since, according to Proposition 8, C ′
1 is TEQ-retentive in DB∪{b1}(a) and C ′

2 is TEQ-

retentive in DB∪{b2}(a). Otherwise we can apply the induction hypothesis to DB(a),
since b1 6∈ C ′

1 and b2 6∈ C ′
2 due to the fact that a ∈ C. Thus, C ′

1 = C ′
2 = C ′ is TEQ-

retentive in DB∪{b1,b2}(a). Conjecture 2 further implies that TEQ(DB∪{b1,b2}(a)) ⊆ C ′.
As a consequence, C is TEQ-retentive in B ∪ {b1, b2}.

We have now cleared the ground for the main result of this section.

Theorem 7. If RTEQ is directed, then TEQ = T̂EQ.

Proof. Since TEQ = ˚TEQ by definition, Lemma 4 implies that every TEQ-retentive set
is TEQ-stable, given that TEQ satisfies WSP. Assuming that RTEQ is directed, a simple
inductive argument shows that TEQ indeed satisfies WSP. Lemma 5, on the other hand,
establishes that every TEQ-stable set is also TEQ-retentive, which completes the proof
as RTEQ = STEQ .

Combining Definition 20 and Theorem 7 and assuming that Conjecture 2 is true, we
obtain the appealing equation

TEQ = ˚TEQ = T̂EQ .

While TEQ is the only tournament solution S such that S = S̊, we know from Theorem 5
that all tournament solutions S = ŜQ such that SQ is directed satisfy S = Ŝ. The
equation above raises the question whether there are other tournament solutions that
are their own minimal stable and minimal retentive set, i.e., tournament solutions S such
that S̊ = Ŝ. It can be shown that TEQ is the finest “reasonable” concept among these.
However, whether any such tournament solution besides TEQ exists remains unknown.

Proposition 10. Let S be a tournament solution that satisfies WSP, Ŝ = S̊, and SS is
directed. Then, TEQ ⊆ S if RTEQ is directed.

Proof. Let T = (A,≻) be a tournament. We prove by induction on the tournament
order n that every S-retentive set B ⊆ A is also TEQ-retentive if Ŝ = S̊ and S satisfies
WSP. The basis is straightforward. For the induction step consider a tournament of
order n + 1 that contains an S-retentive set B and let b ∈ B. We know from the
induction hypothesis that TEQ(D(b)) ⊆ S̊(D(b)) = Ŝ(D(b)). Since S satisfies WSP

and SS is directed, Ŝ(D(b)) ⊆ S(D(b)) ⊆ B. Hence, TEQ(D(b)) ⊆ B and B is TEQ-
retentive.

Theorem 7 entails that Conjecture 2 is at least as strong as Conjecture 1.

Theorem 8. If RTEQ is directed, then SM∗ is directed.
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5 Retentiveness and Stability

Proof. We prove the statement by contradiction. Assume that RTEQ is directed, but
SM∗ is not. The directedness of RTEQ implies the directedness of STEQ (Theorem 7).

Furthermore, Corollary 2 states that TEQ is a refinement of ŜQ for any concept of
qualified subsets Q. Hence, every SM∗-stable set is also TEQ-stable. According to
Theorem 2, SM∗ is not directed if and only if there are two disjoint SM∗-stable sets.
However, these sets would also constitute two disjoint TEQ-stable sets, a contradiction.

Similarly, the (known) directedness of SM (cf. Theorem 3) also follows from the con-
jectured directedness of RTEQ . We finally show that Conjecture 2 is equivalent to the
statement that there are no two disjoint TEQ-stable sets in any tournament.

Theorem 9. RTEQ is directed if and only if STEQ pairwise intersects.

Proof. The direction from left to right follows from Theorem 7. The converse implica-
tion is proven by induction on the tournament order n. The basis is straightforward.
For the induction step, we may assume that RTEQ is directed for all tournaments of
order n or less. A simple inductive argument shows that TEQ satisfies WSP in these
tournaments. The proof of Lemma 4 actually shows that, given that TEQ meets WSP

for all tournaments of order at most n, RTEQ ⊆ STEQ for all tournaments with up to
n + 1 alternatives. Now assume for contradiction that there is a tournament of order
n+1 that contains two disjoint TEQ-retentive sets. It follows from Lemma 4 that these
sets are also TEQ-stable, a contradiction.
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Unser Verfahren kommt darauf hinaus, daß die relativen Spielstärken

als Wahrscheinlichkeiten aufgefaßt und so bestimmt werden, daß die

Wahrscheinlichkeit für das Eintreten des beobachteten Turnier-Ergebnisses

eine möglichst große wird.

E. Zermelo, 1929 6
Quantitative Concepts

In Chapter 3, several solution concepts were defined by collecting the maximal elements
of inclusion-maximal qualified subsets. In this chapter, we replace maximality with
respect to set inclusion by maximality with respect to cardinality, i.e., we look at qualified
subsets containing the largest number of elements.

6.1 Maximal Qualified Subsets

For any set of finite sets S, define max≤(S) = {S ∈ S | |S| ≥ |S′| for all S′ ∈ S}. In
analogy to Definition 13, we can now define a solution concept that yields the maximal
elements of the largest qualified subsets.

Definition 22. Let Q be a concept of qualified subsets. Then, the tournament solution
S#
Q is defined as

S#
Q(T ) = {max

≺
(B) | B ∈ max

≤
(Q(T ))}.

Obviously, S#
Q ⊆ SQ for any concept of qualified subsets Q. For the concept of

qualified subsets M, i.e., the set of subsets that admit a maximal element, we obtain
the Copeland set.

Copeland set. S#
M(T ) returns the Copeland set CO(T ) of a tournament T , i.e., the set

of all alternatives whose dominion is of maximal size (Copeland, 1951).1

6.2 Minimal Stable Sets

When the Copeland set is taken as the basis for stable sets, some tournaments contain
more than one inclusion-minimal externally stable set and, even worse, do not admit a
set that satisfies both internal and external stability (see Figure 6.1 for an example).

However, as it turns out, every tournament is the summary of some tournament con-
sisting only of homogeneous components that admits a unique internally and externally

1This set is usually attributed to Copeland despite the fact that Zermelo (1929) and Llull (as early as
1283, see Hägele and Pukelsheim 2001) have suggested equivalent concepts much earlier.
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6 Quantitative Concepts

a1

a2a3

a4a5

Figure 6.1: Example tournament T = (A,≻) that does not contain an internally and
externally CO-stable set. There are four externally CO -stable sets (A,
{a2, a3, a4, a5}, {a1, a3, a4, a5}, and {a1, a2, a4, a5}), none of which is inter-
nally stable.

CO-stable set. For example, when replacing a4 and a5 in the tournament given in Fig-
ure 6.1 with 3-cycle components, the set of all alternatives is internally and externally
stable. The following definition captures this strengthened notion of stability.

Definition 23. Let S be a tournament solution and T̃ = ({1, . . . , k}, ≻̃) a tourna-
ment. Then, B̃ ⊆ {1, . . . , k} is strongly stable with respect to tournament solution
S (or strongly S-stable) if there exist homogeneous tournaments T1, . . . , Tk on k dis-
joint sets B1, . . . , Bk ⊆ X such that B =

⋃
i∈B̃ Bi is internally and externally S-stable

in T = Π(T̃ , T1, . . . , Tk). The set of strongly S-stable sets for a given tournament
T = (A,≻) will be denoted by S̃S(T ) = {B ⊆ A | B is strongly S-stable in T}.

Now, in analogy to Ŝ, we can define a tournament solution that yields the minimal
strongly S-stable set with respect to some underlying tournament solution S.

Definition 24. Let S be a tournament solution. Then, the tournament solution
⌢

S is
defined as

⌢

S(T ) =
⋃

min
⊆

(S̃S(T )).

The following result follows straightforwardly from observations made independently
by Laffond et al. (1993b) and Fisher and Ryan (1995) (see, also Laslier, 1997, 2000).

Theorem 10 (Laffond et al., 1993b). |S̃
S

#

M

(T )| = 1 for any tournament T .

The unique strongly stable set with respect to the Copeland set is the bipartisan set.

Bipartisan set. The bipartisan set of a tournament T is given by BP(T ) =
⌢

S#
M(T ),

i.e., the set of alternatives corresponding to the support of the unique Nash equilibrium
of the tournament game (Laffond et al., 1993b). The tournament game of a tournament
is the two-player zero-sum game given by its adjacency matrix (see Section 8.2).

BP satisfies all basic properties, composition-consistency, and is contained in MC . Its
relationship with BA is unknown (Laffond et al., 1993b).
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6.2 Minimal Stable Sets

Interestingly, minimality is not required for
⌢

S#
M, because there can be at most one

S#
M-strongly stable set. Further observe that internally and externally stable sets and

strongly stable sets coincide when the underlying solution concept satisfies COM. This
is the case for MC , ME , and TEQ . Even though, TC does not satisfy COM, it is easily
verified that replacing alternatives with homogeneous components does not affect the
top cycle of a tournament. It is thus possible to define all mentioned concepts using
minimal strongly stable sets instead of stable sets (see Table 6.1).

S
⌢

S

Condorcet non-losers (CNL) Top cycle (TC )
Copeland set (CO) Bipartisan set (BP)
Uncovered set (UC ) Minimal covering set (MC )
Banks set (BA) Minimal extending set (ME)
Tournament equilibrium set (TEQ) Tournament equilibrium set (TEQ)

Table 6.1: Tournament solutions and their minimal strongly stable counterparts. The
representation of TEQ as a stable set relies on Conjecture 2.
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My own viewpoint is that, inter alia, a solution concept must be calculable,

otherwise you are not going to use it.

R. J. Aumann, 1998 7
Computational Aspects

The effort required to determine the choice set of a given tournament is obviously an
important property of any tournament solution. If computing a choice set is infeasible,
the applicability of the corresponding solution concept is seriously undermined. In order
to make formal statements about the computational aspects of tournament solutions, we
will rely on the well-established framework of computational complexity theory (see, e.g.,
Papadimitriou, 1994). Complexity theory deals with complexity classes of problems that
are computationally equivalent in a certain well-defined way. Typically, problems that
can be solved by an algorithm whose running time is polynomial in the size of the problem
instance are considered tractable, whereas problems that do not admit such an algorithm
are deemed intractable. Formally, an algorithm is polynomial if there exists k ∈ N such
that the running time is in O(nk) where n is the size of the input. When k = 1, the
running time is linear.

For convenience, problems are usually phrased as decision problems, i.e., problems
whose answer is either “yes” or “no.” The class of decision problems that can be solved in
polynomial time is denoted by P, whereas NP (for “nondeterministic polynomial time”)
refers to the class of decision problems whose solutions can be verified in polynomial
time. The famous P 6=NP conjecture states that the hardest problems in NP do not admit
polynomial-time algorithms and are thus not contained in P. Although this statement
remains unproven, it is widely believed to be true. Hardness of a problem for a particular
class intuitively means that the problem is no easier than any other problem in that class.
Both membership and hardness are established in terms of reductions that transform
instances of one problem into instances of another problem using computational means
appropriate for the complexity class under consideration. Most reductions in this chapter
rely on reductions that can be computed in time polynomial in the size of the problem
instances. Finally, a problem is said to be complete for a complexity class if it is both
contained in and hard for that class.

Given the current state of complexity theory, we cannot prove the actual intractability
of most algorithmic problems, but merely give evidence for their intractability. Showing
NP-hardness of a problem is commonly regarded as very strong evidence for computa-
tional intractability because it relates the problem to a large class of problems for which
no efficient, i.e., polynomial-time, algorithm is known, despite enormous efforts to find
such algorithms.

The definition of any computable tournament solution induces a straightforward al-
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7 Computational Aspects

gorithm, which exhaustively enumerates all subsets of alternatives and checks which of
them comply with the conditions stated in the definition. Not surprisingly, such an algo-
rithm is very inefficient. Yet, proving the intractability of a solution concept essentially
means that any algorithm that implements this concept is asymptotically as bad as the
straightforward algorithm! The following decision problem will be of central interest in
this chapter:

Given a tournament solution S, a tournament T = (A,≻), and an alternative
a ∈ A, is a contained in S(T )?

Deciding whether an alternative is contained in a choice set is computationally equivalent
(via so-called first-order reductions) to actually finding the set. As a consequence, we
can restrict our attention to the above mentioned membership decision problem without
loss of generality.

Besides P and NP, we will consider the complexity classes AC0 and TC0. AC0 is the
class of problems solvable by uniform constant-depth Boolean circuits with unbounded
fan-in and a polynomial number of gates. TC0 is defined as AC0, but additionally allows
majority gates which output true if and only if the number of true inputs exceeds the
number of false inputs. Uniformity means that there is an algorithm that requires only
logarithmic space for constructing the circuit Cn for each input length n. AC0, TC0, P,
and NP are related according to the following inclusion chain:

AC0 ⊂ TC0 ⊆ P ⊆ NP.

The inclusion relationships between TC0 and P and between P and NP are believed to
be strict.

Finite model theory has revealed a strong relationship between complexity theory
and logic in a finite, ordered universe (see, e.g., Immerman, 1998; Libkin, 2004). This
underlines the robustness of common complexity classes as their logical characterizations
do not invoke machine models or notions such as time and space, let alone “polynomial”
and “exponential.” NP, for instance, is the class of predicates definable in existential
second-order logic. We will make no appeal to these logical characterizations except
when showing membership in AC0 as this class simply corresponds to first-order logic.1

For a binary operator ≻ representing the dominance relation, a first-order theory of
tournaments is given by the axioms

∀x∀y (¬x = y ↔ x ≻ y ∨ y ≻ x) and ∀x∀y(x ≻ y → ¬y ≻ x).

The membership decision problem for tournament solution S is in AC0 if there is a
first-order expression that is true for a given set A and a binary relation ≻ if and only
if (A,≻) is a tournament and a ∈ S(A). In order to simplify first-order expressions, we
furthermore let x �0 y ↔ x = y and x �k+1 y ↔ x �k y ∨ ∃z (x �k z ∧ z ≻ y).

In the remainder of this chapter, we will analyze the computational complexity of the
most common tournament solutions of our framework, namely the Copeland set, the

1More precisely, uniform AC0 corresponds to first-order logic with a so-called BIT predicate. Our
results, however, do not require the BIT predicate.
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7.1 Copeland Set

uncovered set, the Banks set, the top cycle, the bipartisan set, the minimal covering set,
the minimal extending set, and the tournament equilibrium set.

7.1 Copeland Set

The Copeland set consists of all alternatives with maximal degree, i.e., all alternatives
whose dominion is of maximal size. Not surprisingly, this set can be easily computed in
linear time (see Algorithm 1).

Algorithm 1 Copeland set

procedure CO(A,≻)
B ← {a ∈ A | ∀b ∈ A : |D(a)| ≥ |D(b)}
return B

However, the membership decision problem for the Copeland set is not in AC0 and
therefore not expressible in first-order logic.

Theorem 11 (Brandt et al., 2009a). Deciding whether an alternative is contained in
the Copeland set of a tournament is TC0-complete under first-order reductions.

7.2 Uncovered Set

The uncovered set is usually defined via a subrelation of the dominance relation called
covering relation rather than in terms of maximal sets that admit a maximal element
(cf. Section 3.2).

Definition 25. Let (A,≻) be a tournament. Then, for any a, b ∈ A, a covers b, in
symbols a ⊃ b, if D(a) ⊃ D(b).

Observe that a ⊃ b implies a ≻ b and that a ⊃ b if and only if D(a) ⊂ D(b). It
is easily verified that the covering relation is a transitive subrelation of the dominance
relation. The set of maximal elements of the covering relation of a given tournament
T is the uncovered set UC (T ) = {a ∈ A | b ⊃ a for no b ∈ A} (Fishburn, 1977; Miller,
1980).

Interestingly, the uncovered set consists precisely of those alternatives that reach every
other alternative on a domination path of length at most two. In graph theory, these
alternatives are often called the kings of a tournament.

Theorem 12 (Shepsle and Weingast, 1984). UC (T ) = {a ∈ A | D�2(a) = A} for any
tournament T = (A,≻).

Proof. For the direction from left to right, let a ∈ UC (T ). Clearly, if b ∈ D(a), then
b ∈ D�2(a). Let therefore b ∈ D(a). Since a lies within the uncovered set, b may not
cover a, i.e., D(b) 6⊆ D(a). Thus, there has to be a c ∈ D(b) such that c 6≻ a. As a
consequence, a ≻ c ≻ b and b ∈ D�2(a).
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For the converse, let a 6∈ UC (T ). Then, there has to be b ∈ D(a) such that b ⊃ a,
which implies that b dominates all c in D(a) and consequently that b 6∈ D�2(a).

The previous characterization can be leveraged to compute the uncovered set via ma-
trix multiplication (Landau, 1953). Using the fastest known algorithm for matrix multi-
plication (Coppersmith and Winograd, 1990), the asymptotic complexity of Algorithm 2
is O(n2.38) (see, also Hudry, 2009).2

Algorithm 2 Uncovered set

procedure UC (A,≻)
for all i, j ∈ A do

if i ≻ j ∨ i = j then mij ← 1
else mij ← 0 end if

end for

M ← (mij)i,j∈A

U ← (uij)i,j∈A ←M2 + M
B ← {i ∈ A | ∀j ∈ A : uij 6= 0}
return B

Since CO ⊆ UC , the alternatives that dominate most alternatives dominate every
alternative on a path of length at most two. From a complexity theory point of view,
deciding whether an alternative lies within UC (T ) is computationally easier than check-
ing whether it is contained in CO(T ), despite the fact that the fastest known algorithm
for computing UC is asymptotically slower than the fastest algorithm for CO . Comput-
ing the uncovered sets can be highly parallelized by determining the covering relation
for every pair of alternatives.

Theorem 13 (Brandt and Fischer, 2008). Deciding whether an alternative is contained
in the uncovered set of a tournament is in AC0.

The previous theorem follows straightforwardly from the fact that there is a simple
first-order expression for checking membership in the uncovered set,

UC (x) ↔ ∀y (x �2 y).

The theorem also implies that the iterated uncovered set UC∞ can be computed in
polynomial time.

7.3 Banks set

In contrast to the previous two tournament solutions, the Banks set, which consists of the
maximal alternatives of maximal transitive subsets, cannot be computed in polynomial
time unless P equals NP.

2There is some evidence that O(n2) algorithms for matrix multiplication exist (Cohn et al., 2005).
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Theorem 14 (Woeginger, 2003). Deciding whether an alternative is contained in the
Banks set of a tournament is NP-complete.

An alternative, arguably simpler, proof of this statement has been given by Brandt
et al. (2009b). Interestingly, random alternatives (and thus subsets) of the Banks set can
be found in linear time (Hudry, 2004). This is can be achieved by iteratively assembling
maximal transitive sets (see Algorithm 3). The difficulty of computing the Banks sets
is rooted in the potentially exponential number of maximal transitive subsets contained
in a tournament.

Algorithm 3 Banks set element

procedure BA− ELEMENT(A,≻)
a ∈ A
loop

B ← B ∪ {a}
C ← {c | c ≻ B}
if C = ∅ then return a end if

a ∈ C
end loop

7.4 Top Cycle

The top cycle or minimal dominating set of a tournament T can be computed in linear
time by starting with an arbitrary non-empty (linear-time computable) set of alternatives
contained in TC (T ), e.g., CO(T ), and then iteratively adding alternatives that are not
dominated by the current set (see Algorithm 4).3

Algorithm 4 Top Cycle

procedure TC (A,≻)
B ← C ← CO(A,≻)
loop

C ←
⋃

a∈C DA\B(a)
if C = ∅ then return B end if

B ← B ∪C
end loop

The following lemma will prove useful for characterizing the computational complexity
of the top cycle.

Lemma 6. TC (T ) = {a ∈ A | D�∗(a) = A} for any tournament T = (A,≻).

3Slightly more efficient algorithms can be obtained by relying on the fact that the degree of any
alternative in the top cycle is always at least as high as the degree of any alternative outside the top
cycle (Moon, 1968).
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Proof. Let T = (A,≻) be a tournament. For the inclusion from left to right, let a ∈
TC (T ). We first show that for any b ∈ A, D�∗(b) is a dominating set. Assume for
contradiction that there are alternatives c ∈ D�∗(b) and d 6∈ D�∗(b) such that c 6≻ d.
This implies that d ≻ c and consequently that d ∈ D�∗(b), a contradiction. Since
a is contained in all dominating sets, a ∈ D�∗(b) for any b ∈ A. As a consequence,
D�∗(a) = A.

For the converse, assume that a 6∈ TC (T ) and let b ∈ TC (T ). Since all alternatives
in TC (T ) dominate all alternatives outside TC (T ), no alternative in TC (T ), including
b, can be contained in D�∗(a).

Nickelsen and Tantau (2005) have shown that reachability in tournaments can be
decided in AC0. This implies that deciding membership in the top cycle is also in AC0.

Theorem 15 (Brandt et al., 2009a). Deciding whether an alternative is contained in
the top cycle of a tournament is in AC0.

Interestingly, Nickelsen and Tantau’s proof relies on the existence of an alternative
that dominates every other alternative in at most two steps (see Section 7.2). As in the
case of the uncovered set, there is a first-order expression for membership in the top
cycle,

TC (x) ↔ ∀y ∀z (∀v (z �3 v → z �2 v) ∧ z �2 x→ z �2 y).

7.5 Bipartisan Set

The bipartisan set, i.e., the set of actions of the tournament game that are played with
positive probability in the unique Nash equilibrium (see also Section 8.2), can be found
efficiently by solving a linear feasibility problem (see Algorithm 5).

Algorithm 5 Bipartisan set

procedure BP(A,≻)
for all i, j ∈ A do

if i ≻ j then mij ← 1
else if j ≻ i then mij ← −1
else mij ← 0 end if

end for

s ∈ {s ∈ R
n |

∑
j∈A sj ·mij ≤ 0 ∀i ∈ A∑
j∈A sj = 1

sj ≥ 0 ∀j ∈ A}
B ← { a ∈ A | sa > 0 }
return B

Theorem 16 (Brandt and Fischer, 2008). Deciding whether an alternative is contained
in the bipartisan set is in P.
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In incomplete tournaments—a generalization of tournaments where the dominance
relation is not required to be complete—the membership decision problem is P-complete
(Brandt and Fischer, 2008). Whether this also holds for tournaments is an open problem.

7.6 Minimal Covering Set

Since its introduction in 1988, there has been doubt whether the minimal covering set can
be computed efficiently (Dutta, 1988; Laslier, 1997). In contrast to all solution concepts
considered so far in this chapter, there is no obvious reason why the corresponding
decision problem should be in NP, i.e., even verifying whether a given set is indeed a
minimal covering set is a non-trivial task. While it can easily be checked whether a set
is a covering set, verification of minimality is problematic. For all previously considered
concepts, there are witnesses of polynomial size—maximal sets that admit a maximum
in the case of the uncovered set or maximal transitive sets in the case of the Banks set—
that permit the efficient verification of a choice set. The problem of verifying a minimal
covering set and the more general problem of deciding whether a given alternative a is
contained in MC are both in coNP, the class consisting of all decision problems whose
complement is in NP. This is due to the fact that MC is contained in all covering sets.
In other words, a 6∈ MC if and only if there is a (not necessarily minimal) covering set
B ⊆ A with a 6∈ B.

By the inclusion of BP in MC (Laffond et al., 1993b), Algorithm 5 provides a way
to efficiently compute a non-empty subset of MC . While in general the existence of an
efficiently computable subset cannot be exploited to efficiently compute the set itself
(just recall the case of the Banks set from Section 7.3), it is of great benefit in the case
of MC .

Algorithm 6 resembles Algorithm 4 in that it starts with an efficiently computable
subset of the choice set to be computed—in this case the bipartisan set—and then iter-
atively adds specific elements outside the current set that are still uncovered. However,
in contrast to Algorithm 4, we must only add elements that may not be covered in a
later iteration, and it is unclear which elements these should be. Lemma 7 shows that
elements in the minimal covering set of the uncovered alternatives can be safely added
to the current set. Since a non-empty subset of any minimal covering set, viz. the
bipartisan set, can be found efficiently, this completes the algorithm.

Algorithm 6 Minimal covering set

procedure MC (A,≻)
B ← BP(A,≻)
loop

A′ ←
⋃

a∈A\B(UC (B ∪ {a}) ∩ {a})

if A′ = ∅ then return B end if

B ← B ∪ BP(A′,≻)
end loop
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Lemma 7. Let T = (A,≻) be a tournament, B ⊆ MC (T ), and A′ =
⋃

a∈A\B(UC (B ∪

{a}) ∩ {a}). Then, MC (A′) ⊆MC (T ).

Proof. We extend the notation introduced in Definition 25 by writing a ⊃Z b if DZ(b) ⊂
DZ(a) for an arbitrary set Z ⊆ A. Now, partition A′, the set of alternatives not covered
by B, into two sets C and C ′ of elements contained in MC (T ) and elements not contained
in MC (T ), i.e., C = A′ ∩ MC (T ) and C ′ = A′ \ MC (T ). We will show that C is
externally stable within A′. Since MC (A′) is contained in all sets that are externally
stable within A′, this means that MC (A′) ⊆ MC (T ).

In the following, we will use an easy consequence of the definition of the covering
relation: for two sets Z,Z ′ with Z ′ ⊆ Z ⊆ A and two alternatives a, b ∈ Z ′, if a ⊃Z b,
then a ⊃Z′ b. We will refer to this property as “covering in subsets.”

Let a ∈ C ′. Since a /∈ MC (T ), there has to be some b ∈ MC (T ) such that b ⊃MC (T )∪{a}

a. It is easy to see that b /∈ B. Otherwise, since B ⊆ MC (T ) and by covering in subsets,
b ⊃B∪{a} a, contradicting the assumption that a ∈ A′. On the other hand, assume that
b ∈ MC (T )\(B∪C). Since b ⊃MC (T )∪{a} x, B ⊆ MC (T ), and by covering in subsets, we
have that DB(a) ⊂ DB(b). Furthermore, since b /∈ A′, there has to be some c ∈ B such
that DB(b) ⊂ DB(c). Combining the two, we have DB(a) ⊂ DB(c), i.e., c ⊃B∪{a} a.
This again contradicts the assumption that a ∈ A′. It thus has to be the case that b ∈ C.
Since C ⊆ MC (T ), it follows from covering in subsets that b ⊃C∪{a} a. We have shown
that for every a ∈ C ′, there exists b ∈ C such that b ⊃C∪{a} a, i.e., C is externally stable
within A′.

Since B and A′ in the statement of Lemma 7 are always disjoint, we obtain a powerful
tool: For every proper subset of the minimal covering set, the lemma tells us how to find
another disjoint and non-empty subset. This tool allows us to iteratively compute MC
(see Algorithm 6).4

Theorem 17 (Brandt and Fischer, 2008). Deciding whether an alternative is contained
in the minimal covering set of a tournament is in P.

7.7 Tournament Equilibrium Set

As in the case of the minimal covering set, there has been concern whether the tour-
nament equilibrium set of a tournament can be computed efficiently (Laslier, 1997). In
contrast to the minimal covering set, it turned out that there exists no efficient algorithm
for this task unless P equals NP.

Theorem 18 (Brandt et al., 2009b). Deciding whether an alternative is contained in
the tournament equilibrium set of a tournament is NP-hard.

The proof the previous theorem actually shows that the membership decision prob-
lem for any tournament solution that is sandwiched between BA and TEQ , i.e., any

4Lemma 7 can also be used to construct a recursive algorithm for computing MC without making any
reference to BP . However, such an algorithm has exponential worst-case running time.
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tournament solution S with TEQ ⊆ S ⊆ BA, is NP-hard. We thus obtain the following
corollary.

Corollary 3. Deciding whether an alternative is contained in the minimal extending set
of a tournament is NP-hard if RTEQ is directed.

There are no obvious reasons why any of these problems—membership in TEQ and
ME—should be in NP. They are possibly much harder.

Theorem 18 implies that the existence of a polynomial-time algorithm for computing
TEQ is highly unlikely. Nevertheless, a practical algorithm for TEQ that runs reasonably
well on moderately-sized instances, even though its worst-case complexity is of course
exponential, would be very useful. The following alternative definition of TEQ will be
valuable for devising a relatively efficient TEQ algorithm. Let A be a set and R a
binary relation on A. Then, MTC (A,R) is defined as the set consisting of the maximal
elements of the asymmetric part of the transitive closure of R in A. Now, define the
tournament equilibrium set of a tournament (A,≻) as TEQ(A,≻) = MTC (A,→A)
where →B is defined as the binary relation on B ⊆ A such that, for all a, b ∈ B,
a →B b if and only if a ∈ TEQ(DB(b)). Further let TEQ(∅,≻) = ∅. Like the covering
relation, the TEQ relation →A is a subrelation of the dominance relation ≻. A naive
algorithm for computing TEQ can be implemented by recursively computing the TEQ
relation and then returning the maximal elements of the asymmetric part of its transitive
closure, which can be efficiently computed using standard algorithms such as that of
Tarjan (1972). The performance of this algorithm can be significantly improved by
assuming that Conjecture 2 holds (Brandt et al., 2009b). This assumption can fairly be
made because otherwise TEQ would not satisfy any of the basic properties and thus be
severely compromised as a solution concept (see Section 5.1). Consequently, the issue of
computing TEQ would be irrelevant.

Algorithm 7 Tournament Equilibrium Set

procedure TEQ(A,≻)
R← ∅
B ← C ← CO(A,≻)
loop

R← R ∪ {(b, a) : a ∈ C ∧ b ∈ TEQ(D(a))}
D ←

⋃
a∈C TEQ(D(a))

if D ⊆ B then return MTC (B,R) end if

C ← D
B ← B ∪C

end loop

Algorithm 7 computes TEQ(T ) by initializing working set B with the Copeland set
CO(T ). These alternatives are good candidates to be included in TEQ(T ) and the
small size of their dominator sets speeds up the computation of their TEQ-dominators.
Then, all alternatives that TEQ-dominate any alternative in B are iteratively added to
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B until no more such alternatives can be found, in which case the algorithm returns
MTC of →B .

Experimental results show that Algorithm 7 dramatically outperforms a naive algo-
rithm that computes the entire TEQ relation (Brandt et al., 2009b).

7.8 Summary

Table 7.1 summarizes the computational complexity of the considered tournament solu-
tions. There are linear-time algorithms for the Copeland set and the top cycle. Moreover,
a single element of the Banks set can be found in linear time. Computing the Banks
set, the tournament equilibrium set, and the minimal extending set is intractable unless
P equals NP. Apparently, the minimal covering set and the bipartisan set fare particu-
larly well in terms of the tradeoff between efficient computability and choice-theoretic
attractiveness (see also Table 9.1).

Tournament solution Computational complexity

Copeland set (CO) TC0-complete
Uncovered set (UC ) in AC0

Banks set (BA) NP-complete
Top cycle (TC ) in AC0

Minimal covering set (MC ) in P
Minimal extending set (ME ) NP-hard
Bipartisan set (BP) in P
Tournament equilibrium set (TEQ) NP-hard

Table 7.1: The computational complexity of tournament solutions
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Although the motivation and most of the applications of this study are

from animal societies it should be remarked that there are other examples

of dominance relations.

H. G. Landau, 1951 8
Applications to Decision-Making

Unsurprisingly, a framework as general as that of tournament solutions has numerous
applications spanning diverse areas, among them sports competitions (see, e.g., Ushakov,
1976; de Mello et al., 2005), webpage and journal ranking (see, e.g., Kóczy and Strobel,
2007; Brandt and Fischer, 2007), biology (see, e.g., Landau, 1951a,b, 1953), and psychol-
ogy (see, e.g., Schjelderup-Ebbe, 1922; Slater, 1961). Here, we will focus on applications
related to decision-making, namely collective decision-making (social choice theory), ad-
versarial decision-making (theory of zero-sum games), and coalitional decision-making
(cooperative game theory).1 It is quite remarkable that the essence of each of these
loosely related areas can be boiled down to choice based on pairwise comparisons.

8.1 Collective Decision-Making

Many problems in the social sciences involve a group of agents that ought to choose
from a set of alternatives in a way that is faithful to the agents’ individual preferences
over the alternatives. Such problems of preference aggregation are commonly studied in
social choice theory and have various applications in political science, welfare economics,
and computational multiagent systems.

We consider a finite set of agents N = {1, . . . , n} who entertain preferences over a
universal set of alternatives or candidates X. Each agent i ∈ N possesses a transitive
and complete preference relation Ri over the alternatives in X. We have a Ri b denote
that agent i values alternative a at least as much as alternative b. In accordance with
the conventional notation, we write Pi for the strict part of Ri, i.e., a Pi b if a Ri b
but not b Ri a. Similarly, Ii denotes i’s indifference relation, i.e., a Ii b if both a Ri b
and b Ri a. A restricted type of preference relations are linear orders—i.e., transitive,
complete, and anti-symmetric relations—over the alternatives. The set of all preference
relations over a set of alternatives X will be denoted by R(X) ⊆ X ×X.

The central object of study in this section are social choice functions, i.e., functions
that map the individual preferences of the agents and a finite set of feasible alternatives
to a set of socially preferred alternatives.

Definition 26. A social choice function (SCF) is a function f : F(X)×R(X)N → F(X)
such that f(R,A) ⊆ A for all R ∈ R(X)N and A ∈ F(X).

1Besides the given examples of multi-agent decision making, tournament solutions have also been
applied to individual decision making (see, e.g., Bouyssou et al., 2006).
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We will now define three conditions on SCFs, each of which highlights a different
aspect of reasonable preference aggregation. The first condition is Pareto-optimality,
which states that an alternative should not be chosen if there exists another alternative
that all agents unanimously prefer to the former.

Definition 27. A SCF f satisfies Pareto-optimality if a 6∈ f(R,A) for all A ∈ F(X)
and R = (R1, . . . , Rn) ∈ R(X)N such that there exists b ∈ A with b Pi a for all i ∈ N .

The next condition requires that choices from a set of feasible alternatives should not
depend on preferences over alternatives that are not contained in this set.

Definition 28. A SCF f satisfies independence of irrelevant alternatives (IIA) if
f(R,A) = f(R′, A) for all A ∈ F(X) and R,R′ ∈ R(X)N such that R|A = R′|A.

Finally, the third—and most demanding—condition demands that choices from a set
and its subsets should be consistent.

Definition 29. A SCF f satisfies the weak axiom of revealed preference (WARP) if
f(R,B) = B ∩ f(R,A) for all A,B ∈ F(X) such that B ⊆ A and B ∩ f(R,A) 6= ∅.

WARP has been shown equivalent to the existence of a complete and transitive relation
on the universal set of alternatives, the maximal elements of which are precisely those
that are chosen from any feasible set of alternatives (Arrow, 1959). The existence of
such a relation is usually equated with the rationality of choice.

A minimal requirement for any SCF is that it should be sensitive to the preferences
of more than one agent. In particular, there should not be a single agent who can rule
out alternatives no matter which preferences the other agents have. Such an agent is
usually called a dictator.

Definition 30. A SCF f is dictatorial if there exists i ∈ N such that for all A ∈ F(X),
a, b ∈ A, and R = (R1, . . . , Rn) ∈ R(X)N , if b Pi a, then a 6∈ f(R,A).

Now, Arrow’s famous impossibility theorem states that there exists no non-dictatorial
SCF that meets all three seemingly mild conditions defined above.

Theorem 19 (Arrow, 1951, 1959). Every SCF that satisfies Pareto-optimality, IIA, and
WARP is dictatorial.

Put in other words, the four properties—non-dictatorship, Pareto-optimality, IIA, and
WARP—are logically inconsistent and (at least) one of them needs to be excluded to
obtain positive results. Clearly, dictatorship is not acceptable and IIA merely states that
the SCF represents a reasonable model of preference aggregation (see, e.g., Schwartz,
1986; Bordes and Tideman, 1991). Wilson (1972) has shown that dropping Pareto-
optimality only allows SCFs that are constant (i.e., completely unresponsive) or fully
determined by the preferences of a single agent. Thus, the only remaining possibility is
to exclude WARP.

At this point, we will pursue two different paths. The first one is to weaken WARP
by substituting it with less prohibitive conditions whereas the second one ignores con-
sistency with respect to the set of alternatives altogether and instead focusses on con-
sistency with respect to the set of voters.
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8.1.1 Variable Set of Alternatives

Before addressing WARP, let us add a small number of intuitively acceptable conditions,
which yield a one-to-one correspondence between SCFs and tournament solutions. The
first two conditions simply require the SCF to be symmetric with respect to the agents
and the alternatives, i.e., agents and alternatives are treated equally. These conditions
are strengthenings of non-dictatorship and IIA, respectively.

Definition 31. A SCF f is anonymous if f(R,A) = f(R′, A) for all A ∈ F(X), R =
(R1, . . . , Rn), R′ = (R′

1, . . . , R
′
n) ∈ R(X)N , and permutations π : N → N such that

R′
i = Rπ(i) for all i ∈ N .

Clearly, a dictatorial SCF cannot be anonymous.

Definition 32. A SCF f is neutral if π(f(R,A)) = f(R′, A) for all A ∈ F(X), R =
(R1, . . . , Rn), R′ = (R′

1, . . . , R
′
n) ∈ R(X)N , and permutations π : A → A such that

a R′
i b if and only if π(a) Ri π(b) for all a, b ∈ X and i ∈ N .

Neutrality can be seen to imply IIA by letting π be the identity function in the
definition above.

It also appears to be reasonable to demand that SCFs are monotonic in the sense that
increased support may not hurt an alternative in feasible sets that only consist of two
alternatives.

Definition 33. A SCF f is positive responsive if f(R′, A) = {a} for all a, b ∈ X,
R = (R1, . . . , Rn), R′ = (R′

1, . . . , R
′
n) ∈ R(X)N such that exists i ∈ N with Rj = R′

j for
all j 6= i and

(i) f(R, {a, b}) = {a}, b Ri a, and a R′
i b, or

(ii) f(R, {a, b}) = {a, b}, a Ii b and a Pi b, or b Pi a and a Ri b.

May (1952) has shown that in the case of only two alternatives, anonymity, neutrality,
and positive responsiveness completely characterize majority rule, i.e., the voting rule
that chooses an alternative whenever at least half of the voters prefer it to the other
alternative. Now, given a preference profile R ∈ R(X) and a set of feasible alternatives
A ∈ F(X), define a dominance relation such that alternative a dominates alternative b
whenever more than half of the voters prefer a to b. Obviously, this dominance relation
is asymmetric and guaranteed to be complete, i.e., a tournament, if the number of agents
is odd and individual preferences are linear.2 Moreover, McGarvey (1953) has shown
that any such dominance relation can be obtained under the given conditions.3 The
remaining condition for our characterization is a strengthening of IIA that prescribes
that all choices must only depend on the dominance relation or, more generally, on
pairwise choices.

2The reasonable, but relatively strong, assumption of so-called single-peaked individual preferences
guarantees that the dominance relation is transitive (Black, 1948; Inada, 1969).

3Improving on McGarvey’s result, Stearns (1959) has shown that any tournament can be realized via
the simple majority rule when the number of voters is at least two greater than the number of
alternatives.
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Definition 34. A SCF f is based on pairwise choices if f(R,A) = f(R′, A) for all
A ∈ F(X), R,R′ ∈ R(X)N , and a, b ∈ A such that f(R, {a, b}) = f(R′, {a, b}).

We thus arrive at the following correspondence between tournament solutions and
SCFs.

Let the number of agents be odd and all individual preference relations linear.
Then every SCF that is based on pairwise choices and satisfies neutrality,
anonymity, and positive responsiveness corresponds to a tournament solution
and vice versa.

Consider for example the preference relations of the three voters given in Figure 8.1.
A majority of voters (two out of three) prefers a to b. Another one prefers b to c and
yet another one c to a.

P1 P2 P3

a b c
b c a
c a b

a

c b

Figure 8.1: Condorcet’s paradox (de Condorcet, 1785). The left-hand side shows the in-
dividual preferences of three agents such that the pairwise majority relation,
depicted on the right-hand side, is cyclic. Each column represents the strict
preference relation of a voter, e.g., a P1 b P1 c.

Inspired by earlier work by Sen (1969), Bordes (1976) factorized the set equality of the
WARP condition into two inclusion conditions, namely α and β+. Accordingly, WARP
is equivalent to the conjunction of α, an inclusion contraction condition, and β+, an
inclusion expansion condition.

Definition 35. A SCF satisfies α if B ∩ f(R,A) ⊆ f(R,B) for all A,B ∈ F(X) such
that B ⊆ A and B ∩ f(R,A) 6= ∅.

Intuitively, α means that if an alternative is chosen from some set of alternatives, then
it will also be chosen from all subsets in which it is contained. Clearly, the corresponding
statement in terms of set expansion (a chosen alternative will be chosen in all supersets)
would be unduly strong as every alternative is chosen in some singleton set. The intu-
ition behind β+ is that if alternative a is chosen from some set that contains another
alternative b, then it will also be chosen in all supersets, which contain a and in which
b is chosen.

Definition 36. A SCF satisfies β+ if f(R,B) ⊆ B ∩ f(R,A) for all A,B ∈ F(X) such
that B ⊆ A and B ∩ f(R,A) 6= ∅.

Conditions α and β+ are known as the strongest contraction and expansion consistency
condition, respectively. It turns out that the mildest dose of contraction consistency
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gives rise to impossibility results that retain Arrow’s spirit (Sen, 1977). Expansion
consistency conditions, on the other hand, are much less restrictive. In fact, under the
given conditions, β+, the strongest expansion condition, and minimality characterize the
top cycle TC (Bordes, 1976). It therefore appears advisable to discard α and characterize
SCFs using weakened versions of β+. This has, for example, been achieved for the
uncovered set, which is characterized by a weakening of β+ called γ and minimality
(Moulin, 1986).

Anonymity, neutrality, and positive responsiveness are elementary, undisputed condi-
tions that are satisfied by all common SCFs. This leaves two avenues to generalize the
correspondence above. First, when the number of agents is not odd or their preferences
are not linear, the pairwise majority relation may not be complete; it can be represented
by an oriented graph or so-called incomplete tournament. While the definitions of many
tournament solutions have been extended to this generalized setting, no uncontroversial
extensions are known for some tournament solutions (see Chapter 9). Secondly, the
pairwise choice condition is often replaced with the Condorcet condition, which states
that the Condorcet winner has to be the unique choice whenever it exists (de Condorcet,
1785). This class includes all common tournament solutions as well as some SCFs that
take into account more information than just pairwise comparisons, such as Kemeny’s
and Dodgson’s SCFs (see, e.g., Fishburn, 1977).

8.1.2 Variable Electorate

In the previous section, we pointed out how to circumvent Arrow’s impossibility by
substituting the prohibitively strong WARP condition with weaker conditions. The
essence of all these properties is to impose restrictions on SCFs based on changes in
the set of feasible alternatives. Alternatively, one can focus on changes in the set of
voters. A very natural consistency property with respect to the electorate was suggested
independently by Smith (1973) and Young (1974). It states that all alternatives that are
chosen simultaneously by two disjoint sets of voters should be precisely the alternatives
chosen by the union of both sets of voters.

Definition 37. A SCF f is consistent if f(R∪R′, A) = f(R,A)∩f(R′, A) for all disjoint
sets N and N ′, R ∈ RN , R′ ∈ RN ′

, and A ∈ F(X) such that f(R,A) ∩ f(R′, A) 6= ∅.

Smith (1973) and Young (1975), again independently, showed that consistency char-
acterizes so-called scoring rules. For the remainder of this section, we assume that
individual preference relations are linear. Let a score function s : N × N → R be a
function that for a given number of alternatives m and rank r yields the score s(r,m) of
the rth-ranked alternative in a linear order. Every score function s yields a SCF fs by
letting

fs(R,A) = {a ∈ A | S(a) ≥ S(b) for all b ∈ A}

where S(a) =
∑

i∈N s(|{b ∈ A | b Pi a}| + 1, |A|). fs will be called a simple scoring
rule. Simple scoring rules are by far the most used voting rules in practice. Common
simple scoring rules are plurality (s(r,m) equals 1 if r = 1 and 0 otherwise), Borda
(s(r,m) = m− r), and anti-plurality (s(r,m) equals 0 if r = m and 1 otherwise).
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For an anonymous SCF g and a simple scoring rule fs, the composition of fs and g is
defined as

(fs ◦ g)(R,A) = {a ∈ g(R,A) | S(a) ≥ S(b) for all b ∈ g(R,A)}

where S(a) is defined as above. That is, the scores of fs are used to break the ties of g.

Definition 38. A SCF f is a scoring rule if there is a sequence of simple scoring rules
s1, . . . , sk such that f = fs1

◦ · · · ◦ fsk
.

Theorem 20 (Smith, 1973; Young, 1975). A SCF is a scoring rule if and only if it
satisfies anonymity, neutrality, and consistency.

One of the earliest advocates of scoring rules was the Chevalier de Borda, whose
dispute with the Marquis de Condorcet in the French Royal Academy of Sciences is
often regarded the birthplace of social choice theory (see, e.g., Black, 1958; Young, 1988,
1995). Interestingly, the disagreement between Borda and Condorcet even prevails in
contemporary social choice theory and is manifested in the following theorem.

Theorem 21 (Young and Levenglick, 1978). There is no SCF that satisfies the Con-
dorcet condition and consistency.

Laslier (1996) further deepens the dichotomy between consistency with respect to
the set of alternatives and the electorate by showing that no rank-based Paretian SCF
(and thus no scoring rule) satisfies composition-consistency. Moreover, Laslier (2000)
contrasts the characterization of Borda’s rule in terms of a variable electorate (Smith,
1973; Young, 1974) with a characterization of a generalization of the bipartisan set in
terms of a variable set of alternatives.

8.2 Adversarial Decision-Making

One of the oldest endeavors in non-cooperative game theory is to investigate the optimal
course of action in strictly competitive situations with two agents. The characteristic
difficulty of such situations is that the optimality of an action depends on the action
chosen by the other player. Game theory has numerous applications in economics,
biology, philosophy, and computer science.

Let X be a universal set of actions. A two-player zero-sum game Γ = (A1, A2, u) is a
tuple consisting of a finite non-empty subset A1 ∈ F(X) of feasible actions of player 1,
a finite non-empty set A2 ∈ F(X) of feasible actions of player 2, and a utility function
u : X×X → R. Both players are assumed to simultaneously choose one of their actions,
a1 ∈ A1 and a2 ∈ A2, in order to maximize their utility, which is given by u(a1, a2) in
the case of player 1 and −u(a1, a2) in the case of player 2. It is convenient to represent a
zero-sum game as a matrix U = (Ui,j)i∈A1,j∈A2

with Ui,j = u(i, j). The set of all utility
functions on X will be denoted by U(X).

In this section, we will be concerned with set-valued solution concepts, i.e., solution
concepts that identify subsets of preferable actions for both players.
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Definition 39. An adversarial game-theoretic solution concept (AGS) is a function
f : F(X)×F(X)×U(X) → F(X)×F(X) such that, for any zero-sum game (A1, A2, u),
B1 ⊆ A1 and B2 ⊆ A2 where (B1, B2) = f(A1, A2, u).

A zero-sum game Γ = (A1, A2, u) is called symmetric if A1 = A2 and u(a, b) = −u(b, a)
for all a, b ∈ A1. In other words, Γ is symmetric if and only if A1 = A2 and U is skew
symmetric, i.e., UT = −U . In the following, we will restrict our attention to so-called
tournament games, a subclass of symmetric zero-sum games that is characterized by the
fact that players may only win, lose, or draw and that both players get the same payoff
if and only if they play the same action (see, e.g., Laffond et al., 1993b; Fisher and Ryan,
1995).

Definition 40. A symmetric zero-sum game Γ = (A,A, u) is a tournament game if the
domain of u is {−1, 0, 1} and, for all a, b ∈ A, u(a, b) = 0 if and only if a = b.

Even though tournament games appear to be rather restricted, they are rich enough
to model most of the characteristic peculiarities of zero-sum games.

Two games Γ = (A1, A2, u) and Γ ′ = (A′
1, A

′
2, u

′) are isomorphic if there is a pair
of bijective mappings π1 : A1 → A′

1 and π2 : A2 → A′
2 such that u(π1(a1), π2(a2)) =

u′(a1, a2) for all a1 ∈ A1 and a2 ∈ A2. It is very natural to assume that an AGS is
independent of infeasible actions and stable with respect to isomorphisms. We will call
such an AGS independent.

Definition 41. An AGS f is independent if

(i) f(Γ ) = f(Γ ′) for all games Γ = (A1, A2, u) and Γ ′ = (A1, A2, u
′) such that

u(a1, a2) = u′(a1, a2) for all a1 ∈ A1, a2 ∈ A2, and

(ii) f((π1(A1), (π2(A2), u
′)) = (π1(f(Γ ), π2(f(Γ ))) for all games Γ = (A1, A2, u) and

Γ ′ = (A′
1, A

′
2, u

′), and isomorphisms π1 : A1 → A′
1 and π2 : A2 → A′

2 of Γ and Γ ′.

While not as natural as the previous condition, there are reasons to assume that an
AGS should give identical recommendations to both players in a symmetric game.

Definition 42. An AGS f is symmetric if for all symmetric games Γ , B1 = B2 where
(B1, B2) = f(Γ ).

There is a straightforward correspondence between tournament games and tourna-
ments as the utility matrix of any tournament game may be interpreted as the adjacency
matrix of a tournament graph. For a given tournament game (A,A, u), a tournament
(A,≻) can be constructed by letting, for all a, b ∈ A, a ≻ b if u(a, b) = 1 and b ≻ a
if u(a, b) = −1. We thus have a direct relationship between tournament solutions and
symmetric and independent AGSs in the case of tournament games.

For tournament games, every symmetric and independent AGS corresponds
to a tournament solution and vice versa.
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Figure 8.2: Tournament game Rock-Paper-Scissors and its corresponding tournament
graph

As an example, Figure 8.2 shows the well-known tournament game Rock-Paper-
Scissors and the corresponding tournament, a 3-cycle.

A best response is an action that maximizes a player’s utility for a given action of the
opponent. Action a is a better response than action b for some action of the opponent,
if a yields more utility than b. In tournament games, where actions correspond to
alternatives, the set of best responses for a given action simply consists of the dominators
of the corresponding alternative. An action that is the unique best response to all
actions of the other player is called a dominant action. Clearly, such an action should
be played without any reservations. In tournament games, any such action corresponds
to a Condorcet winner of the corresponding tournament. Interestingly, many other
solution concepts that have been developed independently in game theory are equivalent
to certain tournament solutions within the restricted class of tournament games (see
Table 8.1).

For example, action a is dominated if there exists another action b such that, for all
actions of the opponent, b is always a better response then a. In tournament games,
an action is dominated if it is never a best response, which is only possible if it is the
Condorcet loser of the corresponding tournament. It may be the case that removing a
dominated action from consideration renders another action dominated. This enables
the definition of an iterative process in which dominated actions are deleted one after
another. The resulting set of actions is the set of iterated undominated or rationalizable
actions.

Action a is weakly dominated if there exists another action b such that, for all actions
of the opponent, a is never a better response than b and b is a better response at least
once. The set of weakly undominated actions corresponds to the uncovered set. As
in the case of strict dominance, one can define an iterative process of deleting weakly
dominated actions. In general games, the resulting set of actions depends on the order of
eliminations. In tournament games, however, this process invariably leads to the same
set of actions, which corresponds to the iterated uncovered set.

Another solution concept in game theory is that of a CURB (“closed under rational
behavior”) set (Basu and Weibull, 1991). A CURB set if a set of actions for each
player such that each set contains all best responses to actions within the other player’s
set.4 Typically, one is interested in inclusion-minimal CURB sets. Every tournament
game contains a unique minimal CURB set which coincides with the top cycle of the

4Originally, CURB sets are defined as sets of mixed, i.e., randomized, strategies. However, both
definitions are equivalent in tournament games.
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tournament.
Shapley (1964) proposed a similar set-valued solution concept. A weak generalized

saddle point (WGSP) is a set of actions for each player such that every action not con-
tained in these sets is weakly dominated when restricting the opponent’s actions to those
included in his set. An inclusion-minimal WGSP is called a weak saddle and is equiva-
lent to the minimal covering set of the corresponding tournament. This equivalence is
particularly astounding as it was discovered eight years after the minimal covering set
was proposed and 43 years after the weak saddle was first mentioned (Duggan and Le
Breton, 1996a).

Finally, the bipartisan set is a tournament solution whose definition directly refers to
the corresponding tournament game. A (mixed) strategy is a probability distribution
over the actions of one player. A pair of strategies is a Nash equilibrium if neither of
the two players can increase his expected utility by deviating from his strategy (Nash,
1951). Thus, a Nash equilibrium is a mutual mixed best response. Tournament games
contain a unique Nash equilibrium and the bipartisan set is defined as the set of all
alternatives that correspond to actions that are played with positive probability in the
Nash equilibrium.5

Tournament solution Game-theoretic concept

Condorcet winner Dominant action/pure Nash equilibrium
Condorcet non-losers (CNL) Undominated actions
Uncovered set (UC ) Weakly undominated actions
Iterated Condorcet non-losers (CNL∞) Rationalizability
Iterated uncovered set (UC∞) Iterated weakly undominated actions
Top cycle (TC ) Minimal CURB set
Minimal covering set (MC ) Weak saddle
Bipartisan set (BP) Support of Nash equilibrium

Table 8.1: Tournament solutions and their game-theoretic counterparts

8.3 Coalitional Decision-Making

Coalitional game theory (or cooperative game theory) studies strategic settings in which
players can make binding commitments, form coalitions, and thus correlate their actions.
Here, we will consider what is known as the case of non-transferable utility (NTU), i.e.,
there is no possibility of side-payments between players.

A finite NTU game is a tuple (N,H, V ), where N = {1, . . . , n} is a set of players,
H ∈ F(RN ) is a set of outcomes, and V : F(N) → F(H) is a characteristic func-
tion. Each outcome denotes how much utility each agent derives from this particular
outcome. The characteristic function describes the coalitional effectivity, i.e., it yields

5Mutual best response actions constitute a pure Nash equilibrium. In tournament games, a pure Nash
equilibrium exists if and only if the tournament contains a Condorcet winner.
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which outcomes each coalition can enforce to come about. An important question is
which outcomes are to be expected in a given NTU game when players are assumed to
maximize their utility. Differing answers to this question have been given in the form
of solution concepts that map NTU games to sets of outcomes. Some of these concepts
(e.g., the core or von Neumann-Morgenstern stable sets) are defined on the basis of a
binary dominance relation that is typically defined in terms of coalitional effectivity and
individual preferences.

Definition 43. Let (N,H, V ) be a finite NTU game and a, b ∈ H two outcomes. a
dominates b if there exists a coalition C ∈ F(N) such that C is effective for a, i.e.,
a ∈ V (C), and all members of C strictly prefer a over b, i.e., a(i) > b(i) for all i ∈ C.

Obviously this dominance relation is irreflexive since no outcome dominates itself.
However, it may be the case that two outcomes dominate each other (via different
coalitions). In other words, the dominance relation does not have to be asymmetric and
thus differs from the dominance relations we have considered so far. Nevertheless, the
specific structural properties of the dominance relation are of great importance when
reasoning about coalitional games. It turns out that every irreflexive relation on a finite
set of alternatives can be obtained as the dominance relation of some finite coalitional
NTU game.

Theorem 22 (Brandt and Harrenstein, 2009). Let R be an irreflexive relation on a
finite set of outcomes. Then, R is induced as the dominance relation of some finite NTU
game.

This result is very similar in spirit to that of McGarvey (1953) who has shown that
any asymmetric dominance relation can be obtained via pairwise majority voting (see
Section 8.1.1). In general, cooperative majority voting can be seen as the special case of
finite NTU games in which majorities are universally effective and all other coalitions
are impotent (see e.g., Schwartz, 1986).

By now it has become obvious that all solution concepts studied in this thesis, be
their roots in social choice theory, non-cooperative game theory, or in cooperative game
theory, have to deal with what is essentially the same problem: to come to grips with a
possibly intransitive dominance relation. Each of them incorporates a different intuition
and approaches the issue from a different angle. In order to apply tournament solutions
as solution concepts for finite NTU games, however, we need to bridge the gap between
asymmetric and complete dominance relations on the one hand, and irreflexive domi-
nance relations on the other. This can be achieved either by extending the definitions
of tournament solutions to irreflexive relations or by identifying reasonable subclasses of
finite NTU games (other than cooperative majority voting) that yield asymmetric and
complete dominance relations. Both approaches are left as future work.
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There is every reason to expect that the various social sciences will serve

as incentives for the development of great new branches of mathematics

and that some day the theoretical social scientist will have to know more

mathematics than the physicist needs to know today.

J. G. Kemeny, 1959 9
Conclusions and Open Problems

We suggested a unifying treatment of tournament solutions based on maximal qualified
subsets and minimal stable sets. Given the results of Chapter 4 and Chapter 5, a central
role in the theory of tournament solutions may be ascribed to Conjecture 2, which states
that no tournament contains two disjoint TEQ-retentive sets. Conjecture 2 (or the
equivalent statement that there are no two disjoint TEQ-stable sets) has a number of
appealing consequences on minimal stable sets:

• Every tournament T admits a unique minimal dominating set TC (T ) (as shown
by Good, 1971). TC satisfies all basic properties and is the finest solution concept
satisfying SSP and CNL-exclusivity.

• Every tournament T admits a unique minimal covering set MC (T ) (as shown
by Dutta, 1988). MC satisfies all basic properties and is the finest solution concept
satisfying SSP and UC -exclusivity.

• Every tournament T admits a unique minimal extending set ME(T ) (open prob-
lem). ME satisfies all basic properties and is the finest solution concept satisfying
SSP and BA-exclusivity.

• Every tournament T admits a unique minimal TEQ-retentive set TEQ(T ) (open
problem). TEQ satisfies all basic properties and is the finest solution concept
satisfying WDCON and the finest solution concept S such that S satisfies SSP

and, for any tournament T , S(T ) = A \ {a} implies a 6∈ S(D(b)) for any b ∈ A.
Moreover, TEQ is the finest solution concept S satisfying WSP and Ŝ = S̊.

• TEQ ⊆ ME ⊆ MC ⊆ TC and ME ⊆ BA.1

Conjecture 1 is a weaker version of Conjecture 2, which implies all of the above state-
ments except those that involve TEQ .

Table 9.1 and Figure 9.1 summarize the properties and set-theoretic relationships of
the most important considered tournament solutions, respectively.

1A consequence of these inclusions is that deciding whether an alternative is contained in the minimal
extending set of a tournament is NP-hard.
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Solution Concept Origin MON IUA WSP SSP COM IRR EFF

SM2
(CNL) X X X – – – X

SM (UC ) Fishburn (1977); Miller (1980) X – X – X – X

SM∗ (BA) Banks (1985) X – X – X X –a

bSM2
(TC ) Good (1971); Smith (1973) X X X X – – X

bSM (MC ) Dutta (1988) X X X X X – X

bSM∗ (ME ) Brandt (2008) X
b

X
b

X
b

X
b

X X –a,b

dTEQ (TEQ) Schwartz (1990) X
c

X
c

X
c

X
c

X X –a

S
#

M
(CO) Copeland (1951) X – – – – – X

⌢

S
#

M
(BP) Laffond et al. (1993b) X X X X X – X

aThere exists no efficient algorithm unless P equals NP.
bThis statement relies on Conjecture 1.
cThis statement relies on Conjecture 2.

Table 9.1: Properties of solution concepts (MON: monotonicity, IUA: independence of
unchosen alternatives, WSP: weak superset property, SSP: strong superset
property, COM: composition-consistency, IRR: irregularity, EFF: efficient com-
putability (the tournament solution can be computed in polynomial time))

Many challenging open problems remain. Among them are the following:

Stability and retentiveness. Prove or disprove that no tournament admits two disjoint
SM∗

4
-stable sets. Prove or disprove that no tournament admits two disjoint extending

sets (Conjecture 1). Prove or disprove that no tournament admits two disjoint TEQ-

retentive sets (Conjecture 2). Investigate S#
M∗ and

⌢

S#
M∗ . Study S̊ for solution concepts

S other than TEQ .

Generalization of tournament solutions. The definitions of most of the concepts con-
sidered in this thesis have been generalized to incomplete tournaments (Dutta and
Laslier, 1999; Peris and Subiza, 1999). Brandt and Fischer (2008) and Brandt et al.
(2009a) investigate whether and how these generalizations affect the computational com-
plexity. For some concepts (BA, ME , and TEQ) no uncontroversial generalization is
known. Ideally one would want to extend the definition to arbitrary binary relations.

Computational aspects. Is there a simpler method for computing a subset of MC
than solving a linear feasibility problem? Is there a purely combinatorial algorithm for
computing MC (one that does not rely on linear feasibility)? How hard is it to compute
SMk

? Is it possible to compute a subset of ME or TEQ in polynomial time? Pinpoint the
complexity of ME and TEQ (the best upper bounds are Πp

2 and PSPACE, respectively).
Is deciding membership in MC (or UC∞) TC0-hard. Is deciding membership in BP or
MC P-complete in tournaments? Is there a linear-time algorithm for computing UC ?

Apart from these technical issues, it remains to be seen which other application areas
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TEQ

CNL

TC

UC

MC BA

ME

Figure 9.1: Set-theoretic relationships between qualitative tournament solutions. BA
and MC are not included in each other, but they always intersect (see, e.g.,
Laslier, 1997). The inclusion of TEQ in ME relies on Conjecture 2 and that
of ME in MC on Conjecture 1 (which is implied by Conjecture 2). CO is
contained in UC but may be disjoint from MC and BA. The exact location
of BP in this diagram is unknown (BP is contained in MC and intersects
with TEQ in all known instances (Laslier, 1997)).

(besides the ones already mentioned in Chapter 8) will be found for tournament solutions.
It is to be expected that the problem of identifying the “best” elements according to
some binary relation arises in numerous contexts and various fields.
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L. A. Kóczy and M. Strobel. The ranking of economics journals by a tournament method.
Mimeographed, University of Maastricht, 2007.

G. Laffond, J.-F. Laslier, and M. Le Breton. More on the tournament equilibrium set.
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