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The formal study of coalition formation in multi-agent systems is typically realized in the framework of

hedonic games, which originate from economic theory. The main focus of this branch of research has been on

the existence and the computational complexity of deciding the existence of coalition structures that satisfy

various stability criteria. The actual process of forming coalitions based on individual behavior has received

little attention. In this paper, we study the convergence of simple dynamics leading to stable partitions in a

variety of established classes of hedonic games including anonymous, dichotomous, fractional, and hedonic

diversity games. The dynamics we consider is based on individual stability: an agent will join another coalition

if she is better off and no member of the welcoming coalition is worse off.

Our results are threefold. First, we identify conditions for the (fast) convergence of our dynamics. To this

end, we develop new techniques based on the simultaneous usage of multiple intertwined potential functions

and establish a reduction uncovering a close relationship between anonymous hedonic games and hedonic

diversity games. Second, we provide elaborate counterexamples determining tight boundaries for the existence

of individually stable partitions. Third, we study the computational complexity of problems related to the

coalition formation dynamics. In particular, we settle open problems suggested by Bogomolnaia and Jackson

[12], Brandl et al. [13], and Boehmer and Elkind [11].

CCS Concepts: • Computing methodologies → Multi-agent systems; • Theory of computation →
Design and analysis of algorithms.
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1 INTRODUCTION
Coalitions and coalition formation are central concerns in the study of multi-agent systems as

well as cooperative game theory. Typical real-world examples include individuals joining clubs

or societies such as orchestras or sports teams, countries organizing themselves in international

bodies like the European Union (EU) or the North Atlantic Treaty Organization (NATO), students

living together in shared flats, or employees forming unions.

The formal study of coalition formation is often realized using so-called hedonic games [22],

which originate from economic theory. In these games, the central goal is to identify coalition

structures (henceforth partitions) that satisfy various stability criteria based on the agents’ pref-

erences over coalitions (subsets of agents). A partition is defined to be stable if single agents or

groups of agents cannot gain by deviating from the current partition by means of leaving their

current coalition and joining another coalition, or forming a new one. The permitted deviations

can be constrained by other agents, for instance by means of contracts with an existing coalition

or by the necessity of consent when admitting a new member. These constraints lead to a large

body of stability concepts [4]. Two important and well-studied questions in this context concern

the existence of stable partitions in restricted classes of hedonic games and the computational

complexity of finding a stable partition. However, stability is only concerned with the end-state of

the coalition formation process and ignores how these desirable partitions can actually be reached.

Essentially, an underlying assumption in most of the existing work is that there is a central authority

that receives the preferences of all agents, computes a stable partition as an end-state, and has
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the means to establish this partition among the agents. By contrast, our work focuses on simple

dynamics, where starting with some partition (e.g., the partition of singletons), agents deliberately

decide to join and leave coalitions based on their individual preferences. We study the convergence

of such a process and the stable partitions that can arise from it. For example, in some cases the

only partition satisfying a certain stability criterion is the grand coalition consisting of all agents,

while the dynamics based on the agents’ individual decisions can never reach this partition and is

doomed to cycle.

The dynamics we consider is based on individual stability, a natural notion of stability going

back to Drèze and Greenberg [22]: an agent will join another coalition if she is better off and

no member of the welcoming coalition is worse off. Individual stability is suitable to model the

situations mentioned above. For instance, by Article 49 of the Treaty on European Union, admitting

new members to the EU requires the unanimous approval of the current members. Similarly, by

Article 10 of their founding treaty, unanimous agreement of all parties is necessary to become

a member of the NATO. Also, for joining a choir or orchestra it is often necessary to audition

successfully, and joining a shared flat requires the consent of all current residents. This distinguishes

individual stability from Nash stability, which ignores the consent of members of the welcoming

coalition.

The analysis of coalition formation processes provides more insight in the natural behavior of

agents and the conditions that are required to guarantee that desirable social outcomes can be

reached without a central authority. While coalition formation dynamics are an object of study

worthy for itself, they can also be used as a means to design algorithms for the computation of

stable outcomes, and have been implicitly used for this purpose before. For example, the algorithm

by Boehmer and Elkind [11] for finding an individually stable partition in hedonic diversity games

identifies a promising partition and then reaches an individually stable partition by running the

dynamics from there. Similarly, the algorithm by Bogomolnaia and Jackson [12] for finding an

individually stable partition on games with ordered characteristics, a generalization of anonymous

hedonic games, runs the dynamics using a specific sequence of deviations starting from the singleton

partition.

In addition, the study of dynamics offers a more fine-grained view in games where the static

concepts of stability only give limited information. We will see that there exist classes of hedonic

games in which individually stable partitions are guaranteed to exist but dynamics can be doomed

to cycle when initiated at specific starting configurations. Two important examples are fractional

hedonic games with non-negative weights and hedonic diversity games. For the former, the grand

coalition is individually stable and for the latter, individually stable partitions always exist [11]. By

contrast, our results show that dynamics can behave very differently in the two games, illustrating

that dynamics can offer a broader picture on stability.

In many cases, the convergence of the dynamics of deviations follows from the existence of

potential functions, whose local optima form individually stable states. Generalizing a result by

Bogomolnaia and Jackson [12], Suksompong [30] has shown via a potential function argument that

an individually stable—and even a Nash-stable—partition always exists in subset-neutral hedonic

games, a generalization of symmetric additively separable hedonic games. Using the same potential

function, it can straightforwardly be shown that the dynamics converge.
1

Another example are hedonic games with the common ranking property, a class of hedonic games

where preferences are induced by a common global order [24]. Here, the dynamics associated with

1
By inclusion, convergence also holds for symmetric additively separable hedonic games. Symmetry is essential for this

result to hold since an individually stable partition may not exist in general additively separable hedonic games, even under

additional restrictions [12].
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core-stable deviations is known to converge to a core-stable partition that is also Pareto-optimal,
2

thanks to a potential function argument [20]. The same potential function implies convergence of

the dynamics based on individual stability in hedonic games with the common ranking property.

1.1 Contribution
In this paper, we study the coalition formation dynamics based on individual stability for a variety

of classes of hedonic games, including anonymous hedonic games (AHGs), hedonic diversity games

(HDGs), fractional hedonic games (FHGs), and dichotomous hedonic games (DHGs). Computational

questions related to the dynamics are investigated in two ways: the existence of a path to stability,

that is, the existence of a sequence of deviations that leads to a stable state, and the guarantee of

convergence where every sequence of deviations should lead to a stable state. The former gives

an optimistic view on the behavior of the dynamics and may be used to motivate the choice of

reachable stable partitions (we can exclude “artificial” stable partitions that may never naturally

form). If such a sequence can be computed efficiently, it enables a central authority to coordinate

the deviations towards a stable partition. On the other hand, guaranteed convergence allows agents

to reach a stable outcome without further coordination. This provides strong stability guarantees

under more pessimistic assumptions about the agents’ behavior. Whether we obtain positive or

negative results concerning the convergence of the dynamics depends on various dimensions of

the input concerning the initial partition, restrictions imposed on the agents’ preferences, and the

selection of deviations. We identify clear boundaries to computational tractability based on these

specifications. Our main results are summarized as follows.

• In AHGs, the dynamics is guaranteed to converge for (naturally) single-peaked preferences.

On the other hand, we provide a 15-agent example showing the non-existence of individually

stable partitions in general AHGs. The previously known smallest counterexample by

Bogomolnaia and Jackson [12] requires 63 agents and the existence of smaller examples

was an acknowledged open problem [see 5, 11].

• We provide an elaborate reduction for HDGs that eventually establishes a close relationship

to AHGs and show guaranteed convergence of the dynamics for strict and naturally singled-

peaked preferences when starting from the singleton partition and agents’ deviations satisfy

a weak constraint. In contrast to empirical evidence reported by Boehmer and Elkind

[11], we show that all of the above assumptions are essential for the convergence result.

In particular, cycling of the dynamics is possible if the starting partition is the singleton

partition and preferences are restricted to be strict and naturally single-peaked.

• In FHGs, the dynamics is guaranteed to converge for simple symmetric preferences when

starting from the singleton partition or when preferences form an acyclic digraph. On the

other hand, we show that individually stable partitions need not exist in general symmetric

FHGs, which was left as an open problem by Brandl et al. [13].

• For each of the above classes and DHGs, we identify computational boundaries. In particular,

we show that deciding whether there is a sequence of deviations leading to an individually

stable partition is NP-hard while deciding whether all sequences of deviations lead to an

individually stable partition is coNP-hard. Some of these results hold under preference

restrictions and even when starting from the singleton partition.

For the sake of readability, the proofs of hardness results are deferred to the appendix.

2
A partition is Pareto-optimal if every partition preferred to this partition by some agent is worse for another agent.



4 Felix Brandt, Martin Bullinger, and Anaëlle Wilczynski

1.2 Related Work
Hedonic games have been proposed by Drèze and Greenberg [22], and have been popularized

about 20 years later by Banerjee et al. [6], Cechlárová and Romero-Medina [21], and Bogomolnaia

and Jackson [12]. Since then, they are a constant object of study in the artificial intelligence and

multi-agent systems literature.

Much of the hedonic games research deals with the questions of how to represent preferences

and how to obtain desirable, mostly stable, outcomes. To address the former question, an abundance

of classes of hedonic games have been introduced [see, e.g., 2, 3, 12, 17]. Many of these will be

formally introduced in Section 2.1.

The desirability of outcomes is already a key question in the early work by Drèze and Greenberg

[22] who introduce individual stability. Since then, the algorithmic aspects of obtaining or verifying

specific outcomes has been constantly researched. We discuss the most related results of this type

at the beginning of each result section.

By contrast, the dynamical aspects of coalition formation have received considerably less atten-

tion. Similar dynamic processes as the one considered in our paper have been studied for matchings

[see, e.g., 1, 16, 29]. Matchings can be seen as a special domain of coalition formation where only

coalitions of size 2 are allowed. More recently, dynamics of coalition formation have also come

under scrutiny in the context of hedonic games [8, 10, 14, 18, 19, 23, 26]. Most related is the work

by Bilò et al. [8] who consider Nash stability in fractional hedonic games and by Brandt et al. [14]

who consider dynamics based on several single-agent stability concepts in additively separable

hedonic games. Bullinger and Suksompong [18] consider the equivalent of Nash dynamics in a

generalization of additively separable hedonic games. Dynamics based on core stability or group

deviations based on local social constraints have been investigated by Carosi et al. [19], Hoefer et al.

[26], and Fanelli et al. [23]. Finally, very recently, Boehmer et al. [10] propose a dynamical version

of hedonic games where utilities are modified based on the history of the performed deviations.

2 PRELIMINARIES AND MODEL
Let 𝑁 = [𝑛] = {1, . . . , 𝑛} be a set of 𝑛 agents. The goal of a coalition formation problem is to

partition the agents into different disjoint coalitions according to their preferences. Formally, a

solution is a partition of 𝑁 , i.e., a subset 𝜋 ⊆ 2
𝑁
such that

⋃
𝐶∈𝜋 𝐶 = 𝑁 , and for every pair𝐶, 𝐷 ∈ 𝜋 ,

it holds that𝐶 = 𝐷 or𝐶∩𝐷 = ∅. An element of a partition is called coalition, and given a partition 𝜋 ,

we denote by 𝜋 (𝑖) the coalition containing agent 𝑖 . Two prominent partitions are the singleton

partition 𝜋 given by 𝜋 (𝑖) = {𝑖} for every agent 𝑖 ∈ 𝑁 , and the grand coalition 𝜋 given by 𝜋 = {𝑁 }.
Since we focus on dynamics of deviations, we assume that there exists an initial partition 𝜋0,

which could be a natural initial state (such as the singleton partition) or the outcome of a previous

coalition formation process.

2.1 Classes of Hedonic Games
In a hedonic game, the agents only express preferences over the coalitions to which they belong,

i.e., there are no externalities. Let N𝑖 denote all possible coalitions containing agent 𝑖 , i.e., N𝑖 =

{𝐶 ⊆ 𝑁 : 𝑖 ∈ 𝐶}. A hedonic game is defined by a tuple (𝑁, (≿𝑖 )𝑖∈𝑁 ) where ≿𝑖 is a weak order over

N𝑖 which represents the preferences of agent 𝑖 , i.e., 𝐶 ≻𝑖 𝐶′
means that agent 𝑖 strictly prefers

coalition 𝐶 to coalition 𝐶′
, and 𝐶 ∼𝑖 𝐶′

means that agent 𝑖 is indifferent between coalitions 𝐶

and 𝐶′
. Since |N𝑖 | = 2

𝑛−1
, the preferences are rarely given explicitly, but rather in some concise

representation. These representations give rise to several classes of hedonic games:
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• Anonymous hedonic games (AHGs) [12]: The agents only care about the size of the coalition

they belong to, i.e., for each agent 𝑖 ∈ 𝑁 , there exists a weak order ≿𝑆𝑖 over integers in [𝑛]
(superscript 𝑆 for sizes) such that 𝜋 (𝑖) ≿𝑖 𝜋 ′ (𝑖) if and only if |𝜋 (𝑖) | ≿𝑆𝑖 |𝜋 ′ (𝑖) |.

• Hedonic diversity games (HDGs) [17]: The agents are divided into two different types (or

colors). We call them red and blue agents and they are represented by the subsets 𝑅 ⊆ 𝑁

and 𝐵 ⊆ 𝑁 , respectively, such that 𝑁 = 𝑅 ∪ 𝐵 and 𝑅 ∩ 𝐵 = ∅. Each agent only cares about

the proportion of red agents present in her own coalition, i.e., for each agent 𝑖 ∈ 𝑁 , there

exists a weak order ≿𝐹𝑖 over { 𝑝
𝑞
: 𝑝 ∈ [|𝑅 |] ∪ {0}, 𝑞 ∈ [𝑛]} (superscript 𝐹 for fractions) such

that 𝜋 (𝑖) ≿𝑖 𝜋 ′ (𝑖) if and only if
|𝑅∩𝜋 (𝑖 ) |
|𝜋 (𝑖 ) | ≿

𝐹
𝑖

|𝑅∩𝜋 ′ (𝑖 ) |
|𝜋 ′ (𝑖 ) | .

3

• Fractional Hedonic Games (FHGs) [2]: The agents evaluate a coalition by assessing howmuch

they like each of its members on average, i.e., for each agent 𝑖 , there exists a utility function

𝑣𝑖 : 𝑁 → R where 𝑣𝑖 (𝑖) = 0 such that 𝜋 (𝑖) ≿𝑖 𝜋 ′ (𝑖) if and only if

∑
𝑗 ∈𝜋 (𝑖 ) 𝑣𝑖 ( 𝑗 )
|𝜋 (𝑖 ) | ≥

∑
𝑗 ∈𝜋 ′ (𝑖 ) 𝑣𝑖 ( 𝑗 )
|𝜋 ′ (𝑖 ) | .

An FHG can be represented by a weighted directed graph𝐺 = (𝑁, 𝐸) where, for the sake of
readability, only non-null utilities are mentioned, i.e., (𝑖, 𝑗) ∈ 𝐸 if and only if 𝑣𝑖 ( 𝑗) ≠ 0, and

the weight of an arc (𝑖, 𝑗) ∈ 𝐸 is equal to 𝑣𝑖 ( 𝑗). An FHG is symmetric if 𝑣𝑖 ( 𝑗) = 𝑣 𝑗 (𝑖) for every
pair of agents 𝑖 and 𝑗 ; since two opposite arcs have the same weight, the representation by

a graph can be simplified by directly considering a weighted undirected graph 𝐺 = (𝑁, 𝐸)
with weights 𝑣 (𝑖, 𝑗) on each edge {𝑖, 𝑗} ∈ 𝐸. An FHG is simple if 𝑣𝑖 : 𝑁 → {0, 1} for every
agent 𝑖; since all arcs have the same weight, the representation by a graph can be simplified

by directly considering an unweighted directed graph 𝐺 = (𝑁, 𝐸) where (𝑖, 𝑗) ∈ 𝐸 if and

only if 𝑣𝑖 ( 𝑗) = 1. We say that an FHG is simple asymmetric if, for every pair of agents 𝑖 and 𝑗 ,

𝑣𝑖 ( 𝑗) ∈ {0, 1} and 𝑣𝑖 ( 𝑗) = 1 implies 𝑣 𝑗 (𝑖) = 0, i.e., it can be represented by an asymmetric

directed graph.

• Dichotomous hedonic games (DHGs): The agents only approve or disapprove coalitions, i.e.,

for each agent 𝑖 there exists a utility function 𝑣𝑖 : N𝑖 → {0, 1} such that 𝜋 (𝑖) ≿𝑖 𝜋 ′ (𝑖) if
and only if 𝑣𝑖 (𝜋 (𝑖)) ≥ 𝑣𝑖 (𝜋 ′ (𝑖)). When the preferences are represented by a propositional

formula, such games are called Boolean hedonic games [3].

An anonymous game (or hedonic diversity game) is generally single-peaked if there exists a linear

order > over integers in [𝑛] (or over ratios in { 𝑝
𝑞
: 𝑝 ∈ [|𝑅 |] ∪ {0}, 𝑞 ∈ [𝑛]}) such that for each

agent 𝑖 ∈ 𝑁 and each triple of integers 𝑥,𝑦, 𝑧 ∈ [𝑛] (or 𝑥,𝑦, 𝑧 ∈ { 𝑝
𝑞
: 𝑝 ∈ |𝑅 | ∪ {0}, 𝑞 ∈ [𝑛]}) with

𝑥 > 𝑦 > 𝑧 or 𝑧 > 𝑦 > 𝑥 , 𝑥 ≻𝑆𝑖 𝑦 implies 𝑦 ≿𝑆𝑖 𝑧 (or 𝑥 ≻𝐹𝑖 𝑦 implies 𝑦 ≿𝐹𝑖 𝑧). The obvious linear order
> that comes to mind is, of course, the natural order over integers (or over rational numbers). We

refer to such games as naturally single-peaked. Clearly, a naturally single-peaked preference profile

is generally single-peaked but the converse is not true.

To the best of our knowledge, most papers on hedonic games implicitly mean naturally single-

peaked preferences when referring to single-peaked preferences [see, e.g., 12], since they deal with

preferences over integers or fractions. We have introduced generally single-peaked preferences, by

considering any type of given order over integers or fractions, in the spirit of the initial definition

of Black [9] for social choice, where alternatives do not have an inherent order. By generalizing the

single-peaked notion on hedonic games, we aim to capture the frontier of tractability with respect

to this concept and thus strengthen our results.

To improve the presentation when we display preferences for a large number of agents, we also

write them in the form 𝑖 : 𝑋 ≻ 𝑌 ≻ 𝑍 , where 𝑖 ∈ 𝑁 is an agent, and 𝑋 , 𝑌 , and 𝑍 are coalitions, or

3
To keep the notation concise, we abuse notation by omitting the superscripts of ≿𝑆

𝑖
and ≿𝐹

𝑖
when they are clear from the

context. Hence, ≿𝑖 may also denote agent 𝑖’s preference order over coalition sizes in case of an AHG, or over fractions in

case of an HDG.
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depending on the context, integers (representing sizes of coalitions in AHGs) or rational numbers

(representing fractions in HDGs). If there are multiple agents 𝐶 ⊆ 𝑁 with identical preferences,

we also denote their preferences in the form 𝐶 : 𝑋 ≻ 𝑌 ≻ 𝑍 . Note that we usually do not fully

specify preferences in this notation, but focus on the relevant part of the preferences which affects

a certain example or proof.

2.2 Dynamics of Individually Stable Deviations
Starting from the initial partition, agents can leave and join coalitions in order to improve their

well-being. We focus on unilateral deviations, which occur when a single agent decides to move

from one coalition to another. A unilateral deviation performed by agent 𝑖 transforms a partition 𝜋

into a partition 𝜋 ′
where 𝜋 (𝑖) ≠ 𝜋 ′ (𝑖) and, for all agents 𝑗 ≠ 𝑖 , it holds that 𝜋 ( 𝑗) \ {𝑖} = 𝜋 ′ ( 𝑗) \ {𝑖}.

Since agents are assumed to be rational, agents only engage in a unilateral deviation if it makes

them better off, i.e., 𝜋 ′ (𝑖) ≻𝑖 𝜋 (𝑖). Any partition in which no such deviation is possible is said to be

Nash-stable (NS).

This type of deviation can be refined by additionally requiring that no agent in the welcoming

coalition is worse off when agent 𝑖 joins. Formally, a unilateral deviation performed by agent 𝑖

who moves from coalition 𝜋 (𝑖) to 𝜋 ′ (𝑖) is an IS deviation if 𝜋 ′ (𝑖) ≻𝑖 𝜋 (𝑖) and 𝜋 ′ ( 𝑗) ≿𝑗 𝜋 ( 𝑗) for all
agents 𝑗 ∈ 𝜋 ′ (𝑖). A partition in which no IS deviation is possible is said to be individually stable

(IS). Clearly, an NS partition is also IS. In this article, we focus on dynamics based on IS deviations.

By definition, all terminal states of the dynamics have to be IS partitions.
4

We are mainly concerned with whether sequences of IS deviations can reach or always reach

an IS partition. If there exists a sequence of IS deviations leading to an IS partition, i.e., a path to

stability, then although the agents perform myopic deviations, they can optimistically reach (or can

be guided towards) a stable partition. The corresponding decision problem is described as follows.

∃-IS-Seqence-[HG]

Input: Instance of a particular class of hedonic games [HG], initial partition 𝜋0
Question: Does there exist a sequence of IS deviations starting from 𝜋0 leading to an IS partition?

In order to provide some guarantee, we also examine whether all sequences of IS deviations

terminate. Whenever this is the case, we say that the dynamics converges. The corresponding

decision problem is described below.

∀-IS-Seqence-[HG]

Input: Instance of a particular class of hedonic games [HG], initial partition 𝜋0
Question: Does every sequence of IS deviations starting from 𝜋0 reach an IS partition?

We mainly investigate this problem via the study of its complement: given a hedonic game and

an initial partition, does there exist a sequence of IS deviations that cycles?

A common idea behind hardness reductions concerning these two problems is to exploit the

existence of instances without an IS partition or instances which allow for cycling starting from a

certain partition. These can be used to create prohibitive subconfigurations in reduced instances.

3 ANONYMOUS HEDONIC GAMES
Bogomolnaia and Jackson [12] showed that IS partitions always exist in AHGs under naturally

single-peaked preferences, and proved that this does not hold under general preferences, by means

4
It is possible to weaken the notion of individual stability even further by also requiring that no member of the former

coalition of agent 𝑖 is worse off. The resulting stability notion is called contractual individual stability and the associated

dynamics are guaranteed to converge in every hedonic game.
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of a 63-agent counterexample. Here, we provide a counterexample that only requires 15 agents and

additionally satisfies general single-peakedness. Smaller counterexamples for this phenomenon

were sought after in the literature [5, 11].

Proposition 3.1. There may not exist an IS partition in AHGs even when 𝑛 = 15 and the agents

have strict and generally single-peaked preferences.

Proof. Let us consider an AHG with 15 agents with the following (incompletely specified)

preferences ([. . . ] denotes an arbitrary order over the remaining coalition sizes). The preferences

for agents 5 through 15 are identical.

1 : 2 ≻ 3 ≻ 13 ≻ 12 ≻ 1 ≻ [. . . ]
2 : 13 ≻ 3 ≻ 2 ≻ 1 ≻ 12 ≻ [. . . ]

3, 4 : 3 ≻ 2 ≻ 1 ≻ [. . . ]
5, . . . , 15 : 13 ≻ 12 ≻ 15 ≻ 14 ≻ 11 ≻ 10 ≻ . . . ≻ 1

These preferences can be completed to be generally single-peaked with respect to axis 1 > 2 >

3 > 13 > 12 > 15 > 14 > 11 > 10 > · · · > 4.

Note that in an IS partition,

(i) agents 3 and 4 are in a coalition of size at most 3: Otherwise, they prefer to deviate to be

alone.

(ii) agents 5 to 15 are in the same coalition: By (𝑖), at most two of them are with agent 3 and

at most two of them with agent 4. Agents 1 and 2 cannot be in a coalition of size 12 or 13

unless at least 10 of the 11 agents 5 to 15 are with them (agents 3 and 4 cannot be in such a

big coalition by (𝑖)). In this case, any remaining agent from 5 to 15 would be with them

because she would join them, otherwise. Hence, the assertion is true. Therefore, we may

assume that agents 1 and 2 are not in a coalition of size larger than 3. Otherwise, they would

deviate to be alone. It follows that at most two agents from {5, . . . , 15} are with agent 1 and

at most two of them with agent 2. In any case, there remain at least three agents within

{5, . . . , 15} who are not in a coalition with agents 1, 2, 3, or 4. These agents have to group

together (otherwise they would join each other), forming a coalition 𝐶 of size at least three

and at most 11. Now, all the agents from {5, . . . , 15} in coalitions with agents 1, 2, 3, or 4

would be in a coalition of size at most 3. Hence, they would deviate to join 𝐶 because they

prefer to be in bigger coalitions. This is always possible because 𝐶 is of size at most 11.

Hence, 𝐶 already contains all agents from {5, . . . , 15} in an IS partition.

(iii) agents 3 and 4 are in the same coalition: Suppose for the sake of contradiction that agents 3

and 4 are not in the same coalition. By (𝑖), none of them can belong to the big coalition

containing the agents 5 to 15, which exists according to (𝑖𝑖). Moreover, if they are both

alone, then they have an incentive to group together, contradicting the stability. Therefore,

at least one of them must form a coalition with agent 1 or 2.

If agents 1 and 2 are both with agent 3 (or 4) and agent 4 (or 3) is alone, then agent 1 has an

incentive to leave the coalition {1, 2, 3} (or {1, 2, 4}) to join agent 4 (or 3), contradicting the

stability. Now, consider the case where one of agents 3 and 4, say agent 4, is alone. If agent

3 forms a coalition with agent 2, then agent 4 would join them by an IS deviation. If agent 3

forms a coalition with agent 1, then agent 2 is in a coalition of size 1 or size 12 and would

join agent 4 by an IS deviation.

Therefore, each agent among 1 and 2 must be with either agent 3 or agent 4. But, in such a

case, the agent among 3 and 4, say 3, who is with agent 1 will move to the coalition with

agent 2 and agent 4, contradicting the stability. Therefore, agents 3 and 4 must be in the

same coalition.
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(iv) agents 1 and 2 cannot be both alone: Otherwise, they would deviate to group together.

From the previous observations, we get that agents 3 and 4 must be together in a coalition, while

agents 5 to 15must be together in another coalition. The remaining question concerns the coalitions

to which agents 1 and 2 belong. It is not possible that both agents 1 and 2 are in a coalition with

agents 3 and 4, otherwise it would contradict condition (𝑖). If one agent among agents 1 and 2

is alone and the other one is with agents 5 to 15, then the single agent can deviate to join them,

contradicting the stability. The remaining possible partitions are present in the following cycle of

IS deviations (the deviating agent is written on top of the arrows).

{{1}, {2, 3, 4}, {5, . . . , 15}} {{2, 3, 4}, {1, 5, . . . , 15}} {{3, 4}, {1, 2, 5, . . . , 15}}

{{1, 3, 4}, {2, 5, . . . , 15}}{{2}, {1, 3, 4}, {5, . . . , 15}}{{1, 2}, {3, 4}, {5, . . . , 15}}

1 2

1

21

2

Hence, there is no IS partition in this instance. □

The construction in Proposition 3.1 does not seem to leave room for improvements, and we

conjecture that the counterexample may even be minimal, that is, an IS partition always exists

when 𝑛 < 15. However, even when 𝑛 < 15 and IS partitions do exist, there may still be cycles in the

dynamics.

Proposition 3.2. The dynamics of IS deviations may cycle in AHGs even when starting from the

singleton partition or grand coalition, preferences are strict and generally single-peaked, and 𝑛 = 7.

Proof. Let us consider an AHG with 7 agents with the following (incompletely specified)

preferences ([. . . ] denotes an arbitrary order over the remaining coalition sizes).

1 : 2 ≻ 3 ≻ 5 ≻ 4 ≻ 1 ≻ [. . . ]
2 : 5 ≻ 3 ≻ 2 ≻ 1 ≻ 4 ≻ [. . . ]

3, 4 : 3 ≻ 2 ≻ 1 ≻ [. . . ]
5, 6, 7 : 5 ≻ 4 ≻ 3 ≻ 2 ≻ 1 ≻ [. . . ]

They can be completed to be generally single-peaked with respect to the axis 1 > 2 > 3 > 5 >

4 > 6 > 7. We represent below a cycle of IS deviations.

{1, 2}, {3, 4}, {5, 6, 7} {1}, {2, 3, 4}, {5, 6, 7} {2, 3, 4}, {1, 5, 6, 7}

{3, 4}, {1, 2, 5, 6, 7}{1, 3, 4}, {2, 5, 6, 7}{2}, {1, 3, 4}, {5, 6, 7}

2 1

2

12

1

This cycle can be reached from the singleton partition or the grand coalition. Indeed, the partition

{{1, 2}, {3, 4}, {5, 6, 7}} can be reached from the singleton partition by forming each coalition. It can

also be reached by the grand coalition by having agents 1, 2, 3, and 4 leave and form their desired

coalitions.

Nevertheless, note that {{1}, {3, 5, 6}, {2, 4, 7}} is an IS partition in this instance. □

We know that it is NP-complete to recognize instances for which an IS partition exists in AHGs,

even for strict preferences [5]. We prove that both checking the existence of a sequence of IS

deviations ending in an IS partition and checking convergence are hard.

Theorem 3.3. ∃-IS-Sequence-AHG is NP-hard and ∀-IS-Sequence-AHG is coNP-hard, even for

strict preferences.
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The hardness results given above do not hold under naturally single-peaked preferences, even

if preferences may be weak. Indeed, we show in the next proposition that every sequence of

IS deviations is finite under such a restriction. We thus complement a result by Bogomolnaia

and Jackson [12] who gave a constructive existence proof for IS partitions when preferences are

naturally single-peaked. Their algorithm implicitly uses a specific sequence of IS deviations starting

from the singleton partition that furthermore guarantees that the final partition will be weakly

Pareto-optimal.

Theorem 3.4. The dynamics of IS deviations always converges to an IS partition in AHGs for

naturally single-peaked preferences.

Proof. Let an AHG be given with naturally single-peaked preferences. Assume for contradiction

that there exists a cycle of IS deviations. We will identify a specific deviation within this cycle that

cannot be repeated throughout the execution of the dynamics, obtaining a contradiction.

Let 𝐶 be a coalition within the cycle of smallest cardinality such that there exists an agent 𝑑 ∈ 𝐶
that performs a deviation leaving 𝐶 . Such a coalition exists, because there are only finitely many

different deviations performed in the cycle. We will argue that it is impossible to alter the coalition

𝐶 \ {𝑑} within the execution of the cycle. Hence, the coalition 𝐶 will never be reached again.

First, our assumption of minimality implies that 𝐶 \ {𝑑} cannot be altered by having an agent

leave this coalition. Therefore, we have to show that it cannot happen that an agent ever joins

𝐶 \{𝑑}. Assume for contradiction that there exists an agent 𝑥 that joins𝐶 \{𝑑}. Using our minimality

assumption again, the deviation of agent 𝑥 when joining 𝐶 \ {𝑑} must originate from a coalition

𝐶′
with |𝐶′ | > |𝐶 |. Hence, agent 𝑥 deviates towards a smaller coalition. Hence, single-peakedness

implies that the peak 𝑝𝑥 of agent 𝑥 must satisfy 𝑝𝑥 < |𝐶′ |. In particular, it follows by single-

peakedness that it cannot be the case that 𝑦 ≻𝑆𝑥 |𝐶′ | for any 𝑦 ≥ |𝐶′ |.
We claim that, within the cycle, it is impossible that agent 𝑥 ever reaches a coalition of size

at least |𝐶′ | again. To see this, let 𝐶𝑘 be the 𝑘-th coalition that 𝑥 is part of after leaving 𝐶′
, i.e.,

𝐶1 = (𝐶 \ {𝑑}) ∪ {𝑥} and 𝐶𝑘+1 evolves from 𝐶𝑘 by having some agent join or leave 𝐶𝑘 , or 𝐶𝑘+1 is
the new coalition of 𝑥 if 𝑥 performs a deviation to leave 𝐶𝑘 . We will show by induction over 𝑘 that,

for every 𝑘 , |𝐶𝑘 | < |𝐶 | or 𝐶𝑘 ≻𝑥 𝐶′
. Since 𝐶1 ≻𝑥 𝐶′

, the claim is true for 𝑘 = 1. Now, let 𝑘 ≥ 1

and assume that |𝐶𝑘 | < |𝐶 | or 𝐶𝑘 ≻𝑥 𝐶′
. Consider first the case that |𝐶𝑘 | < |𝐶 |. By our minimality

assumption, 𝑥 is not allowed to perform a deviation and therefore 𝐶𝑘+1 evolves by having an agent

leave or join 𝐶𝑘 . Also by the minimality assumption, no other agent may leave the coalition. If

an agent joins the coalition, then the size remains to be smaller than |𝐶 |, or is exactly |𝐶 | and we

already know that |𝐶 | ≻𝑆𝑥 |𝐶′ |.
It remains to consider the case that 𝐶𝑘 ≻𝑥 𝐶′

. If 𝐶𝑘+1 forms via a deviation of agent 𝑥 , then

𝐶𝑘+1 ≻𝑥 𝐶𝑘 ≻𝑥 𝐶′
and the claim is true. If some agent joins 𝐶𝑘 to form 𝐶𝑘+1 then 𝑥 has to

approve this, and we can conclude that 𝐶𝑘+1 ≿𝑥 𝐶𝑘 ≻𝑥 𝐶′
. Hence, it remains to consider the

case that some agent leaves 𝐶𝑘 and the remaining coalition is 𝐶𝑘+1. As we have argued above,

|𝐶𝑘 | ≻𝑆𝑥 |𝐶′ | implies that |𝐶𝑘 | < |𝐶′ |. If |𝐶𝑘+1 | < |𝐶 |, then the induction hypothesis is true for 𝑘 +1. If
|𝐶𝑘+1 | = |𝐶 |, then 𝐶𝑘+1 ≻𝑥 𝐶′

, and the induction hypothesis is also true. Finally, it remains the case

that |𝐶 | < |𝐶𝑘+1 | = |𝐶𝑘 | − 1 < |𝐶𝑘 | < |𝐶′ |, and we know that |𝐶 | ≻𝑆𝑥 |𝐶′ | and |𝐶𝑘 | ≻𝑆𝑥 |𝐶′ |. Hence,
single-peakedness implies that 𝐶𝑘+1 ≻𝑥 𝐶′

. This completes the proof of the induction hypothesis.

It follows that agent 𝑥 cannot reach a coalition of size at least |𝐶′ | again, a contradiction. Hence,
there cannot be an agent joining 𝐶 \ {𝑑}. This shows that 𝐶 \ {𝑑} can never be altered again, our

final contradiction. □

Our final goal in this section is to provide a polynomial bound on the running time of the

dynamics. Unfortunately, our proof relies on strict preferences, leaving the case of weak preferences
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as an interesting open problem. The proof needs far more sophisticated methods than the proof

of Theorem 3.4. The key idea is to distinguish deviations towards a smaller and a larger coalition,

and to make use of a potential function that aggregates values for agents and coalitions to bound

the number of deviations towards a larger coalition by 𝑛2. Using a second, much simpler, potential

function yields an overall polynomial running time.

Theorem 3.5. The dynamics of IS deviations always converges to an IS partition in AHGs for strict

and naturally single-peaked preferences in O(𝑛3) steps.

Proof. Let an AHG be given with strict and naturally single-peaked preferences where the peak

of agent 𝑗 is at position 𝑝 𝑗 . Consider a sequence of IS deviations starting at some initial partition 𝜋0.

Assume that the deviations lead to the sequence (𝜋𝑘 )𝑚𝑘=0 where, for 𝑘 = 0, . . . ,𝑚 − 1, 𝜋𝑘+1 evolves
from 𝜋𝑘 through an IS deviation of agent 𝑑𝑘 . We call a deviation an R-move (or L-move) if 𝑑𝑘
deviates towards a larger (or smaller) partition. The main part of the proof provides a bound of 𝑛2

for the number of R-moves. As we will see, this implies that there are at most 𝑛3 L-moves.

The idea is to define a potential function that is based on a value 𝑣𝑘𝑗 for each agent 𝑗 ∈ 𝑁 and a

value 𝑣𝑘
𝐶
for each coalition𝐶 ∈ 𝜋𝑘 . This potential function will not only depend on the partition 𝜋𝑘 ,

but also on the starting partition and the specific sequence of deviations to derive 𝜋𝑘 . It will be

increased strictly during an R-move and will not decrease during an L-move. We also need to

keep track of the last agent 𝑙𝑘
𝐶
that entered a coalition 𝐶 ∈ 𝜋𝑘 if this agents plays a ‘special role’

within her coalition.
5
The potential function will have a close relationship to the peaks of agents. It

maintains the invariant that an agent has a value that is always smaller than her peak (but also

reflects her coalition size).

Let us define the values that lead to the potential function. Initially, define 𝑣0𝑗 = 0 for all agents

𝑗 ∈ 𝑁 , and 𝑣0
𝐶
= 0 for all coalitions𝐶 ∈ 𝜋0. Also, there is no last agent that entered a coalition so far,

so we initiate 𝑙0
𝐶
= ⊥. Now, assume that we transition from partition 𝜋𝑘 to partition 𝜋𝑘+1 through

an IS deviation of agent 𝑑𝑘 . Denote 𝐷𝑘 = 𝜋𝑘 (𝑑𝑘 ) \ {𝑑𝑘 } and 𝐸𝑘 = 𝜋𝑘+1 (𝑑𝑘 ). Note that since the only
change in the partition is caused by agent 𝑑𝑘 , this corresponds exactly to the two new coalitions

in 𝜋𝑘+1 compared to 𝜋𝑘 . Also, denote 𝑙𝑘 = 𝑙𝑘
𝜋𝑘 (𝑑𝑘 ) , which will be the last agent that entered 𝜋𝑘 (𝑑𝑘 )

(unless 𝑙𝑘
𝜋𝑘 (𝑑𝑘 ) = ⊥, in which case such an agent does either not exist or its identity is unimportant

for the updates of the values). We specify first the updates that are done independently of the kind

of deviation.

We set 𝑣𝑘+1𝑗 = 𝑣𝑘𝑗 for all 𝑗 ∈ 𝑁 \(𝐷𝑘∪𝐸𝑘 ), i.e., the value of agents not involved in the deviation does
not change. Similarly, we set 𝑣𝑘+1

𝐶
= 𝑣𝑘

𝐶
and 𝑙𝑘+1

𝐶
= 𝑙𝑘

𝐶
for all coalitions𝐶 ∈ 𝜋𝑘∩𝜋𝑘+1 = 𝜋𝑘+1\{𝐷𝑘 , 𝐸𝑘 }.

The updates for the last agents do not depend on the kind of move. Set 𝑙𝑘+1
𝐸𝑘

= 𝑑𝑘 , and set 𝑙𝑘+1
𝐷𝑘

= ⊥
if 𝑙𝑘 = 𝑑𝑘 and 𝑙

𝑘+1
𝐷𝑘

= 𝑙𝑘 , otherwise.

It remains to specify new values for the agents which are part of one of the coalitions involved in

the deviation, and the values of these coalitions. The intuition for defining the agent and coalition

values is as follows. The value of an agent is always strictly smaller than her peak. In addition, it

represents a size that is preferred at most as much as an agent’s current coalition size.

We first consider the deviating agent. If she performs an R-move, then an appropriate bound for

her value is the size of the abandoned coalition. By this, we do not increase her value by too much

if she ends up far to the right of her peak. In case of an L-move, the deviating agent can only be the

5
Basically, we must be careful not to increase the potential function by too much after an R-move. If an agent performs an

R-move, she might land up far right of her peak, and we keep track of this possibility by labeling the agent as ‘special’.

Intuitively, by the strictness and single-peakedness of preferences, only the last agent that has joined some coalition can be

special.
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last agent who joined the coalition, unless she abandons a coalition that was never joined by an

agent (this intuition follows from the third invariant in the formal proof below). Hence, we assign

the ‘right’ value by maintaining the current value.

Formally, we set 𝑣𝑘+1
𝑑𝑘

= |𝜋𝑑𝑘 (𝜋𝑘 ) | = |𝐷𝑘 | + 1 if the deviation was an R-move and 𝑣𝑘+1
𝑑𝑘

= 𝑣𝑘
𝑑𝑘

if it

was an L-move.

Next, we consider the agents which are joined. Their consent to increase the coalition size

together with strictness and single-peakedness of the preferences imply that they move towards

their peak. We set 𝑣𝑘+1𝑗 = |𝐸𝑘 | − 1 for all 𝑗 ∈ 𝐸𝑘 \ {𝑑𝑘 }, which represents a bound that is strictly

smaller than their peak.

This leads us to the coalition value of 𝐸𝑘 . The role of this value is to anticipate behavior of the

deviating agent that goes against the drift of coalition sizes to the right. In all cases, we simply

update 𝑣𝑘+1
𝐸𝑘

= 𝑣𝑘+1
𝑑𝑘

, which will be sufficient to serve this purpose. The intuition of this value is

that we reach a critical point in the deviation when a coalition has been abandoned so often that

its size reaches the value of the special last agent. In this case, the special last agent cannot be in

the situation anymore where she can be too far on the right of the peak. We can then ‘spread’ the

coalition value among all agents (of which there is exactly the right amount).

The most complicated part of the update rules is to specify new values for the agents in the

abandoned coalition. Here, we have to update very differently depending on the behavior of the

dynamics. We distinguish several cases that we will refer to in the following proof. The first case

considers the situation where the deviating agent performs an L-move. The four other cases consider

different situations during an R-move. The second and third cases consider two simple situations

where either the abandoned agents did not change their value since initialization, or where 𝑑𝑘 = 𝑙𝑘 ,

i.e., the deviating agent is the special last agent in the abandoned coalition. Note that the update

rules are the same for the first three cases whereas the values of the agents can still be very different.

The final three cases consider the situation where 𝑑𝑘 ≠ 𝑙𝑘 . The forth case covers the case where

𝑙𝑘 = ⊥ but agents in the abandoned coalition already have a value. In the last two cases, the update

rules distinguish whether we reach a threshold specified by the value of 𝑙𝑘 in the fifth case, or

whether not in the sixth case. Note that the case distinction is exhaustive because of invariant (4)

in the proof of Claim 3.1.

(i) If the deviation was an L-move, we update 𝑣𝑘+1𝑗 = 𝑣𝑘𝑗 for all 𝑗 ∈ 𝐷𝑘 and 𝑣𝑘+1𝐷𝑘
= 0.

In all other cases, we assume that the deviation was an R-move.

(ii) If 𝑣𝑘𝑗 = 0 for all 𝑗 ∈ 𝐷𝑘 , we maintain 𝑣𝑘+1𝑗 = 𝑣𝑘𝑗 for all 𝑗 ∈ 𝐷𝑘 and 𝑣𝑘+1𝐷𝑘
= 0.

(iii) If 𝑑𝑘 = 𝑙𝑘 , we update 𝑣
𝑘+1
𝑗 = 𝑣𝑘𝑗 for all 𝑗 ∈ 𝐷𝑘 and 𝑣𝑘+1𝐷𝑘

= 0.

For the remaining cases, we assume that 𝑑𝑘 ≠ 𝑙𝑘 .

(iv) Consider the case that 𝑙𝑘 = ⊥. Then, set 𝑣𝑘+1𝑗 = |𝐷𝑘 | for all 𝑗 ∈ 𝐷𝑘 , 𝑣𝑘+1𝐷𝑘
= 0, and maintain

𝑙𝑘+1
𝐷𝑘

= ⊥.
(v) Otherwise, there exists an agent 𝑙𝑘 ∈ 𝑁 and 𝑣𝑘

𝑙𝑘
≤ |𝐷𝑘 | (shown in the proof of Claim 3.1). If

𝑣𝑘
𝑙𝑘

= |𝐷𝑘 |, then set 𝑣𝑘+1𝑗 = |𝐷𝑘 | for all 𝑗 ∈ 𝐷𝑘 , 𝑣𝑘+1𝐷𝑘
= 0, and 𝑙𝑘+1

𝐷𝑘
= ⊥ (we update this last

agent again because all agents play the same role now within 𝐷𝑘 ).

(vi) If 𝑣𝑘
𝑙𝑘

< |𝐷𝑘 |, set 𝑣𝑘+1𝑗 = |𝐷𝑘 | − 1 for all 𝑗 ∈ 𝐷𝑘 \ {𝑙𝑘 }, 𝑣𝑘+1𝑙𝑘
= 𝑣𝑘

𝑙𝑘
, and 𝑣𝑘+1

𝐷𝑘
= 𝑣𝑘

𝐷𝑘∪{𝑑𝑘 } (the

last agent of 𝐷𝑘 does not need a second update since it still plays a special role).

We are ready to specify our potential function. Given a partition 𝜋𝑘 that occurs in the dynamics,

define its potential Λ(𝜋𝑘 ) =
∑
𝑗∈𝑁 𝑣

𝑘
𝑗 +

∑
𝐶∈𝜋𝑘 𝑣

𝑘
𝐶
. Again, note that this potential can depend both on

the starting partition and the specific sequence of deviations. The core of the proof is the following

claim.
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Claim 3.1. For all 𝑘 = 1, . . . ,𝑚, Λ(𝜋𝑘 ) ≥ Λ(𝜋𝑘−1). If 𝜋𝑘 evolved from 𝜋𝑘−1 by an R-move, then

Λ(𝜋𝑘 ) > Λ(𝜋𝑘−1).

Proof. We will prove this main claim along with the following useful invariants by induction

over 𝑘 = 0, . . . ,𝑚:

(1) For all 𝐶 ∈ 𝜋𝑘 , 𝑣𝑘𝐶 ≤ |𝐶 | − 1.

(2) For all 𝐶 ∈ 𝜋𝑘 and 𝑗 ∈ 𝐶 , if 𝑣𝑘𝐶 > 0, then 𝑙𝑘
𝐶
≠ ⊥ and 𝑣𝑘𝑗 ≤ |𝐶 | − 1.

(3) For all agents 𝑗 ∈ 𝑁 with 𝑣𝑘𝑗 > 0, 𝑣𝑘𝑗 ⪯𝑗 |𝜋𝑘 ( 𝑗) | and 𝑝 𝑗 > 𝑣𝑘𝑗 .
(4) For all 𝐶 ∈ 𝜋𝑘 with 𝑙𝑘𝐶 ≠ ⊥, 𝑣𝑘

𝐶
= 𝑣𝑘

𝑙𝑘
𝐶

or 𝑣𝑘
𝐶
= 0. Moreover, in this case, 𝑣𝑘

𝑙𝑘
𝐶

≤ |𝐶 | − 1.

(5) For all 𝐶 ∈ 𝜋𝑘 with 𝑙𝑘
𝐶

= ⊥, it holds that 𝑣𝑘𝑗 = |𝐶 | for all 𝑗 ∈ 𝐶 or 𝑣𝑘𝑗 = 0 for all 𝑗 ∈ 𝐶 .
Moreover, in this case, 𝑣𝑘

𝐶
= 0.

For 𝑘 = 0, the main claim is vacant, and the four invariants hold by our initialization of the agent

and coalition values. So assume that all of them are true for some 0 ≤ 𝑘 < 𝑚. We use the notation

for the agents 𝑑𝑘 and 𝑙𝑘 , and the coalitions 𝐷𝑘 and 𝐸𝑘 as in the description of the updates of the

values. We will prove that all invariants are true for partition 𝑘 + 1.

(1) The first invariant follows from the update rules and by induction. Let us provide the details

for the two affected coalitions. Specifically, 𝑣𝑘+1
𝐷𝑘

= 0, unless we are in the last case of the

update rule, where 𝑣𝑘+1
𝐷𝑘

(vi)
= 𝑣𝑘

𝐷𝑘∪{𝑑𝑘 }
(4)
= 𝑣𝑘

𝑙𝑘

(vi)
≤ |𝐷𝑘 | − 1.

Now, let us consider coalition 𝐸𝑘 . If 𝑣
𝑘+1
𝐸𝑘

= 0, then the invariant holds. Otherwise, if 𝑑𝑘

performed an R-move, then 𝑣𝑘+1
𝐸𝑘

= |𝐷𝑘 | + 1 ≤ |𝐸𝑘 | − 1. On the other hand, assume that

𝑑𝑘 performed an L-move. Recall that by the update rule for 𝐸𝑘 , 𝑣
𝑘
𝐸𝑘

= 𝑣𝑘
𝑑𝑘
. Then, it holds

that 𝑣𝑘
𝑑𝑘

= 0 (and we are done), or 𝑑𝑘 was the last agent who joined 𝜋𝑘 (𝑑𝑘 ) (other agents
in 𝜋𝑘 (𝑑𝑘 ) can only perform R-moves due to strict preferences and single-peakedness).

Assume for contradiction that 𝑣𝑘
𝐸𝑘

≥ |𝐸𝑘 |. If 𝑣𝑘𝐸𝑘 = |𝐸𝑘 |, then induction for invariant (3)

yields |𝐸𝑘 | = 𝑣𝑘𝑑𝑘 ⪯𝑑𝑘 |𝜋𝑘 (𝑑𝑘 ) |, contradicting the fact that 𝑑𝑘 must improve her coalition

after her deviation. Hence, using invariant (3) again, we have that 𝑝𝑑𝑘 > 𝑣𝑘
𝑑𝑘

> |𝐸𝑘 | and
𝑣𝑘
𝑑𝑘

≺𝑑𝑘 𝑝𝑘 . Hence, single-peakedness implies that |𝐸𝑘 | ≺𝑑𝑘 𝑣𝑘𝑑𝑘 , and the deviation was again

not improving, a contradiction.

(2) The second invariant follows by induction and the update rules. In particular, it holds for the

agent 𝑑𝑘 if 𝑑𝑘 performed an L-move to join 𝐸𝑘 , because then 𝑣
𝑘+1
𝑑𝑘

= 𝑣𝑘+1
𝐸𝑘

and the invariant

follows from the first invariant. The value of the coalition 𝐷𝑘 will either be set to 0 or the

invariant will be maintained for all agents in 𝐷𝑘 .

(3) The third invariant holds by induction for the agents who do not change their value. For

the agents in 𝐸𝑘 \ {𝑑𝑘 }, it holds by definition of an IS deviation, because they improve

when agent 𝑑𝑘 joins. The same is true for 𝑑𝑘 if she performed an R-move because then

𝑣𝑘+1
𝑑𝑘

= |𝐷𝑘 | + 1. Otherwise, if 𝑑𝑘 performs an L-move, we can apply induction, because she

improved her utility.

Finally, we have to consider the agents in 𝐷𝑘 . The invariant holds if 𝑣
𝑘
𝑗 = 0 for all 𝑗 ∈ 𝐷𝑘 .

Otherwise, all agents 𝑗 ∈ 𝐷𝑘 \ {𝑙𝑘 } have improved when the last agent joined and therefore

𝑝 𝑗 ≥ |𝐷𝑘 | + 1 > |𝐷𝑘 |. By the update rules, 𝑣𝑘+1𝑗 ≤ |𝐷𝑘 |. In particular, single-peakedness

implies that 𝑣𝑘+1𝑗 ⪯𝑗 |𝐷𝑘 | = |𝜋𝑘+1 ( 𝑗) |. Finally, for 𝑙𝑘 , the argument is the same if 𝑣𝑙𝑘 = |𝐷𝑘 |
and we can apply induction (and single-peakedness) if 𝑣𝑙𝑘 < |𝐷𝑘 |. Note that the case

𝑣𝑙𝑘 > |𝐷𝑘 | is excluded by induction for invariant (4).
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(4) The forth invariant is immediate for all coalitions in 𝜋𝑘+1 \ {𝐷𝑘 }. The only case where

𝑣𝑘+1
𝐷𝑘

≠ 0 is case (vi) of the update rules. Then, 𝑣𝑘+1
𝑙𝑘

= 𝑣𝑘
𝑙𝑘
, and 𝑣𝑘+1

𝐷𝑘
= 𝑣𝑘

𝐷𝑘∪{𝑑𝑘 } . If 𝑣
𝑘+1
𝑙𝑘

≠ 0,

then 𝑣𝑘
𝑙𝑘
≠ 0, and induction yields for this case that 𝑣𝑘+1

𝐷𝑘
= 𝑣𝑘

𝐷𝑘∪{𝑑𝑘 } = 𝑣
𝑘
𝑙𝑘
= 𝑣𝑘+1

𝑙𝑘
. Moreover,

in case (vi) of the update rule, it holds that 𝑣𝑘
𝑙𝑘
≤ |𝐷𝑘 | − 1, which achieves the last part of

this invariant.

(5) Again, the only coalitions to consider are 𝐷𝑘 and 𝐸𝑘 . Since, 𝑙
𝑘+1
𝐸𝑘

= 𝑑𝑘 , the invariant is vacant

for this coalition. For 𝐷𝑘 , the invariant can only apply in cases (ii), (iv), and (v) of the update

rules. For all of these cases, it holds that 𝑣𝑘+1
𝐷𝑘

= 0, and 𝑣𝑘+1𝑗 = |𝐷𝑘 | for all 𝑗 ∈ 𝐷𝑘 or 𝑣𝑘+1𝑗 = 0

for all 𝑗 ∈ 𝐷𝑘 .
An immediate consequence of invariant (3) is that for all agents 𝑗 ∈ 𝑁 , it holds that 𝑣𝑘𝑗 ≤ |𝜋𝑘 ( 𝑗) |.

Indeed, otherwise |𝜋𝑘 ( 𝑗) | < 𝑣𝑘𝑗 < 𝑝 𝑗 and since 𝑣𝑘𝑗 ≺𝑗 𝑝 𝑗 , single-peakedness and strictness would

imply |𝜋𝑘 ( 𝑗) | ≺𝑗 𝑣𝑘𝑗 , contradicting invariant (3). We call this observation (Δ).
Finally, we can show our main claim. We can restrict our attention to coalitions 𝐷𝑘 and 𝐸𝑘

and agents within these. Note that either 𝑣𝑘
𝐸𝑘\{𝑑𝑘 } = 0, or, by invariant (1), 𝑣𝑘

𝐸𝑘\{𝑑𝑘 } ≤ |𝐸𝑘 | − 2.

Moreover, for every 𝑗 ∈ 𝐸𝑘 \ {𝑑𝑘 }, it holds that 𝑣𝑘+1𝑗 = |𝐸𝑘 | − 1 according to the update rule, and

𝑣𝑘𝑗 ≤ (|𝐸𝑘 | − 1) − 1 according to invariant (2) if 𝑣𝑘
𝐸𝑘\{𝑑𝑘 } > 0. Thus, in this case 𝑣𝑘+1𝑗 − 𝑣𝑘𝑗 ≥ 1 for all

𝑗 ∈ 𝐸𝑘 \ {𝑑𝑘 }. Hence, in every case∑︁
𝑗∈𝐸𝑘\{𝑑𝑘 }

𝑣𝑘+1𝑗 − 𝑣𝑘𝑗 − 𝑣𝑘𝐸𝑘\{𝑑𝑘 } > 0. (∗)

We make a case distinction according to the different update cases for agents in 𝐷𝑘 . We start

with the cases covering situations where 𝑑𝑘 = 𝑙𝑘 .

(i) If an L-move was performed, then 𝑑𝑘 = 𝑙𝑘 or the agents in 𝐷𝑘 ∪ {𝑙𝑘 } did not participate in a

deviation, yet. In either case, 𝑣𝑘+1
𝐸𝑘

≥ 𝑣𝑘
𝐷𝑘∪{𝑑𝑘 } (using the update rules for the values of 𝑙𝑘

and 𝐸𝑘 , and the forth invariant). Hence,

Λ(𝜋𝑘+1) − Λ(𝜋𝑘 )
(∗)
≥ 𝑣𝑘+1𝐷𝑘

+
∑︁

𝑗∈𝐷𝑘∪{𝑑𝑘 }
𝑣𝑘+1𝑗 − 𝑣𝑘𝑗

(𝑖 )
= 0.

Assume now that an R-move was performed. Then, it holds that 𝑣𝑘+1
𝐸𝑘

= |𝐷𝑘 | + 1 and by the

invariant (1), 𝑣𝑘
𝐷𝑘∪{𝑑𝑘 } ≤ |𝐷𝑘 |. Hence,

𝑣𝑘+1𝐸𝑘
− 𝑣𝑘

𝐷𝑘∪{𝑑𝑘 } > 0. (∗∗)

(ii) If the agents in 𝐷𝑘 had value 0, then Λ(𝜋𝑘+1) − Λ(𝜋𝑘 ) ≥ 𝑣𝑘+1𝑑𝑘
+ 𝑣𝑘+1

𝐸𝑘
= 2( |𝐷𝑘 | + 1) > 0.

(iii) Next, assume that the agents in 𝐷𝑘 do not have value 0, and that 𝑑𝑘 = 𝑙𝑘 . Then,

Λ(𝜋𝑘+1) − Λ(𝜋𝑘 )
(∗)
≥ 𝑣𝑘+1

𝑑𝑘
− 𝑣𝑘

𝑑𝑘︸     ︷︷     ︸
≥ 0

+ 𝑣𝑘+1𝐷𝑘︸︷︷︸
= 0 by (iii)

+ 𝑣𝑘+1𝐸𝑘
− 𝑣𝑘

𝐷𝑘∪{𝑑𝑘 }︸             ︷︷             ︸
> 0 by (∗∗)

> 0.

Now, consider the case that 𝑑𝑘 ≠ 𝑙𝑘 .

(iv) Assume that 𝑙𝑘 = ⊥. Then, by invariant (5), 𝑣𝑘
𝐷𝑘∪{𝑑𝑘 } = 0. Moreover, by the update rule, for

all 𝑗 ∈ 𝐷𝑘 , it holds that 𝑑𝑘+1𝑗 = |𝐷𝑘 |, while observation (Δ) yields 𝑑𝑘𝑗 ≤ |𝐷𝑘 | + 1. Hence,∑︁
𝑗∈𝐷𝑘

𝑑𝑘+1𝑗 − 𝑑𝑘𝑗 ≥ −|𝐷𝑘 |.
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Hence,

Λ(𝜋𝑘+1) − Λ(𝜋𝑘 )
(∗)
≥ 𝑣𝑘+1

𝑑𝑘
− 𝑣𝑘

𝑑𝑘︸     ︷︷     ︸
≥ 0

+ 𝑣𝑘+1𝐷𝑘︸︷︷︸
= 0 by (iv)

+ 𝑣𝑘+1𝐸𝑘︸︷︷︸
= |𝐷𝑘 |+1

+
∑︁
𝑗∈𝐷𝑘

𝑑𝑘+1𝑗 − 𝑑𝑘𝑗︸           ︷︷           ︸
≥ −|𝐷𝑘 |

− 𝑣𝑘
𝐷𝑘∪{𝑑𝑘 }︸    ︷︷    ︸
= 0 by (5)

> 0.

Now assume that 𝑙𝑘 ≠ ⊥. By invariant (4), 𝑣𝑘
𝑙𝑘
≤ |𝐷𝑘 |. We consider the two corresponding cases.

(v) Assume that 𝑣𝑘
𝑙𝑘
= |𝐷𝑘 |. If 𝑣𝑘𝐷𝑘∪{𝑑𝑘 } > 0, then 𝑣𝑘+1𝑗 = |𝐷𝑘 |

(2)
≥ 𝑣𝑘𝑗 for all 𝑗 ∈ 𝐷𝑘 . Therefore,

Λ(𝜋𝑘+1) − Λ(𝜋𝑘 )
(∗)
≥ 𝑣𝑘+1

𝑑𝑘
− 𝑣𝑘

𝑑𝑘︸     ︷︷     ︸
≥ 0

+ 𝑣𝑘+1𝐷𝑘︸︷︷︸
= 0 by (v)

+ 𝑣𝑘+1𝐸𝑘
− 𝑣𝑘

𝐷𝑘∪{𝑑𝑘 }︸             ︷︷             ︸
> 0 by (∗∗)

> 0.

In the case that 𝑣𝑘
𝐷𝑘∪{𝑑𝑘 } = 0, we have 𝑣𝑘+1𝑗 = |𝐷𝑘 |

(Δ)
≥ 𝑣𝑘𝑗 − 1 for all 𝑗 ∈ 𝐷𝑘 . Hence,

𝑣𝑘+1𝐸𝑘
−

∑︁
𝑗∈𝐷𝑘

𝑣𝑘+1𝑗 − 𝑣𝑘𝑗 = 𝑣𝑘+1𝐸𝑘
− |𝐷𝑘 | > 0. (∗ ∗ ∗)

Together,

Λ(𝜋𝑘+1) − Λ(𝜋𝑘 )
(∗),(∗∗∗)

> 𝑣𝑘+1
𝑑𝑘

− 𝑣𝑘
𝑑𝑘︸     ︷︷     ︸

≥ 0

+ 𝑣𝑘+1𝐷𝑘︸︷︷︸
= 0 by (vi)

− 𝑣𝑘
𝐷𝑘∪{𝑑𝑘 }︸    ︷︷    ︸

= 0

≥ 0.

(vi) If 𝑣𝑘
𝑙𝑘

≠ |𝐷𝑘 |, then, by invariant (4), 𝑣𝑘
𝑙𝑘

< |𝐷𝑘 |. Hence, as in the beginning of case (iv),∑
𝑗∈𝐷𝑘

𝑣𝑘𝑗 − 𝑣𝑘+1𝑗 ≤ |𝐷𝑘 | − 1. Moreover, 𝑣𝑘+1
𝐸𝑘

= |𝐸𝑘 | − 1 ≥ |𝐷𝑘 | + 1. Also, according to the

update rule for case (vi), 𝑣𝑘+1
𝐷𝑘

= 𝑣𝑘
𝐷𝑘∪{𝑑𝑘 } . Hence,

Λ(𝜋𝑘+1) − Λ(𝜋𝑘 )
(∗)
≥ 𝑣𝑘+1

𝑑𝑘
− 𝑣𝑘

𝑑𝑘︸     ︷︷     ︸
≥ 0

+ 𝑣𝑘+1𝐷𝑘
− 𝑣𝑘

𝐷𝑘∪{𝑑𝑘 }︸             ︷︷             ︸
= 0 by (vi)

+ 𝑣𝑘+1𝐸𝑘︸︷︷︸
= |𝐷𝑘 |+1

+
∑︁
𝑗∈𝐷𝑘

𝑑𝑘+1𝑗 − 𝑑𝑘𝑗︸           ︷︷           ︸
≥ −( |𝐷𝑘 |−1)

> 0.

This completes the induction. ◁

Now, note that for all 0 ≤ 𝑘 ≤ 𝑚, Λ(𝜋𝑘 ) ≥ 0 and the potential is integer-valued. Moreover,

Λ(𝜋𝑚) =
∑
𝑗∈𝑁 𝑣

𝑚
𝑗 +∑

𝐶∈𝜋𝑘 𝑣
𝑚
𝐶

=
∑
𝐶∈𝜋𝑘 (𝑣𝑚𝐶 +∑

𝑗∈𝐶 𝑣
𝑚
𝑗 ) ≤

∑
𝐶∈𝜋 |𝐶 |2 ≤ 𝑛2. We use that, by (Δ), if

𝑣𝑚
𝐶

= 0, then 𝑣𝑚𝑗 ≤ |𝐶 | for all 𝑗 ∈ 𝐶 , and we also use the first and second invariant. Hence, there are

at most 𝑛2 R-moves.

To get a global bound on the number of moves, we consider the simple potential that counts the

pairs of agents that form common coalitions. Given a coalition𝐶 , this value is precisely |𝐶 | ( |𝐶 |−1)/2.
Define therefore the potential Γ(𝜋) = ∑

𝐶∈𝜋 |𝐶 | ( |𝐶 | − 1)/2. Note that 0 ≤ Γ(𝜋) ≤ 𝑛(𝑛 − 1)/2. Now,
every R-move raises the potential Γ by at most 𝑛 − 1, and every L-move diminishes it by at least 1.

Hence, there can be at most Γ(𝜋0) + 𝑛2 (𝑛 − 1) ≤ 𝑛3 L-moves. This bounds the total length of the

execution of the dynamics by 𝑛2 + 𝑛3 = O(𝑛3). □
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4 HEDONIC DIVERSITY GAMES
Hedonic diversity games take into account more information about the identity of the agents,

changing the focus from coalition sizes to proportions of given types of agents. Following the

definition of HDGs, we assume throughout this section that the agent set is always partitioned

into sets 𝑅 and 𝐵 of red and blue agents, respectively. It is known that IS partitions always exist in

HDGs, even without restrictions such as single-peakedness of preferences [11]. However, we prove

in the first part of this section (Theorem 4.2) that the dynamics of IS deviations may cycle, even

under very strong restrictions. This stands in contrast to empirical evidence for the convergence of

dynamics based on extensive computer simulations by Boehmer and Elkind [11]. To this end, we

consider natural restrictions of the preferences, of the starting partitions, and specific selection

rules for the performed deviations. We show that most combinations of them still allow for infinite

dynamics. Most surprisingly, we can show that the dynamics may cycle even if we start from

the singleton partition and the preferences are strict and single-peaked.
6
However, if we add an

arguably weak selection rule, we obtain convergence of the dynamics. To define this rule, we call

a coalition 𝐶 ⊆ 𝑁 homogeneous if it consists only of agents of one type, i.e., 𝐶 ⊆ 𝑅 or 𝐶 ⊆ 𝐵. We

say that a deviation satisfies solitary homogeneity if, whenever the target coalition of the deviator

is homogeneous, then it is a singleton coalition. Note that whenever an agent can perform an IS

deviation, then she can perform a deviation satisfying solitary homogeneity, simply by forming

the homogeneous singleton coalition instead of joining existing homogeneous coalitions. Hence,

assuming solitary homogeneity of deviations yields valid selection rules, i.e., whenever a deviation

is possible, then solitary homogeneity does not prohibit all possible deviations.

The counterexamples for the convergence of IS dynamics that we provide in Theorem 4.2 consider

any triple of four given restrictions. In the second part of this section, we show that combining

all considered restrictions leads to convergence of the dynamics. In other words, the IS dynamics

may cycle if and only if any of the four properties of Theorem 4.2 is violated. For the proof of

Theorem 4.2, we make use of a lemma which already highlights the special role of homogeneous

coalitions.

Lemma 4.1. Given a set 𝑅𝑎 of red (or set 𝐵𝑎 of blue) agents (the subscripts indicate that we use these

agents as auxiliary agents) whose preferences satisfy
2

3
≻ 1 ≻ 1

2
(or

1

3
≻ 0 ≻ 1

2
), it is possible to create

the homogeneous coalition 𝑅𝑎 (or 𝐵𝑎) by means of a dynamics of IS deviations starting from singleton

coalitions. All further involved agents have strict and naturally single-peaked preferences.

Proof. In the following proof, we consider various sets of auxiliary agents. We assume that we

take new agents in every step of the constructions.

We show the statement for homogeneous coalitions of blue agents. The statement for red agents

is completely symmetric, by reversing the respective roles. We use a few types of auxiliary agents

with extreme preferences that have their peaks at the largest or smallest ratios, except for liking

homogeneous coalitions the worst. Specifically, we consider four sets 𝑅𝑥 , 𝐵𝑥 , 𝑅𝑦 , and 𝐵𝑦 of agents

with the following preferences. Note that the sets 𝑅𝑦 and 𝐵𝑦 are only needed for the statement

about red agents, but we state them for completeness.

𝑅𝑥 , 𝐵𝑥 : 𝑓 ≻ 𝑔 if and only if 0 < 𝑓 < 𝑔 or 𝑓 > 𝑔 = 0

𝑅𝑦, 𝐵𝑦 : 𝑓 ≻ 𝑔 if and only if 1 > 𝑓 > 𝑔 or 𝑓 < 𝑔 = 1

Now, let 𝐵𝑎 be a set of blue agents such that every agent in 𝐵𝑎 has preferences satisfying

1

3
≻ 0 ≻ 1

2
. Suppose that |𝐵𝑎 | = 𝑘 and 𝐵𝑎 = {𝑏𝑎,𝑖 : 𝑖 ∈ [𝑘]}. Let 𝑟𝑥,𝑖 ∈ 𝑅𝑥 for 𝑖 ∈ [2] and 𝑏𝑥,𝑖 ∈ 𝐵𝑥 for

6
This corrects a statement in the conference version of this paper [15].
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𝑖 ∈ [𝑘 + 2]. We create a trash coalition (used to get rid of agents not needed anymore) by creating

𝐶𝑎 = {𝑟𝑥,2, 𝑏𝑥,𝑘 , 𝑏𝑥,𝑘+1}. To create 𝐶𝑎 , we let the blue agents of this coalition join the red agent 𝑟𝑥,2.

Now, we perform for any 𝑖 ∈ [𝑘 − 1] the following steps (in increasing order of indices): 𝑏𝑥,𝑖 joins

𝑟𝑥,1, then 𝑏𝑎,𝑖 joins this coalition. Then, 𝑏𝑥,𝑖 leaves this coalition to join𝐶𝑎 ∪ {𝑏𝑥,𝑗 : 𝑗 ∈ [𝑖 − 1]}, and
finally 𝑏𝑎,𝑖 joins 𝑏𝑎,𝑘 ∪ {𝑏𝑎,𝑗 : 𝑗 ∈ [𝑖 − 1]}. Note that these are all IS deviations. In particular, 𝑏𝑎,𝑖 ’s

deviation to join 𝑏𝑎,𝑘 ’s coalition is feasible, because she leaves coalition {𝑟𝑥,1, 𝑏𝑎,𝑖 } which has a ratio

of 1/2, which is strictly worse for her than being in a homogeneous coalition. After this procedure,

we have obtained the coalition 𝐵𝑎 . □

We are ready to prove the theorem.

Theorem 4.2. The dynamics of IS deviations may cycle in HDGs even if any three of the following

restrictions apply:

(1) preferences are naturally single-peaked,

(2) preferences are strict,

(3) the starting partition is the singleton partition, or

(4) all deviations satisfy solitary homogeneity.

Proof. We provide examples for any triple of the four restrictions. The example where all

properties except the condition on the starting partition, and where all properties except deviation

selection according to solitary homogeneity are satisfied are closely related. First we show how to

deal with the former case. Then, we show how to reach a configuration within the cycle of this case

by starting from the singleton coalition. However, for reaching this cycle, some of the performed

deviations violate solitary homogeneity.

(¬3) We start with an example of an HDG where all preferences are strict and naturally single-

peaked and all agents’ deviations satisfy solitary homogeneity. Therefore, let us consider

an HDG with 26 agents: 12 red agents and 14 blue agents. There are four deviating agents:

red agents 𝑟1 and 𝑟2 and blue agents 𝑏1 and 𝑏2, and four fixed coalitions 𝐶1, 𝐶2, 𝐶3 and 𝐶4

such that:

• 𝐶1 contains 2 red agents and 4 blue agents;

• 𝐶2 contains 5 red agents;

• 𝐶3 contains 3 red agents and 2 blue agents;

• 𝐶4 contains 6 blue agents.

The relevant part of the preferences of the agents is given below.
7

𝑏1 :
3

8
≻ 5

7
≻ 5

6
≻ 2

7

𝑏2 :
5

7
≻ 4

7
≻ 1

2
≻ 5

6

𝑟1 :
4

7
≻ 1

4
≻ 1

7
≻ 2

3

𝑟2 :
1

4
≻ 3

8
≻ 3

7
≻ 1

7

𝐶1 :
3

8
≻ 3

7
≻ 1

3

𝐶2 :
5

7
≻ 5

6
≻ 1

𝐶3 :
4

7
≻ 1

2
≻ 3

5

𝐶4 :
1

4
≻ 1

7
≻ 0

Consider the sequence of IS deviations in Figure 1 that describes a cycle of the dynamics.

The four deviating agents of the cycle 𝑏1, 𝑏2, 𝑟1 and 𝑟2 are marked in bold and the specific

deviating agent between two states is indicated next to the arrows.

7
Throughout this proof, we only specify the relevant part of preferences. Since agents are only in coalitions with the

specified ratios, all missing values can be inserted arbitrarily, possibly respecting single-peakedness. Note that if these

preferences are naturally single-peaked, then they can easily be completed by inserting fractions in the right intervals. For

instance, the preferences by 𝑏1 in the following can be completed as follows. The peak is at
3

8
, then we prefer values to the

right of the peak over values to the left of the peak. Within the interval [ 3
8
, 1], smaller values are preferred to larger values.

Within the interval [0, 3
8
], larger values are preferred to smaller values. In particular, the displayed part of the preferences

is naturally single-peaked because
2

7
< 3

8
< 5

7
< 5

6
.
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𝐶1 ∪ {b1, r2 } 𝐶2 𝐶3 ∪ {b2 } 𝐶4 ∪ {r1 }
3/8 1 1/2 1/7

𝐶1 ∪ {b1 } 𝐶2 𝐶3 ∪ {b2 } 𝐶4 ∪ {r1, r2 }
2/7 1 1/2 1/4

𝐶1 ∪ {b1 } 𝐶2 𝐶3 ∪ {b2, r1 } 𝐶4 ∪ {r2 }
2/7 1 4/7 1/7

𝐶1 𝐶2 ∪ {b1 } 𝐶3 ∪ {b2, r1 } 𝐶4 ∪ {r2 }
1/3 5/6 4/7 1/7

𝐶1 ∪ {r2 } 𝐶2 ∪ {b1 } 𝐶3 ∪ {b2, r1 } 𝐶4

3/7 5/6 4/7 0

𝐶1 ∪ {b1, r2 } 𝐶2 ∪ {b2 } 𝐶3 𝐶4 ∪ {r1 }
3/8 5/6 3/5 1/7

𝐶1 ∪ {r2 } 𝐶2 ∪ {b1, b2 } 𝐶3 ∪ {r1 } 𝐶4

3/7 5/7 2/3 0

𝐶1 ∪ {r2 } 𝐶2 ∪ {b1, b2 } 𝐶3 𝐶4 ∪ {r1 }
3/7 5/7 3/5 1/7

𝑟2

𝑟1 𝑏1

𝑟2

𝑏2

𝑟1𝑏1

𝑏2

Fig. 1. Possibility of cycling of IS dynamics in part (¬3) of Theorem 4.2. Here, we consider IS dynamics in

HDGs under strict and single-peaked preferences, where all deviations satisfy solitary homogeneity.

Note that all deviations result in non-homogeneous target coalitions, and therefore satisfy

solitary homogeneity.

(¬4) Our next goal is to provide an example of cycling under strict and single-peaked preferences

while the starting partition is the singleton partition. Our example makes use of the previous

example. As a first step, we show, how we can create the coalitions𝐶𝑖 for 𝑖 ∈ [4] by starting
from the singleton coalition. In a second step, we show how to add the deviators 𝑟1, 𝑟2, 𝑏1,

and 𝑏2 of the previous example to these coalitions to reach a partition from the cycle. As a

consequence, cycling can occur by following the cycle from the first part of the proof. For

highlighting the relationship of the two examples, we will use boldface for the part of the

preferences of the constructed coalitions identical to the previous example.

To create the desired coalitions, we use Lemma 4.1 to create homogeneous auxiliary coali-

tions. We assume that we take new (auxiliary) agents for every step of every construction.

Now, we show how to create the coalitions 𝐶𝑖 for 𝑖 ∈ [4] one by one.

Creating 𝐶2 and 𝐶4. Leveraging Lemma 4.1, it is straightforward to manufacture the ho-

mogeneous coalitions 𝐶2 and 𝐶4. Therefore, define the coalitions 𝐶2 = {𝑟2,𝑖 : 𝑖 ∈ [5]}
and 𝐶4 = {𝑏4,𝑖 : 𝑖 ∈ [6]} together with the following strict and naturally single-peaked

preferences.

𝐶2 :
2

3
≻ 5

7 ≻ 5
6 ≻ 1 ≻ 1

2

𝐶4 :
1

3
≻ 1

4 ≻ 1
7 ≻ 0 ≻ 1

2

Since the preferences satisfy the assumptions of Lemma 4.1, we can apply it to create 𝐶2

and 𝐶4.



18 Felix Brandt, Martin Bullinger, and Anaëlle Wilczynski

Creating 𝐶1. Creating the coalition 𝐶1 is also not very difficult. We can simply apply

Lemma 4.1 to form a coalition of all the blue agents, and let the red agents join this coalition.

More formally, consider the coalition 𝐶1 = {𝑏1,1, 𝑏1,2, 𝑏1,3, 𝑏1,4, 𝑟1,1, 𝑟1,2} with the following

strict and naturally single-peaked preferences.

𝐶1 :
3
8 ≻ 3

7 ≻ 1
3 ≻ 1

5
≻ 0 ≻ 1

2
≻ 1

Note that here and in the following constructions, the considered agents can be of any color

and we can just ignore the preference for 0 or 1 if we consider a red or blue agent from the

set, respectively.

To form 𝐶1, we can apply Lemma 4.1 to form 𝐵𝑎 = {𝑏1,1, 𝑏1,2, 𝑏1,3, 𝑏1,4}. Then, 𝑟1,1 and 𝑟1,2
can perform IS deviations to join 𝐵𝑎 one after another. This results in the coalition 𝐶1, as

desired.

Creating𝐶3. The by far most difficult coalition to create is𝐶3, where we have to combine sev-

eral steps. The central idea is to apply Lemma 4.1 to create a sufficiently large homogeneous

coalition of auxiliary blue agents. Then, the red agents of the future coalition 𝐶3 will join.

This is followed by having the blue agents of the former homogeneous coalition abandon

the so created coalition. An essential step is to create further coalitions to incentivize them

to perform the necessary deviations. Finally, the two blue agents from 𝐶3 can join.

To this end, consider the coalition 𝐶3 = {𝑏3,1, 𝑏3,2, 𝑟3,1, 𝑟3,2, 𝑟3,3} with the following strict and

naturally single-peaked preferences.

𝐶3 :
4
7 ≻ 1

2 ≻ 3
5 ≻ 3

4
≻ 3

10
≻ 2

9
≻ 1

8
≻ 1 ≻ 0

For creating𝐶3, we consider a set of auxiliary agents𝐴 containing agents with single-peaked

preferences with peak at
4

13
and satisfying

1

3
≻ 3

11
≻ 0 ≻ 1

2
≻ 1.

Now, let 𝑖 ∈ [7] and consider a set of blue agents 𝐶3,1 = {𝑏𝑎,𝑖 : 𝑖 ∈ [7]} ⊆ 𝐴. By Lemma 4.1,

we can create the coalition𝐶3,1. Now, since we move the coalition ratio towards the peak of

the blue agents, we can have the red agents from 𝐶3 join one by one to form the coalition

𝐶3,2 = 𝐶3,1 ∪ {𝑟3,1, 𝑟3,2, 𝑟3,3}. For this, note that 3

10
< 4

13
. The next goal is to get rid of the

agents in 𝐶3,1. To make this happen, we create auxiliary coalitions such that the agents in

𝐶3,1 can move there and get into a most preferred coalition. Therefore, we create 7 identical

coalitions as follows. By Lemma 4.1, we can create a homogeneous coalition consisting of

8 blue agents from 𝐴. Then, we let 4 red agents from 𝐴 join one after another. Note that this

only consists of IS deviations, even though we cross the peak of these agents, because all

agents satisfy
4

12
= 1

3
≻ 3

11
. Also, all agents in the resulting coalition would allow another

blue agent to join, because this deviation would lead to reaching the peak of
4

13
. Hence, we

let the agents from 𝐶3,1, one after another, deviate to distinct auxiliary coalitions. All of

these steps are a strict improvement for the deviators leaving 𝐶3,2. The first of the deviators

leaves a coalition of ratio
3

10
and reaches her peak. Afterwards, the ratio of the abandoned

coalitions is at least
3

9
= 1

3
> 4

13
and therefore all other deviators improve strictly.

We obtain the coalition {𝑟3,1, 𝑟3,2, 𝑟3,3} and the blue agents from𝐶3 can join one after another

to form coalition 𝐶3.

Starting cycling. The final step for this example is to show how to start the cycle constructed

in the first HDG. Therefore, we have to add deviator agents 𝑟1, 𝑟2, 𝑏1, and 𝑏2 with the

following preferences.



Reaching Individually Stable Coalition Structures 19

𝐶1 ∪ {b1} 𝐶2 ∪ {b2} 𝐶3

1

4

1

3

1

5

𝐶1 𝐶2 ∪ {b2} 𝐶3 ∪ {b1}
1

3

1

3

1

6

𝐶1 𝐶2 𝐶3 ∪ {b1, b2}
1

3

1

2

1

7

𝐶1 𝐶2 ∪ {b1} 𝐶3 ∪ {b2}
1

3

1

3

1

6

𝐶1 ∪ {b1, b2} 𝐶2 𝐶3

1

5

1

2

1

5

𝐶1 ∪ {b2} 𝐶2 ∪ {b1} 𝐶3

1

4

1

3

1

5

𝑏1

𝑏2

𝑏1

𝑏2

𝑏1

𝑏2

Fig. 2. Possibility of cycling of IS dynamics in part (¬1) of Theorem 4.2. Here, we consider IS dynamics

starting from the singleton partition in HDGs under strict preferences, where all deviations satisfy solitary

homogeneity.

𝑏1 :
3

8
≻ 5

7
≻ 5

6
≻ 2

7
≻ 0

𝑏2 :
5

7
≻ 4

7
≻ 1

2
≻ 5

6
≻ 0

𝑟1 :
4

7
≻ 1

4
≻ 1

7
≻ 2

3
≻ 1

𝑟2 :
1

4
≻ 3

8
≻ 3

7
≻ 1

7
≻ 1

Given the constructed coalitions 𝐶𝑖 , 𝑖 ∈ [4], we perform the following IS deviations:

• Agent 𝑟2 joins coalition 𝐶1.

• Agent 𝑏1 joins coalition 𝐶2.

• Agent 𝑏2 joins coalition 𝐶3.

• Agent 𝑟1 joins coalition 𝐶3 ∪ {𝑏2}.
This results in a partition that occurs in the cycle of the first example. Hence, the IS dynamics

can cycle as shown before.

(¬1) Our next example satisfies all properties except single-peakedness of preferences. Let us

consider an HDG with 12 agents: 3 red agents and 9 blue agents. There are two deviating

agents in the cycle: blue agents 𝑏1 and 𝑏2. In the cycle, there are three fixed coalitions 𝐶1,

𝐶2 and 𝐶3 such that:

• 𝐶1 contains 1 red agent and 2 blue agents;

• 𝐶2 contains 1 red agent and 1 blue agent;

• 𝐶3 contains 1 red agent and 4 blue agents.

The relevant part of the preferences of the agents is given below.

𝑏1 :
1

5
≻ 1

3
≻ 1

7
≻ 1

6
≻ 1

4
≻ 0

𝑏2 :
1

7
≻ 1

3
≻ 1

5
≻ 1

4
≻ 1

6
≻ 0

𝐶1 :
1

5
≻ 1

4
≻ 1

3
≻ 1

2
≻ [1 if red, 0 otherwise]

𝐶2 :
1

3
≻ 1

2
≻ [1 if red, 0 otherwise]

𝐶3 :
1

7
≻ 1

6
≻ 1

5
≻ 1

4
≻ 1

3
≻ 1

2
≻ [1 if red, 0 otherwise]

Consider the sequence of IS deviations in Figure 2 that describes a cycle in the dynamics.

The two deviating agents of the cycle 𝑏1 and 𝑏2 are marked in bold and the specific deviating

agent between two states is indicated next to the arrows.

To show that this cycle can be reached from the singleton partition, it suffices to observe

that the two deviating agents 𝑏1 and 𝑏2 prefer to join the fixed coalitions than being alone

and that each fixed coalition can be formed from the singleton partition: the red agent of
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𝐶1 ∪ {r} 𝐶2 ∪ {b} 𝐶3

1
1

5
0

𝐶1 𝐶2 ∪ {b} 𝐶3 ∪ {r}
1

1

5

1

3

𝐶1 𝐶2 𝐶3 ∪ {r, b}
1

1

4

1

4

𝐶1 𝐶2 ∪ {r} 𝐶3 ∪ {b}
1

2

5
0

𝐶1 ∪ {b, r} 𝐶2 𝐶3

3

4

1

4
0

𝐶1 ∪ {b} 𝐶2 ∪ {r} {𝐶3}
2

3

2

5
0

𝑟

𝑏

𝑟

𝑏

𝑟

𝑏

Fig. 3. Possibility of cycling of IS dynamics in part (¬2) of Theorem 4.2. Here, we consider IS dynamics

starting from the singleton partition in HDGs under naturally single-peaked preferences, where all deviations

satisfy solitary homogeneity.

each future fixed coalition joins first a blue agent and then all the other blue agents of the

future fixed coalition successively join. Note that all deviations result in non-homogeneous

target coalitions, and therefore satisfy solitary homogeneity.

(¬2) Our final example satisfies all properties except strictness of preferences. Let us consider an

HDG with 10 agents: 4 red agents and 6 blue agents. There are two deviating agents: red

agent 𝑟 and blue agent 𝑏, and three fixed coalitions 𝐶1, 𝐶2 and 𝐶3 such that:

• 𝐶1 contains 2 red agents;

• 𝐶2 contains 1 red agent and 3 blue agents;

• 𝐶3 contains 2 blue agents.

The relevant part of the preferences of the agents is given below.

𝑟 : 3

4
≻ 2

5
≻ 1

4
∼ 1

3
≻ 1

𝑏 :
1

4
≻ 1

5
≻ 1

2
∼ 2

3
∼ 3

4
≻ 0

𝐶1 :
3

4
≻ 2

3
≻ 1

2
∼ 1

3
≻ 1

𝐶2 :
2

5
≻ 1

3
∼ 1

4
∼ 1

5
≻ 1

2
≻ [1 if red, 0 otherwise]

𝐶3 :
1

4
≻ 1

3
≻ 1

2
≻ 0

Consider the sequence of IS deviations in Figure 3 that describes a cycle in the dynamics.

The two deviating agents of the cycle 𝑟 and 𝑏 are marked in bold and the specific deviating

agent between two states is indicated next to the arrows.

To show that this cycle can be reached from the singleton partition, it suffices to observe that

partition {𝐶1 ∪ {𝑏},𝐶2 ∪ {𝑟 },𝐶3} belonging to the cycle can be reached from the singleton

partition. Indeed, agent 𝑏 can join a red agent from the future fixed coalition 𝐶1 while the

other red agent of the future fixed coalition 𝐶1 can join a blue agent from the future fixed

coalition 𝐶3. The second blue agent of the future fixed coalition 𝐶3 then joins them and

afterwards, the red agent leaves them to join 𝑏 and the other red agent of 𝐶1. For forming

coalition 𝐶2, the red agent joins one of the blue agents, and then the two remaining blue

agents join them. Agent 𝑟 can then join coalition 𝐶2. Note that all deviations result in

non-homogeneous target coalitions, and therefore satisfy solitary homogeneity.

This completes the proof. □

The previous examples do not show the impossibility to reach an IS partition since, e.g., in the

first case (¬3), the IS partition {𝐶1 ∪ {𝑏1, 𝑟2},𝐶2,𝐶3 ∪ {𝑟1, 𝑏2},𝐶4} can be reached via IS deviations



Reaching Individually Stable Coalition Structures 21

𝐶1 ∪ {r} 𝐶2 ∪ {b} 𝐶3

1
1

5
0

𝐶1 𝐶2 ∪ {b} 𝐶3 ∪ {r}
1

1

5

1

3

𝐶1 𝐶2 𝐶3 ∪ {r, b}
1

1

4

1

4

𝐶1 𝐶2 ∪ {r} 𝐶3 ∪ {b}
1

2

5
0

𝐶1 ∪ {b, r} 𝐶2 𝐶3

3

4

1

4
0

𝐶1 ∪ {b} 𝐶2 ∪ {r} 𝐶3

2

3

2

5
0

𝑟

𝑏

𝑟

𝑏

𝑟

𝑏

Fig. 4. Impossibility of convergence of IS dynamics in the proof of Proposition 4.3.

from some partitions in the cycle. Thus, starting in these partitions, a path to stability may still

exist. Nevertheless, it may be possible that every sequence of IS deviations cycles, even for strict

or naturally single-peaked preferences (with indifference), as the next proposition shows. An

interesting open question is whether strict and naturally single-peaked preferences allow for the

existence of a path to stability.

Proposition 4.3. The dynamics of IS deviations may never reach an IS partition in HDGs, whatever

the chosen path of deviations, even for (1) strict preferences or (2) naturally single-peaked preferences

with indifference.

Proof. Let us consider an HDG with 10 agents: 4 red agents and 6 blue agents. There are two

deviating agents: red agent 𝑟 and blue agent 𝑏, and three fixed coalitions 𝐶1, 𝐶2 and 𝐶3 such that:

• 𝐶1 contains 2 red agents;

• 𝐶2 contains 1 red agent and 3 blue agents;

• 𝐶3 contains 2 blue agents.

The relevant part of the preferences of the agents is given below, with on the left the preferences for

the case of (1) strict preferences, where [...] denotes an arbitrary order over all possible remaining

ratios, and on the right the preferences for the case of (2) naturally single-peaked preferences with

indifference, where all agents except 𝑟 and 𝑏 are indifferent between all possible coalitions.

(1)
𝑟 : 3

4
≻ 2

5
≻ 1

4
≻ 1

3
≻ 1

𝑏 :
1

4
≻ 1

5
≻ 3

4
≻ 2

3
≻ 0

𝐶1 :
3

4
≻ 2

3
≻ 1 ≻ [...]

𝐶2 :
2

5
≻ 1

5
≻ 1

4
≻ [...]

𝐶3 :
1

4
≻ 1

3
≻ 0 ≻ [...]

(2)
𝑟 : 3

4
≻ 2

5
≻ 1

4
∼ 1

3
≻ 1

𝑏 :
1

4
≻ 1

5
≻ 3

4
∼ 2

3
≻ 0

𝑖 ∈ 𝑁 \ {𝑟, 𝑏} : 𝐶 ∼ 𝐶′
, ∀𝐶, 𝐶′ ∈ N𝑖

Consider the sequence of IS deviations in Figure 4 that describes a cycle of the dynamics. The two

deviating agents of the cycle 𝑟 and 𝑏 are marked in bold and the specific deviating agent between

two states is indicated next to the arrows.

Note that at each state, the deviation performed by agent 𝑟 or 𝑏 is the only possible one that

they can do. Moreover, by construction of the preferences of the other agents, none of them has

incentive to deviate at any state. Therefore, the cycle is the only possible sequence of IS deviations,

and the cycle cannot be avoided in this instance. □
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The previous statement leaves open whether there always exists a path to stability when starting

from the singleton partition. We now show that convergence is guaranteed by combining all

restrictions of Theorem 4.2. Interestingly, part of the proof is a reduction to the positive result

about AHGs, and reveals a close relationship of the two classes of hedonic games if HDGs are

sufficiently restricted. However, this reduction requires careful preprocessing of the initial HDG.

The first key insight is to show that, for every coalition occurring during the dynamics, there exists

a color such that at most one agent of this color is part of the coalition. Consequently, given an

instance with 𝑏 blue and 𝑟 red agents, the only important ratios (apart from 0 and 1) are
𝑘
𝑘+1 and

1

𝑘 ′+1 , where 1 ≤ 𝑘 ≤ 𝑟 and 1 ≤ 𝑘 ′ ≤ 𝑏. The next step is to show how to transition to an HDG where

every agent will only end up in coalitions of one of these ratio types. This transition is essentially

performed by omitting certain steps in the dynamics. From there, we can observe the structure of

an AHG by identifying the ratios
𝑘
𝑘+1 and

1

𝑘+1 with a coalition size of 𝑘 + 1. This correspondence

is reasonable. For instance, the former ratio corresponds to a coalition with one blue and 𝑘 red

agents, i.e., a total number of 𝑘 + 1 agents. We can apply Theorem 3.4 to bound the length of the

transformed HDG. Interestingly, the identification with an AHG requires some auxiliary agents,

and the transformed dynamics is not starting from the singleton partition anymore. In this respect,

we even need the full power of Theorem 3.4.

Theorem 4.4. The dynamics of IS deviations satisfying solitary homogeneity always converges

in O(𝑛5) steps when starting from the singleton partition in an HDG where agents have strict and

naturally single-peaked preferences.

Proof. Consider an HDG with agent set 𝑁 = 𝑅 ∪ 𝐵, where agents have strict and naturally

single-peaked preferences. Let (𝜋𝑘 )𝐾𝑘=0 be a sequence of partitions of an execution of the dynamics

of IS deviations satisfying solitary homogeneity, where 𝜋0 is the singleton partition and, for every

1 ≤ 𝑘 ≤ 𝐾 , 𝜋𝑘 evolves from 𝜋𝑘−1 by an IS deviation of agent 𝑑𝑘 .

The first step of the proof is to show the specific structure of the attained coalitions.

Claim 4.1. For every𝑘 ≥ 0, it holds that every coalition in𝜋𝑘 is of the form {𝑟1}, {𝑏1}, {𝑟1, 𝑏1, . . . , 𝑏𝑚},
or {𝑏1, 𝑟1, . . . , 𝑟𝑚′ }, where 1 ≤ 𝑚 ≤ |𝐵 | and 1 ≤ 𝑚′ ≤ |𝑅 | and 𝑟𝑖 ∈ 𝑅 and 𝑏 𝑗 ∈ 𝐵 for every 𝑖 ∈ [𝑚′],
𝑗 ∈ [𝑚]. Moreover, the following statements hold:

(1) If {𝑟1, 𝑏1, . . . , 𝑏𝑚} ∈ 𝜋𝑘 for𝑚 ≥ 2, then
1

𝑚+1 ≻𝑟1 1

𝑚
≻𝑟1 · · · ≻𝑟1 1

2
≻𝑟1 1.

(2) If {𝑏1, 𝑟1, . . . , 𝑟𝑚′ } ∈ 𝜋𝑘 for𝑚′ ≥ 2, then
𝑚′

𝑚′+1 ≻𝑏1 𝑚′−1
𝑚′ ≻𝑏1 · · · ≻𝑏1 1

2
≻𝑏1 0.

Proof. We will show by induction over 𝑘 for 0 ≤ 𝑘 ≤ 𝐾 that every coalition in 𝜋𝑘 is of the form

{𝑟1}, {𝑏1}, {𝑟1, 𝑏1, . . . , 𝑏𝑚}, or {𝑏1, 𝑟1, . . . , 𝑟𝑚′ }, where 𝑏𝑖 ∈ 𝐵 and 𝑟 𝑗 ∈ 𝑅 for every 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑚′],
1 ≤ 𝑚 ≤ |𝐵 |, and 1 ≤ 𝑚′ ≤ |𝑅 |. Simultaneously to this main claim, we will prove the additional

statements as auxiliary claims.

Clearly, the singleton partition satisfies the main and auxiliary claims. Now, assume that the

assertion is true for some fixed 0 ≤ 𝑘 < 𝐾 . Assume without loss of generality that 𝑑𝑘+1 is a red
agent (the case for a blue agent is symmetric and uses the second auxiliary claim where we use

the first auxiliary claim). We have to consider the two coalitions affected by 𝑑𝑘+1 to show that 𝜋𝑘+1
satisfies the claims.

First, assume for contradiction that the coalition 𝜋𝑘+1 (𝑑𝑘+1) breaks the main claim. Then,

𝜋𝑘+1 (𝑑𝑘+1) \ {𝑑𝑘+1} is of the form {𝑟1} or {𝑟1, 𝑏1, . . . , 𝑏𝑚} with 2 ≤ 𝑚 ≤ |𝐵 |. The former case

is excluded as the deviation satisfies solitary homogeneity. In the latter case,
2

2+𝑚 > 1

𝑚
> 1

𝑚+1 , and

we know by the first auxiliary claim in step 𝑘 that
1

𝑚+1 ≻𝑟1 1

𝑚
. Hence, single-peakedness implies

1

𝑚
≻𝑟1 2

2+𝑚 , and, by transitivity of the preferences, we obtain that
1

𝑚+1 ≻𝑟1 2

2+𝑚 . This contradicts

the fact that the deviation by 𝑑𝑘+1 was approved by agent 𝑟1. Hence, 𝜋𝑘+1 (𝑑𝑘+1) satisfies the main

claim and must be of the form {𝑏1, 𝑟1, . . . , 𝑟𝑚′ }, where𝑚′ ≥ 1.
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We proceed with the auxiliary claims for this coalition. As the coalition contains only one blue

agent, the first auxiliary claim is vacant. Further, since 𝑏1 gave her consent to letting 𝑑𝑘+1 join, it
satisfies the second auxiliary claim (extending the second auxiliary claim for 𝑏1 at step 𝑘) if𝑚

′ ≥ 3.

If𝑚′ = 2, then the consent of 𝑏1 implies
2

3
≻𝑏1 1

2
, and single-peakedness implies

2

3
≻𝑏1 1

2
≻𝑏1 0. If

𝑚′ = 1, this claim is also vacant.

Second, assume for contradiction that the coalition abandoned by agent 𝑑𝑘+1 violates the main

claim. Then, 𝜋𝑘 (𝑑𝑘+1) was of the form {𝑟, 𝑏1, . . . , 𝑏𝑚} with𝑚 ≥ 2 and 𝑟 = 𝑑𝑘+1. We already know

that 𝜋𝑘+1 (𝑑𝑘+1) is of the desired form. It cannot be the coalition {𝑟 }, because of the first auxiliary
claim for 𝑟 . Also, it cannot be of the form {𝑟, ˆ𝑏1, . . . , ˆ𝑏�̂�} with �̂� ≥ 2, because then 𝜋𝑘 ( ˆ𝑏1) violates
the main claim in step 𝑘 . Hence, we know that 𝜋𝑘+1 (𝑑𝑘+1) is of the form {𝑏, 𝑟1, . . . , 𝑟𝑚′ } with𝑚′ ≥ 1.

Using 𝑚 ≥ 2, we have that
1

𝑚+1 < 𝑚′

𝑚′+1 < 1 and, since the deviation was performed by 𝑑𝑘+1,

also
𝑚′

𝑚′+1 ≻𝑑𝑘+1 1

𝑚+1 . Hence, single-peakedness implies 1 ≻𝑑𝑘+1 𝑚′

𝑚′+1 , and therefore, by transitivity,

1 ≻𝑑𝑘+1 1

𝑚+1 . However, this contradicts the first auxiliary claim for agent 𝑑𝑘+1 = 𝑟 in 𝜋𝑘 .
It remains to prove the auxiliary claims for the abandoned coalition. The first auxiliary claim is

vacant. The second auxiliary claim follows directly by induction, whenever it is not vacant. ◁

In the sequel, we use the notation 𝑓𝑖 (𝜋) = |𝑅∩𝜋 (𝑖 ) |
|𝜋 (𝑖 ) | , which specifies the fraction of red agents in

the coalition of agent 𝑖 with respect to partition 𝜋 . Also, given an agent 𝑖 , denote her peak by 𝑝𝑖 .

We distinguish agents according to their peaks. To this end, define the agent sets

• 𝑅𝑆 = {𝑟 ∈ 𝑅 : 0 < 𝑝𝑟 < 1/2},
• 𝑅𝐿 = {𝑟 ∈ 𝑅 : 1/2 ≤ 𝑝𝑟 ≤ 1},
• 𝐵𝑆 = {𝑏 ∈ 𝐵 : 0 ≤ 𝑝𝑏 ≤ 1/2}, and
• 𝐵𝐿 = {𝑏 ∈ 𝐵 : 1/2 < 𝑝𝑏 < 1}.

The subscripts indicate whether the peak is large (𝐿) or small (𝑆). We would like to analyze a

dynamics where 𝑓𝑖 (𝜋) is always close to the peak of an agent. This is achieved by agents in 𝑅𝐿 and

𝐵𝑆 .

Claim 4.2. Let 𝑘 ≥ 0. Then, the following statements hold:

(1) If 𝑟 ∈ 𝑅𝐿 , then 𝑓𝑟 (𝜋𝑘 ) ≥ 1

2
.

(2) If 𝑏 ∈ 𝐵𝑆 , then 𝑓𝑏 (𝜋𝑘 ) ≤ 1

2
.

Proof. We show the statement by induction over 𝑘 for 0 ≤ 𝑘 ≤ 𝐾 . Clearly, the statement is

true for 𝑘 = 0, because 𝜋0 is the singleton partition. Now, assume that the assertion is true for

some fixed 0 ≤ 𝑘 < 𝐾 . We assume without loss of generality that agent 𝑑𝑘+1 is red (the case of a

blue agent follows from a symmetric argument). Clearly, all agents not affected by the deviation

maintain the two invariants claimed in the lemma. Therefore, we have to consider the abandoned

and joined coalitions.

By Claim 4.1, 𝜋𝑘 (𝑑𝑘+1) is of the form {𝑑𝑘+1} or {𝑏1, 𝑟1, . . . , 𝑟𝑚, 𝑑𝑘+1} for some𝑚 ≥ 0, where 𝑏1 ∈ 𝐵
and 𝑟1, . . . , 𝑟𝑚 ∈ 𝑅. The former case is irrelevant because then the abandoned coalition does not

exist anymore. In the latter case, 𝑓𝑏1 (𝜋𝑘+1) < 𝑓𝑏1 (𝜋𝑘 ), and the second invariant follows by induction
if 𝑏 ∈ 𝐵𝑆 . Furthermore, if𝑚 ≥ 1, then 𝑓𝑏1 (𝜋𝑘+1) ≥ 1

2
, and the first invariant is true for all red agents

the abandoned coalition (in particular if they are in 𝑅𝐿).

Applying Claim 4.1 again, 𝜋𝑘+1 (𝑑𝑘+1) is also of the form {𝑑𝑘+1} or {𝑏1, 𝑟1, . . . , 𝑟𝑚′ , 𝑑𝑘+1} for some

𝑚′ ≥ 0, where 𝑏1 ∈ 𝐵 and 𝑟1, . . . , 𝑟𝑚′ ∈ 𝑅. Hence, the first invariant is satisfied for all red agents

and for 𝑏1 if𝑚
′ = 0. It remains the case𝑚′ ≥ 1. Then, since the deviation was approved by agent 𝑏1,

it holds
𝑚′+1
𝑚′+2 ≻𝑏1 𝑚′

𝑚′+1 . Then, single-peakedness implies that 𝑝𝑏1 >
𝑚′

𝑚′+1 ≥ 1

2
and therefore 𝑏1 ∉ 𝐵𝑆 .

Hence, the second invariant is vacant in this case.
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(𝜋𝑘 )𝐾𝑘=1 (𝜎𝑘 )𝐾𝑘=1 (𝜏𝑙 )𝐿𝑙=1 (𝜌𝑝 )𝑃𝑝=1
no undesirable

coalitions

include merging

deviations

omit duplicate

partitions

Fig. 5. Transformation of the dynamics in the proof of Theorem 4.4. In the first modification, we keep red

agents with a small peak and blue agents with a large peak in a singleton coalition. This yields a sequence of

partitions (𝜎𝑘 )𝐾𝑘=1 where some transitions are no valid IS deviation. We include some merging deviations to

resolve this. Finally, we remove duplicate partitions to end up with a valid IS dynamics (𝜌𝑝 )𝑃𝑝=1.

Altogether, we have shown that both invariants are satisfied for partition 𝜋𝑘+1, which completes

the induction step. ◁

A similar statement is not true for agents in 𝑅𝑆 or 𝐵𝐿 . Therefore, the next step will modify the

dynamics such that agents are only contained in coalitions close to their peaks, unless they are in a

singleton coalition. This is a sophisticated and tedious construction which will be performed in

several steps. An outline is depicted in Figure 5. First, we prevent undesirable deviations by red

agents with a small peak and blue agents with a large peak by keeping these agents in singleton

coalitions. However, this yields a modified dynamics (𝜎𝑘 )𝐾𝑘=1 where some steps do not correspond

to IS deviations. We therefore have to insert and omit certain steps. Eventually, we will end up at

a new dynamics (𝜌𝑝 )𝑃𝑝=1. This dynamics is easier to analyze because it corresponds to an AHG.

Moreover, the convergence behavior of the original dynamics only depends on the convergence

behavior of the new dynamics because we only omit a linear number of steps (with respect to

𝑛). Hence, we can complete the proof by showing how to bound 𝐾 , i.e., the length of the original

dynamics, with respect to 𝑃 , i.e., the length of the simpler dynamics.

We start with the first transformation. Given a partition 𝜋 , define the subset of agents 𝐹𝜋 ⊆ 𝑁 as

𝐹𝜋 = {𝑟 ∈ 𝑅𝑆 : 1

2
< 𝑓𝑟 (𝜋) < 1} ∪ {𝑏 ∈ 𝐵𝐿 : 1

2
> 𝑓𝑏 (𝜋) > 0}, i.e., the set of agents whose ratio is far

from their peak. By definition of 𝐹𝜋 and Claim 4.1, a red agent 𝑟 ∈ 𝑅 ∩ 𝐹𝜋 is in a coalition of the

form {𝑏1, 𝑟1, . . . , 𝑟𝑚} in partition 𝜋 and, symmetrically, a blue agent 𝑏 ∈ 𝐵 ∩ 𝐹𝜋 is in a coalition of

the form {𝑟1, 𝑏1, . . . , 𝑏𝑚} in partition 𝜋 . Moreover, by Claim 4.1 and strict single-peakedness of the

preferences, an agent in 𝐹𝜋 is the last agent who entered her coalition in 𝜋 .

Now, consider a modified dynamics (𝜎𝑘 )𝐾𝑘=0, where, for every 0 ≤ 𝑘 ≤ 𝐾 , 𝜎𝑘 =
⋃
𝐶∈𝜋𝑘 {𝐶 \ 𝐹𝜋𝑘 } ∪⋃

𝑖∈𝐹𝜋𝑘 {{𝑖}}. This modification has essentially the following effects: We omit deviations of agents

where they land in the set 𝐹𝜋 while keeping them in a singleton coalition. Sometimes, it can happen

that the deviator satisfies 𝑑𝑘 ∈ 𝐹𝜋𝑘−1 \ 𝐹𝜋𝑘 . In this case, the modified dynamics sees the deviator join

her new coalition from a singleton coalition. The second effect that can happen is the case where a

non-deviator is in 𝐹𝜋𝑘−1 \ 𝐹𝜋𝑘 . This happens exactly if an agent in 𝐹𝜋𝑘−1 is abandoned, and thereby

left in a coalition of size 2, which consists of one agent of each type. Hence, we insert a suitable

deviation to obtain a valid modified dynamics of IS deviations. This requires two lemmas. The first

lemma gives more structural insight and establishes that every coalition can contain at most one

agent from 𝐹𝜋𝑘 .

Claim 4.3. Let 0 ≤ 𝑘 ≤ 𝐾 and 𝐶 ⊆ 𝜋𝑘 . Then, |𝐶 ∩ 𝐹𝜋𝑘 | ≤ 1. Moreover, consider𝑚 > 0 and agents

𝑟1, . . . , 𝑟𝑚 ∈ 𝑅 and 𝑏1, . . . , 𝑏𝑚 ∈ 𝐵. Then, the following statements hold:

(1) If {𝑏1, 𝑟1, . . . , 𝑟𝑚} ∈ 𝜋𝑘 , then, for all 1 ≤ 𝑖 ≤ 𝑚 with 𝑟𝑖 ∉ 𝐹𝜋𝑘 , 𝑓𝑟𝑖 (𝜋𝑘 ) ⪰𝑟𝑖 𝑓𝑟𝑖 (𝜎𝑘 ).
(2) If {𝑟1, 𝑏1, . . . , 𝑏𝑚} ∈ 𝜋𝑘 , then, for all 1 ≤ 𝑖 ≤ 𝑚 with 𝑏𝑖 ∉ 𝐹𝜋𝑘 , 𝑓𝑏𝑖 (𝜋𝑘 ) ⪰𝑏𝑖 𝑓𝑏𝑖 (𝜎𝑘 ).

Proof. We show all statements simultaneously by induction over 𝑘 for 0 ≤ 𝑘 ≤ 𝐾 . Clearly, all

statements are true for 𝑘 = 0. Now, assume that the statements are true for some fixed 0 ≤ 𝑘 < 𝐾 .
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Clearly, all coalitions in 𝜋𝑘+1 except possibly 𝜋𝑘 (𝑑𝑘+1) \ {𝑑𝑘+1} and 𝜋𝑘+1 (𝑑𝑘+1) satisfy the claim.

Assume without loss of generality that 𝑑𝑘+1 is a red agent (the case of a blue agent is symmetric).

We start with the abandoned coalition. By Claim 4.1, 𝜋𝑘 (𝑑𝑘+1) \ {𝑑𝑘+1} is the empty set (if 𝑑𝑘+1
was in a singleton coalition) or of the type {𝑏1, 𝑟1, . . . , 𝑟𝑚} where 𝑏1 ∈ 𝐵 and 𝑟1, . . . , 𝑟𝑚 ∈ 𝑅 for

some 𝑚 ≥ 0. In the former case, all claims are vacant, so assume the latter case. If 𝑚 = 0, the

abandoned coalition is a singleton coalition, and the assertions are true (the additional statements

are then vacant). If𝑚 = 1, then 𝑓𝑏1 (𝜋𝑘+1) = 1

2
, and therefore 𝜋𝑘+1 (𝑏1) ∩ 𝐹𝜋𝑘+1 = ∅. In particular,

𝜋𝑘+1 (𝑏1) = 𝜎𝑘+1 (𝑏1), and all claims are true. If𝑚 ≥ 2, it follows from 𝑓𝑏1 (𝜋𝑘+1) ≥ 2

3
that 𝑏1 ∉ 𝐹𝜋𝑘+1 .

Moreover, {𝑟1, . . . , 𝑟𝑚} ∩ 𝐹𝜋𝑘+1 ⊆ {𝑟1, . . . , 𝑟𝑚} ∩ 𝐹𝜋𝑘 . Therefore, |𝜋𝑘+1 (𝑏1) ∩ 𝐹𝜋𝑘+1 | ≤ 1 follows from

induction for step 𝑘 , which implies that |{𝑟1, . . . , 𝑟𝑚} ∩ 𝐹𝜋𝑘 | ≤ |𝜋𝑘 (𝑏1) ∩ 𝐹𝜋𝑘 | ≤ 1. Additionally, the

additional statement is trivially true unless {𝑟1, . . . , 𝑟𝑚} ∩ 𝐹𝜋𝑘+1 ≠ ∅, say 𝑟1 ∈ 𝐹𝜋𝑘+1 . Then, 𝑟1 ∈ 𝐹𝜋𝑘
and we have that 𝑓𝑏1 (𝜎𝑘+1) < 𝑓𝑏1 (𝜋𝑘+1) = 𝑓𝑏1 (𝜎𝑘 ) < 𝑓𝑏1 (𝜋𝑘 ). Let 2 ≤ 𝑖 ≤ 𝑚. Then, induction implies

𝑓𝑟𝑖 (𝜋𝑘 ) ≻𝑟𝑖 𝑓𝑟𝑖 (𝜎𝑘 ). Hence, single-peakedness implies 𝑓𝑟𝑖 (𝜋𝑘+1) ≻𝑟𝑖 𝑓𝑟𝑖 (𝜎𝑘+1).
The proof for the joined coalition is similar. Using Claim 4.1 again, we know that 𝜋𝑘+1 (𝑑𝑘+1)

is a singleton coalition or of the type {𝑏1, 𝑟1, . . . , 𝑟𝑚, 𝑑𝑘+1} where 𝑏1 ∈ 𝐵 and 𝑟1, . . . , 𝑟𝑚 ∈ 𝑅 for

some 𝑚 ≥ 0. A singleton coalition fulfills the claim. Therefore, assume the latter case. Since

𝑓𝑏1 (𝜋𝑘+1) ≥ 1

2
, it holds that 𝑏1 ∉ 𝐹𝜋𝑘+1 . Moreover, if𝑚 ≥ 1 and 1 ≤ 𝑖 ≤ 𝑚, then

𝑚+1
𝑚+2 ≻𝑟𝑖 𝑚

𝑚+1 and

single-peakedness implies that 𝑝𝑟𝑖 >
𝑚
𝑚+1 ≥ 1

2
. Hence, 𝑟𝑖 ∉ 𝑅𝑆 , and therefore 𝑟𝑖 ∉ 𝐹𝜋𝑘+1 . Together,

𝜋𝑘+1 (𝑑𝑘+1) ∩ 𝐹𝜋𝑘+1 ⊆ {𝑑𝑘+1}, and the first statement is true. The additional statement is clear if

𝑑𝑘+1 ∉ 𝐹𝜋𝑘+1 , in which case 𝜋𝑘+1 (𝑏1) = 𝜎𝑘+1 (𝑏1). If 𝑑𝑘+1 ∈ 𝐹𝜋𝑘+1 , it follows for the other red agents,

because they approve that 𝑑𝑘+1 joins. ◁

We are ready to show how to obtain the valid dynamics.

Claim 4.4. Let 1 ≤ 𝑘 ≤ 𝐾 . If 𝜎𝑘 ≠ 𝜎𝑘−1, then 𝜎𝑘 evolves from 𝜎𝑘−1 by performing at most two IS

deviations. If two deviations have to be performed, then the intermediate partition evolves from 𝜎𝑘−1
by merging two agents from singleton coalitions.

Proof. Let 1 ≤ 𝑘 ≤ 𝐾 with 𝜎𝑘 ≠ 𝜎𝑘−1. The only agents that matter to us are in 𝜋𝑘 (𝑑𝑘 )∪𝜋𝑘−1 (𝑑𝑘 ).
Other agents did not change their coalition in the original dynamics, and therefore, their membership

in 𝐹𝜋𝑘 is also not affected. Without loss of generality, we assume that 𝑑𝑘 is a red agent (the case of

a blue agent is again symmetric).

First, we show that (𝜋𝑘 (𝑑𝑘 )\{𝑑𝑘 })∩𝐹𝜋𝑘−1 = ∅ and 𝜋𝑘 (𝑑𝑘 )∩𝐹𝜋𝑘 = ∅. Assume for contradiction that

this is not the case. By Claim 4.1, this can only be the case if 𝜋𝑘 (𝑑𝑘 ) is of the form {𝑏1, 𝑟1, . . . , 𝑟𝑚, 𝑑𝑘 }
where 𝑏1 ∈ 𝐵 and 𝑟1, . . . , 𝑟𝑚 ∈ 𝑅 for some 𝑚 ≥ 1. As 𝑓𝑏1 (𝜋𝑘 ) ≥ 2

3
and 𝑓𝑏1 (𝜋𝑘−1) ≥ 1

2
, 𝑏1 ∉ 𝐹𝜋𝑘

and 𝑏1 ∉ 𝐹𝜋𝑘−1 , respectively. For 1 ≤ 𝑖 ≤ 𝑚, it holds that
𝑚+1
𝑚+2 ≻𝑟𝑖 𝑚

𝑚+1 , and therefore, by single-

peakedness, 𝑝𝑖 >
𝑚
𝑚+1 ≥ 1

2
. Hence, 𝑟𝑖 ∈ 𝑅𝐿 , and therefore 𝑟𝑖 ∉ 𝐹𝜋𝑘 and 𝑟𝑖 ∉ 𝐹𝜋𝑘−1 . This shows already

that (𝜋𝑘 (𝑑𝑘 ) \ {𝑑𝑘 }) ∩ 𝐹𝜋𝑘−1 = ∅.
Finally, it remains to exclude that 𝑑𝑘 ∈ 𝐹𝜋𝑘 . Assume for contradiction that 𝑑𝑘 ∈ 𝐹𝜋𝑘 . Then, our

considerations about 𝜋𝑘 (𝑑𝑘 ) imply that 𝜎𝑘 (𝑏1) = 𝜎𝑘−1 (𝑏1). Moreover, by Claim 4.1, 𝑓𝑑𝑘 (𝜋𝑘−1) ≥ 1

2
.

Since 𝑑𝑘 ∈ 𝐹𝜋𝑘 , it holds that 𝑝𝑑𝑘 < 1

2
. As we already know that 𝑓𝑑𝑘 (𝜋𝑘 ) > 1

2
, single-peakedness and

the fact that 𝑑𝑘 has improved her ratio imply that 𝑓𝑑𝑘 (𝜋𝑘−1) ≥ 𝑓𝑑𝑘 (𝜋𝑘 ) > 1

2
. Therefore, 𝑑𝑘 ∈ 𝐹𝜋𝑘−1

and Claim 4.3 implies that (𝜋𝑘−1 (𝑑𝑘 ) \ {𝑑𝑘 }) ∩ 𝐹𝜋𝑘−1 = ∅. Additionally, 𝑓𝑑𝑘 (𝜋𝑘−1) > 1

2
also implies

that (𝜋𝑘−1 (𝑑𝑘 ) \ {𝑑𝑘 }) ∩ 𝐹𝜋𝑘 = ∅. Hence, the coalition abandoned by 𝑑𝑘 has not changed from 𝜎𝑘−1
to 𝜎𝑘 . Together, this contradicts that 𝜎𝑘 ≠ 𝜎𝑘−1. Hence, our assumption that 𝑑𝑘 ∈ 𝐹𝜋𝑘 was wrong,

and therefore 𝜋𝑘 (𝑑𝑘 ) ∩ 𝐹𝜋𝑘 = ∅. In particular, we have shown so far that

𝜎𝑘−1 (𝑏1) = 𝜋𝑘−1 (𝑏1) and 𝜎𝑘 (𝑏1) = 𝜋𝑘 (𝑏1) = 𝜋𝑘−1 ∪ {𝑑𝑘 }. (1)
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Next, we consider the abandoned coalition. By Claim 4.1, the coalition 𝜋𝑘−1 (𝑑𝑘 ) is of the form
{𝑑𝑘 } or {𝑏′1, 𝑟 ′1, . . . , 𝑟 ′𝑚′ , 𝑑𝑘 } where 𝑏′1 ∈ 𝐵 and 𝑟 ′

1
, . . . , 𝑟 ′

𝑚′ ∈ 𝑅 for some𝑚′ ≥ 0. In the first case, we

know that {𝑑𝑘 } ∈ 𝜎𝑘−1, and, together with Equation 1, 𝜎𝑘−1 = 𝜋𝑘−1 and 𝜎𝑘 = 𝜋𝑘 . Therefore, 𝜎𝑘
evolves from 𝜎𝑘−1 by an IS deviation of agent 𝑑𝑘 .

Next, we consider the case that 𝜋𝑘−1 (𝑑𝑘 ) is of the form {𝑏′
1
, 𝑟 ′

1
, . . . , 𝑟 ′

𝑚′ , 𝑑𝑘 }. Note that 𝑓𝑏′
1

(𝜋𝑘−1) ≥
1

2
and 𝑓𝑏′

1

(𝜋𝑘 ) ≥ 1

2
or 𝑓𝑏′

1

(𝜋𝑘 ) = 0 and therefore 𝑏′
1
∉ 𝐹𝜋𝑘−1 and 𝑏

′
1
∉ 𝐹𝜋𝑘 . Moreover, it holds that

{𝑟 ′
1
, . . . , 𝑟 ′

𝑚′ } ∩ 𝐹𝜋𝑘 ⊆ {𝑟 ′
1
, . . . , 𝑟 ′

𝑚′ } ∩ 𝐹𝜋𝑘−1 . We are ready to consider the final cases.

First assume that 𝑑𝑘 ∈ 𝐹𝜋𝑘−1 . Then, Claim 4.3 and the considerations in the previous paragraph

imply that {𝑏′
1
, 𝑟 ′

1
, . . . , 𝑟 ′

𝑚′ } ∩ 𝐹𝜋𝑘 = ∅ and {𝑏′
1
, 𝑟 ′

1
, . . . , 𝑟 ′

𝑚′ } ∩ 𝐹𝜋𝑘−1 = ∅. Hence, {𝑏′
1
, 𝑟 ′

1
, . . . , 𝑟 ′

𝑚′ } ∈ 𝜎𝑘
and {𝑏′

1
, 𝑟 ′

1
, . . . , 𝑟 ′

𝑚′ } ∈ 𝜎𝑘−1. This, together with Equation 1 and the definition of 𝜎𝑘−1 implies that

𝜎𝑘 evolves from 𝜎𝑘−1 by a unilateral deviation of agent 𝑑𝑘 from a singleton coalition to coalition

𝜎𝑘 (𝑑𝑘 ). Since 𝜎𝑘 ≠ 𝜎𝑘−1, we know that 𝜎𝑘 (𝑑𝑘 ) ≠ {𝑑𝑘 }. Hence, 1

2
≤ 𝑓𝑑𝑘 (𝜎𝑘 ) < 1. This, together with

𝑑𝑘 ∈ 𝑅𝑆 implies that 𝑝𝑑𝑘 ≤ 𝑓𝑑𝑘 (𝜎𝑘 ) < 1. Hence, single-peakedness implies that the deviation was a

Nash deviation. By Equation 1, the deviation was also approved by all agents in the joined coalition.

Hence, 𝜎𝑘 evolves from 𝜎𝑘−1 through an IS deviation of agent 𝑑𝑘 .

It remains the case that 𝑑𝑘 ∉ 𝐹𝜋𝑘−1 . If {𝑟 ′1, . . . , 𝑟 ′𝑚′ } ∩ 𝐹𝜋𝑘−1 = ∅, then 𝜎𝑘−1 = 𝜋𝑘−1 and, together
with Equation 1, 𝜎𝑘 evolves from 𝜎𝑘−1 by an IS deviation of agent 𝑑𝑘 .

Assume therefore that there exists 1 ≤ 𝑖 ≤ 𝑚′
with 𝑟 ′𝑖 ∈ 𝐹𝜋𝑘−1 . If𝑚′ ≥ 2, then {𝑏′

1
, 𝑟 ′

1
, . . . , 𝑟 ′

𝑚′ } ∩
𝐹𝜋𝑘−1 = {𝑏′

1
, 𝑟 ′

1
, . . . , 𝑟 ′

𝑚′ } ∩ 𝐹𝜋𝑘 . In this case, 𝜎𝑘 evolves from 𝜎𝑘−1 through a unilateral deviation of

𝑑𝑘 . Since 𝑑𝑘 ∉ 𝐹𝜋𝑘−1 , the first additional statement of Claim 4.3 implies that 𝑓𝑑𝑘 (𝜋𝑘−1) ⪰𝑑𝑘 𝑓𝑑𝑘 (𝜎𝑘−1).
Therefore, 𝑑𝑘 performs a Nash deviation because she performed a Nash deviation from 𝜋𝑘−1 to 𝜋𝑘 .
The consent of the joined coalition follows again from Equation 1.

Finally, assume that {𝑟 ′
1
, . . . , 𝑟 ′

𝑚′ } ∩ 𝐹𝜋𝑘−1 ≠ ∅ and 𝑚′ = 1. Then, 𝜋𝑘−1 (𝑏′1) = {𝑏′
1
, 𝑟 ′

1
, 𝑑𝑘 } and

𝑟 ′
1
∈ 𝐹𝜋𝑘−1 . Hence, 𝜎𝑘 evolves from 𝜎𝑘−1 by transforming {𝑟 ′

1
}, {𝑏′

1
, 𝑑𝑘 }, and 𝜋𝑘 (𝑑𝑘 ) \ {𝑑𝑘 } into

{𝑏′
1
, 𝑟 ′

1
} and 𝜋𝑘 (𝑑𝑘 ). These changes can be achieved by two unilateral deviations. First, 𝑑𝑘 joins

𝜋𝑘 (𝑑𝑘 ) \ {𝑑𝑘 } and then 𝑟 ′
1
joins 𝑏′

1
. The first deviation is an IS deviation as in the previous case.

The second deviation is also an IS deviation. The approval of 𝑏′
1
follows from the second auxiliary

statement in Claim 4.1 applied to 𝜋𝑘−1 (𝑏′1) = {𝑏′
1
, 𝑟 ′

1
, 𝑑𝑘 }. Also, the deviation is improving for 𝑟 ′

1
,

because 𝑟 ′
1
∈ 𝐹𝜋𝑘−1 . Therefore 𝑟 ′1 ∈ 𝑅𝑆 . Hence, 1 > 1

2
≥ 𝑝𝑟 ′

1

, and therefore
1

2
≻𝑟 ′

1

1. ◁

Using the insights gained in the previous claim, we can define a valid modified dynamics based

on (𝜎𝑘 )𝐾𝑘=1. First, we insert the partitions identified in the proof of Claim 4.4 where two agents

are merged. This yields a dynamics (𝜏𝑙 )𝐿𝑙=1 such that 𝜏𝑙 evolves from 𝜏𝑙−1 through a deviation of

agent
ˆ𝑑𝑙 whenever 𝜏𝑙 ≠ 𝜏𝑙−1. Then, we remove all steps where 𝜏𝑙 = 𝜏𝑙−1 to obtain a dynamics

(𝜌𝑝 )𝑃𝑝=1, which is a dynamics where every step corresponds to an IS deviation. Define the index

set 𝐼 = {1 ≤ 𝑘 ≤ 𝐾 : 𝜎𝑘 = 𝜎𝑘−1}, that is, the set of steps where the modified dynamics remains

unchanged. Then, 𝐾 ≤ 𝐿 = |𝐼 | + 𝑃 .
Hence, we would like to obtain bounds on each of |𝐼 | and 𝑃 . The next claim allows us to bound

|𝐼 | by replacing it with an appropriate bound with respect to 𝑃 . The key insight for proving the

next claim follows from the observation that essentially every 𝑛-th deviation of an agent has to

correspond to a deviation of the modified dynamics.

Claim 4.5. It holds that 𝐿 ≤ 𝑛2 + 𝑛𝑃 .
Proof. We first show that if 𝜎𝑘 = 𝜎𝑘−1, then 𝑑𝑘 ∈ 𝐹𝜋𝑘 . We prove this fact by contraposition.

Assume that 𝑑𝑘 ∉ 𝐹𝜋𝑘 . Note that, by the definition of 𝐹𝜋 , it holds for every partition 𝜋 and every

coalition 𝐶 ∈ 𝜋 with 𝐶 ∩ 𝐹𝜋 ≠ ∅ that |𝐶 | ≥ 3. Now, if 𝜎𝑘 (𝑑𝑘 ) ≠ {𝑑𝑘 }, then there exists an

agent 𝑥 ∈ 𝜎𝑘 (𝑑𝑘 ) \ {𝑑𝑘 }. Since 𝑑𝑘 was the deviator, it holds that 𝜎𝑘 (𝑥) ≠ 𝜎𝑘−1 (𝑥) and therefore

𝜎𝑘 ≠ 𝜎𝑘−1. It remains the case that 𝜎𝑘 (𝑑𝑘 ) = {𝑑𝑘 }. Then, as 𝑑𝑘 ∉ 𝐹𝜋𝑘 , 𝜋𝑘 (𝑑𝑘 ) = {𝑑𝑘 }. This
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implies that 𝑑𝑘 ∉ 𝐹𝜋𝑘−1 . To see this, we assume without loss of generality that 𝑑𝑘 ∈ 𝑅. Indeed, if
𝑑𝑘 ∈ 𝐹𝜋𝑘−1 , then 𝑑𝑘 ∈ 𝑅𝑆 and 1

2
≤ 𝑓𝑑𝑘 (𝜋𝑘−1). Then, single-peakedness implies that 𝑓𝑑𝑘 (𝜋𝑘−1) ≻𝑑𝑘 1,

contradicting that 𝑑𝑘 performed an IS deviation to form a singleton coalition. Hence, 𝑑𝑘 ∉ 𝐹𝜋𝑘−1 . As

in the first case, we find an agent 𝑥 ∈ 𝜎𝑘−1 (𝑑𝑘 ) \ {𝑑𝑘 }, for which it holds that 𝜎𝑘 (𝑥) ≠ 𝜎𝑘−1 (𝑥) and
therefore 𝜎𝑘 ≠ 𝜎𝑘−1.
The key insight for this claim is that every agent can only perform few successive deviations

corresponding to steps in 𝐼 . Indeed, the first part of the proof implies that 𝑑𝑘 ∈ 𝐹𝜋𝑘 whenever 𝑘 ∈ 𝐼 .
Consider an arbitrary agent 𝑟 ∈ 𝑅𝑆 . We define a potential function

𝜆𝑟 (𝜋) =
{
|𝑅 | + 1 if 𝑓𝑟 (𝜋) ≤ 1

2
or 𝑓𝑟 (𝜋) = 1

𝑚 if 𝑓𝑟 (𝜋) = 𝑚
𝑚+1 for 2 ≤ 𝑚 ≤ |𝑅 |

.

Note that 𝜆𝑟 is integer-valued and 2 ≤ 𝜆𝑟 ≤ |𝑅 | + 1. We will show that 𝜆𝑟 decreases whenever 𝑟

performs a deviation at step 𝑘 where she lands in 𝐹𝜋𝑘 , and can only increase through a deviation

of 𝑟 in (𝜏𝑙 )𝐿𝑙=1. In particular, we will show that the potential does not increase if another agent

performs a deviation, unless when 𝑟 ∈ 𝐹𝜋𝑘−1 \ 𝐹𝜋𝑘 which corresponds to the case of inserting a

deviation by 𝑟 , which also corresponds to a deviation in (𝜏𝑙 )𝐿𝑙=1.
Consider a step 𝑘 in the dynamics where 𝑑𝑘 = 𝑟 and 𝑟 ∈ 𝐹𝜋𝑘 . Then, 12 < 𝑓𝑟 (𝜋𝑘 ) < 1. By Claim 4.1,

𝑓𝑟 (𝜋𝑘 ) = 𝑚
𝑚+1 for some 2 ≤ 𝑚 ≤ |𝑅 | and therefore 𝜆𝑟 (𝜋𝑘 ) =𝑚. Also, by Claim 4.1, 𝑟 is not allowed to

perform a deviation if 𝑓𝑟 (𝜋𝑘−1) < 1

2
(as then an invalid homogeneous coalition of blue agents would

remain). Hence, single-peakedness implies that 𝑓𝑟 (𝜋𝑘−1) > 𝑚
𝑚+1 , and therefore 𝜆𝑟 (𝜋𝑘 ) < 𝜆𝑟 (𝜋𝑘−1).

If 𝑑𝑘 = 𝑟 and 𝑟 ∉ 𝐹𝜋𝑘 , then a deviation happens where 𝜎𝑘 ≠ 𝜎𝑘−1, and therefore this corresponds

to a deviation of 𝑟 in (𝜏𝑙 )𝐿𝑙=1. Next, we want to inspect how 𝑟 is affected by a deviator if 𝑑𝑘 ≠ 𝑟 . In

this case, 𝑑𝑘 cannot join 𝜋𝑘−1 (𝑟 ) if 𝜆𝑟 (𝜋𝑘−1) ≤ |𝑅 | (that is, in the case where 𝑟 is in a coalition of

‘large’ ratio). Indeed, since 𝑟 ∈ 𝑅𝑆 , 𝑟 would block any red agent to join, and a blue agent cannot

join due to Claim 4.1. Hence, 𝜋𝑘−1 (𝑟 ) is only affected if 𝑑𝑘 ∈ 𝜋𝑘−1 (𝑟 ). By Claim 4.1, if |𝜋𝑘−1 (𝑟 ) | = 2,

then 𝑓𝑟 (𝜋) = 1

2
, and the potential cannot go up. Otherwise, Claim 4.1 implies that 𝑑𝑘 is red. Since

𝑟 ∈ 𝑅𝑠 , it holds in addition that 𝑟 ∉ 𝐹𝜋𝑘−1 . Hence, if |𝜋𝑘−1 (𝑟 ) | ≥ 4, then 𝜆𝑟 (𝜋𝑘 ) = 𝜆𝑟 (𝜋𝑘−1) − 1.

If |𝜋𝑘−1 (𝑟 ) | = 3, then 𝜋𝑘 (𝑟 ) is of size 2 and 𝜆𝑟 (𝜋𝑘 ) = |𝑅 | + 1. As then 𝑟 ∈ 𝐹𝜋𝑘−1 \ 𝐹𝜋𝑘 , this case
corresponds exactly to inserting the deviation of 𝑟 to form a coalition of size 2 in (𝜏𝑙 )𝐿𝑙=1.
Together, there can be at most |𝑅 |−1 ≤ 𝑛−1 successive deviations by 𝑟 corresponding to steps in 𝐼

until there is a deviation by 𝑟 in (𝜏𝑙 )𝐿𝑙=1. We obtain a bound for the relevant deviations by 𝑟 . To make

this formal, we consider the following quantities. Given an agent 𝑥 , define 𝐼𝑥 = |{𝑘 ∈ 𝐼 : 𝑑𝑘 = 𝑥}|
and 𝐿𝑥 = |{1 ≤ 𝑙 ≤ 𝐿 : ˆ𝑑𝑙 = 𝑥}|. Since at least every 𝑛-th deviation counts towards 𝐿𝑟 but not

towards 𝐼𝑟 , we can conclude that 𝐿𝑟 − 𝐼𝑟 ≥ ⌊ 𝐿𝑟
𝑛
⌋ ≥ 𝐿𝑟

𝑛
− 1.

By an analogous argument where we consider an analogous potential function for blue agents,

we obtain that 𝐿𝑏 − 𝐼𝑏 ≥ 𝐿𝑏
𝑛
− 1 for every 𝑏 ∈ 𝐵𝐿 . Additionally, the definition of 𝐹𝜋 implies that

𝑘 ∉ 𝐼 if 𝑑𝑘 ∈ 𝑅𝐿 or 𝑑𝑘 ∈ 𝐵𝑆 . Hence, for 𝑥 ∈ 𝑅𝐿 ∪ 𝐵𝑆 , it holds that 𝐿𝑥 − 𝐼𝑥 = 𝐿𝑥 ≥ 𝐿𝑥
𝑛
− 1 (where the

latter inequality is of course a strong estimate, but it is all we need).

Summing up the inequalities for all agents, we obtain

𝑃 = 𝐿 − |𝐼 | =
∑︁
𝑥∈𝑁

𝐿𝑥 − 𝐼𝑥 ≥
∑︁
𝑥∈𝑁

𝐿𝑥

𝑛
− 1 =

𝐿

𝑛
− 𝑛.

Solving for 𝐿 yields the desired inequality. ◁

It remains to analyze the dynamics (𝜌𝑝 )𝑃𝑝=1. To this end, we will show that this dynamics

essentially behaves like a specific AHG, where we have to replace some agents by multiple copies.

This yields an AHG with at most 𝑛2 agents. Hence, Theorem 3.5 would provide a running time
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of O(𝑛6). However, we can do better. By exploiting structural properties of the AHG and a close

inspection of the potentials in the proof of Theorem 3.5, we can reduce the running time of our

transformed dynamics on the AHG to O(𝑛4).

Claim 4.6. It holds that 𝑃 ∈ O(𝑛4).

Proof. First, let us note that, by construction of (𝜌𝑝 )𝑃𝑝=0, it holds that 𝐹𝜌𝑝 = ∅ for all 0 ≤ 𝑝 ≤ 𝑃 .

Hence, all agents in 𝑅𝑆 (or 𝐵𝐿) only perform deviations towards singletons or coalitions of ratio

at most
1

2
(or at least

1

2
). Moreover, we may assume that an agent 𝑟 ∈ 𝑅𝑆 never forms a coalition

of size 2 with an agent in 𝑏 ∈ 𝐵𝐿 . Due to single-peakedness and their respective peaks, this can

only happen if both of them come from singleton coalitions. However, then no further agent can

join {𝑟, 𝑏}. Further red agents would be blocked by 𝑟 and further blue agents by 𝑏. Hence, this

coalition can only be altered if one of these agents leaves. But this deviation can be performed right

away from the singleton coalition. Similarly, we can exclude the formation of coalitions of size 2 by

agents in 𝑅𝐿 and 𝐵𝑆 .

As this shortcutting can only remove every second step (and initial 𝑛/2 steps for forming a first

set of pairs), it leaves us with a dynamics (𝜌 ′𝑝 )𝑃
′

𝑝=0 with 𝑃
′ ≥ 𝑃−𝑛/2

2
such that, for 1 ≤ 𝑝 ≤ 𝑃 ′, 𝜌 ′𝑝

evolves from 𝜌 ′𝑝−1 through an IS deviation of some agent 𝑑 ′𝑝 .
Even more, we may assume that agents in 𝑅𝑆 (or 𝐵𝐿) never perform deviations. First, according

to Claim 4.1, the only coalition which such an agent can leave is a coalition of size 2 with ratio
1

2
.

Hence, single-peakedness implies that forming the singleton coalition is not beneficial. Furthermore,

Claim 4.1 implies that they could only form coalitions of size 2. By the first part of the proof, their

partner has to be from 𝐵𝑆 (or 𝑅𝐿). Since the preferences are strict, we may assume that their partner

performs the deviation.

Now, we define an AHG (𝑁𝐴, (≻𝐴𝑥 )𝑥∈𝑁𝐴 ) as follows. In principle, the only relevant part of the

preferences concern the ratios
1

𝑚+1 or
𝑚
𝑚+1 , and we want to identify these ratios with coalitions

of size𝑚 + 1, because all coalitions of these ratios have exactly this size (using Claim 4.1). This

part of the preferences will also inherit single-peakedness from the HDG. However, we have to

deal with the preference over the ratio 1 for agents in 𝑅𝐿 (or over the ratio 0 for agents in 𝐵𝑆 ). To

maintain single-peakedness, we should identify these ratios with coalition sizes |𝑅 | + 1 and |𝐵 | + 1,

respectively. To achieve this goal, we introduce some auxiliary agents. Let the agent set of the AHG

therefore be 𝑁𝐴 = 𝑅𝑆 ∪ 𝐵𝐿 ∪ {𝑟0, . . . , 𝑟 |𝑅 | : 𝑟 ∈ 𝑅𝐿} ∪ {𝑏0, . . . , 𝑏 |𝐵 | : 𝑏 ∈ 𝐵𝑆 } and define strict and

single-peaked preferences as follows (where we present only the relevant part of the preferences).

• If 𝑟 ∈ 𝑅𝑆 and 2 ≤ 𝑖, 𝑗 ≤ |𝐵 | + 1, then

– 𝑖 ≻𝐴𝑟 𝑗 if and only if
1

𝑖
≻𝑟 1

𝑗
,

– 1 ≻𝐴𝑟 𝑖 if and only if 1 ≻𝑟 1

𝑖
, and

– 𝑖 ≻𝐴𝑟 1 if and only if
1

𝑖
≻𝑟 1.

• If 𝑏 ∈ 𝐵𝐿 and 2 ≤ 𝑖, 𝑗 ≤ |𝑅 | + 1, then

– 𝑖 ≻𝐴
𝑏
𝑗 if and only if

𝑖−1
𝑖

≻𝑏 𝑗−1
𝑗
,

– 1 ≻𝐴
𝑏
𝑖 if and only if 0 ≻𝑏 𝑖−1

𝑖
, and

– 𝑖 ≻𝐴
𝑏
1 if and only if

𝑖−1
𝑖

≻𝑏 0.

• If 𝑟 ∈ 𝑅𝐿 and 2 ≤ 𝑖, 𝑗 ≤ |𝑅 |, then
– 𝑖 ≻𝐴𝑟0 𝑗 if and only if

𝑖−1
𝑖

≻𝑟 𝑗−1
𝑗
,

– |𝑅 | + 1 ≻𝐴𝑟0 𝑖 if and only if 1 ≻𝑟 𝑖−1
𝑖
,

– 𝑖 ≻𝐴𝑟0 |𝑅 | + 1 if and only if
𝑖−1
𝑖

≻𝑟 1, and
– |𝑅 | + 1 ≻𝐴𝑟𝑙 |𝑅 | if 𝑙 ∈ [|𝑅 |].

• If 𝑏 ∈ 𝐵𝑆 and 2 ≤ 𝑖, 𝑗 ≤ |𝐵 |, then
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– 𝑖 ≻𝐴
𝑏0
𝑗 if and only if

1

𝑖
≻𝑏 1

𝑗
,

– |𝐵 | + 1 ≻𝐴
𝑏0
𝑖 if and only if 0 ≻𝑏 1

𝑖
,

– 𝑖 ≻𝐴
𝑏0

|𝐵 | + 1 if and only if
1

𝑖
≻𝑏 0, and

– |𝐵 | + 1 ≻𝐴
𝑏𝑙

|𝐵 | if 𝑙 ∈ [|𝐵 |].
Next, we define the modified dynamics. Therefore, let 0 ≤ 𝑝 ≤ 𝑃 ′ and define the partition

𝜔𝑝 = {{𝑟0, . . . , 𝑟 |𝑅 | } : 𝑟 ∈ 𝑅𝐿, {𝑟 } ∈ 𝜌 ′𝑝 } ∪ {{𝑟1, . . . , 𝑟 |𝑅 | } : 𝑟 ∈ 𝑅𝐿, {𝑟 } ∉ 𝜌 ′𝑝 } ∪ {{𝑏0, . . . , 𝑏 |𝐵 | } : 𝑏 ∈
𝐵𝑆 , {𝑏} ∈ 𝜌 ′𝑝 }∪ {{𝑏1, . . . , 𝑏 |𝐵 | } : 𝑏 ∈ 𝐵𝑆 , {𝑏} ∉ 𝜌 ′𝑝 }∪ {{𝑏, 𝑟 1

0
, . . . , 𝑟𝑚

0
} : 𝑏 ∈ 𝐵𝑆 , 𝜌 ′𝑝 (𝑏) = {𝑏, 𝑟 1, . . . , 𝑟𝑚}

for𝑚 ≥ 0} ∪ {{𝑟, 𝑏1
0
, . . . , 𝑏𝑚

0
} : 𝑟 ∈ 𝑅𝐿, 𝜌 ′𝑝 (𝑟 ) = {𝑟, 𝑏1, . . . , 𝑏𝑚} for𝑚 ≥ 0}.

Note that 𝜔𝑝 is well-defined, because every agent in 𝑅𝐿 (or 𝐵𝑆 ), which is not in a singleton

coalition is part of a coalition solely consisting of agents in 𝑅𝐿 (or 𝐵𝑆 ), and a unique agent in 𝐵𝐿 (or

𝑅𝑆 ).

Next, let 1 ≤ 𝑝 ≤ 𝑃 ′. Then, 𝜔𝑝 evolves from 𝜔𝑝−1 through an IS deviation of some agent. This

follows directly from the preferences in the AHG, where a fraction of 1 (or 0) plays the role of

the coalition size |𝑅 | + 1 (or |𝐵 | + 1) for agents in 𝑅𝐿 (or 𝐵𝑆 ). Hence, (𝜔𝑝 )𝑃
′

𝑝=0 is an execution of a

dynamics of IS deviations in AHG (𝑁𝐴, (≻𝐴𝑥 )𝑥∈𝑁𝐴 ).
To bound its running time, we have to inspect the potentials in the proof of Theorem 3.5. First,

𝑣𝑃
′
𝑗 ≤ 𝑛 for all agents 𝑗 ∈ 𝑁𝐴

. Second, 𝑣𝑃
′

𝐶
≤ 𝑛 for all 𝐶 ∈ 𝜔𝑃 ′ , and |𝜔𝑃 ′ | ≤ 2𝑛. The latter

bounds hold, because the copies of every original agent are only part of at most 2 coalitions. Hence,

Λ(𝜔𝑃 ′ ) ≤ 𝑛3+2𝑛2, and there can be at most that many R-moves. Moreover, Λ(𝜔𝑘 )−Λ(𝜔𝑘−1) ≤ 𝑛−1
for every R-move. Hence, as in the proof of Theorem 3.5, we obtain a bound of 𝑛4 + 2𝑛3 L-moves.

Hence, the dynamics on the AHG runs for 𝑃 ′ ∈ O(𝑛4) steps. Therefore, as 𝑃 ≤ 2𝑃 ′ + 𝑛
2
, we obtain

𝑃 ∈ O(𝑛4). ◁

Finally, we can combine all of our insights. Recall that (𝜏𝑙 )𝐿𝑙=1 is longer than (𝜎𝑘 )𝐾𝑘=1 because the
only difference is the insertion of certain deviations. We can apply Claim 4.5 and Claim 4.6 to obtain

𝐾 ≤ 𝐿
Claim 4.5

≤ 𝑛2 + 𝑛𝑃 Claim 4.6∈ O(𝑛5).
□

Under strict preferences, checking the existence of a path to stability and convergence are hard.

Theorem 4.5. ∃-IS-Sequence-HDG is NP-hard and ∀-IS-Sequence-HDG is coNP-hard, even for

strict preferences.

5 FRACTIONAL HEDONIC GAMES
Next, we study fractional hedonic games, which are closely related to hedonic diversity games,

but instead of agent types, utilities rely on a cardinal valuation function of the other agents. In

fractional hedonic games, the existence of IS partitions is rare. The only known condition for their

existence in previous work is that IS—and even NS—partitions exist if all utilities are non-negative.

In such games, utilities over coalitions are non-negative, and therefore the grand coalition is stable

because the only possible deviation leaves the deviating agent in a singleton coalition where her

utility is 0. In particular, it was not even known whether symmetry of utilities is helpful [13]. In

the first result of this section, we answer this question negatively.
8
Moreover, we demonstrate that

dynamics offer a more fine-grained view on individual stability when weights are non-negative.

8
Symmetry was a reasonable candidate for the existence of IS partitions because it yields existence of Nash stability in

additively separable hedonic games [12].
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(a) Five triangles are ordered in a cycle such that

there is a tendency of agents in 𝑁𝑖 to deviate to

coalitions in 𝑁𝑖+1.

𝑐𝑖

𝑎𝑖

𝑏𝑖
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𝑏𝑖+1228
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223
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(b) The transition weights between the triangles allow

for infinite loops of deviations.

Fig. 6. Description of the symmetric FHG without IS partition in the proof of Theorem 5.1.

The first part of this section deals with symmetric games, the second part with simple games,

that is, games where all the agents individually evaluate the other agents with utility values in

{0, 1}. We start with the non-existence of IS partitions, where we provide a counterexample using

15 agents. The weights were found with the help of a computer.

Theorem 5.1. There exists a symmetric FHG without an IS partition.

Proof. Define the sets of agents 𝑁𝑖 = {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 } for 𝑖 ∈ {1, . . . , 5} and consider the FHG on the

agent set 𝑁 =
⋃

5

𝑖=1 𝑁𝑖 where symmetric weights are given by

• 𝑣 (𝑎𝑖 , 𝑏𝑖 ) = 𝑣 (𝑏𝑖 , 𝑐𝑖 ) = 𝑣 (𝑎𝑖 , 𝑐𝑖 ) = 228, 𝑖 ∈ {1, . . . , 5},
• 𝑣 (𝑎𝑖 , 𝑎𝑖+1) = 436, 𝑣 (𝑎𝑖 , 𝑏𝑖+1) = 228, 𝑣 (𝑎𝑖 , 𝑐𝑖+1) = 248, 𝑖 ∈ {1, . . . , 5},
• 𝑣 (𝑏𝑖 , 𝑎𝑖+1) = 223, 𝑣 (𝑏𝑖 , 𝑏𝑖+1) = 171, 𝑣 (𝑏𝑖 , 𝑐𝑖+1) = 236, 𝑖 ∈ {1, . . . , 5},
• 𝑣 (𝑐𝑖 , 𝑎𝑖+1) = 223, 𝑣 (𝑐𝑖 , 𝑏𝑖+1) = 171, 𝑣 (𝑐𝑖 , 𝑐𝑖+1) = 188, 𝑖 ∈ {1, . . . , 5}, and
• 𝑣 (𝑥,𝑦) = −2251 for all agents 𝑥,𝑦 ∈ 𝑁 such that the weight is not defined yet.

In the above definition, all indices are to be read modulo 5 (where the modulo function is assumed

to map to {1, . . . , 5}). Note that the large negative weight exceeds the sum of positive weights

incident to any agents. Hence, agents linked by a negative weight, can never be in a common

coalition in any IS partition. The FHG consists of five triangles that form a cycle. The structure of

the game is illustrated in Figure 6. While proving that there does not exist an IS partition requires a

lengthy case distinction and many computations, the global intuition for the proof is to observe that

IS dynamics in this instance always cycle. To see this, start with the partition (𝑁5 ∪ 𝑁1, 𝑁2, 𝑁3, 𝑁4).
First, 𝑎1 deviates by joining 𝑁2. Then, 𝑏1 joins this new coalition, then 𝑐1. After this step, we are in

an isomorphic state as in the initial partition.

We are ready for the main proof. Let 𝜋 be any partition of the agents and assume that 𝜋 is IS.

In particular, no agent receives negative utility. Therefore there exists an 𝑖 ∈ {1, . . . , 5} such that

𝜋 (𝑎𝑖 ) ∩ {𝑎1, . . . , 𝑎5} = {𝑎𝑖 }. We may assume, without loss of generality, that 𝑎1 is such an agent. In

the following, we will distinguish all the possible cases for the coalition of 𝑎1 in 𝜋 and show that

none of them can occur in an IS partition, deriving a contradiction.
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• Goal 1: 𝑏2 ∉ 𝜋 (𝑎1).
First, assume for contradiction that 𝑏2 ∈ 𝜋 (𝑎1), which implies that 𝜋 (𝑎1) ⊆ 𝑁1 ∪ 𝑁2.

If 𝜋 (𝑎2) ⊆ 𝑁1 ∪ 𝑁2, then 𝜋 (𝑎2) ⊆ {𝑎2, 𝑐2, 𝑐1, 𝑏1}, and therefore 𝑣𝑎2 (𝜋) ≤ 168.5 (the

best case is 𝜋 (𝑎2) = {𝑎2, 𝑐2, 𝑐1, 𝑏1} with 𝑣𝑎2 ({𝑎2, 𝑐2, 𝑐1, 𝑏1}) = 228+223+223
4

= 168.5), while

𝑣𝑎2 ({𝑎2} ∪ 𝜋 (𝑎1)) ≥ 221.3 (the worst case is 𝜋 (𝑎1) = {𝑎1, 𝑏2} with 𝑣𝑎2 ({𝑎2, 𝑎1, 𝑏2}) =
436+228

3
= 221.33. . .). Hence, 𝑎2 has an incentive to deviate (making no agent in 𝜋 (𝑎1) worse

off). Therefore, 𝜋 (𝑎2) ⊆ 𝑁2 ∪ 𝑁3 and more precisely 𝜋 (𝑎2) ⊆ {𝑎2, 𝑐2, 𝑎3, 𝑐3, 𝑏3}. In addition,

by the same potential deviation, 𝑎3 ∈ 𝜋 (𝑎2) and |𝜋 (𝑎2) | ≥ 3.

Next, consider the case that 𝑐2 ∈ 𝜋 (𝑎2). Then, 𝑣𝑏2 (𝜋) ≤ 142.5, while 𝑣𝑏2 ({𝑏2} ∪ 𝜋 (𝑎2)) ≥
169.75 and 𝑏2 would have a beneficial IS deviation. Hence, 𝑐2 ∉ 𝜋 (𝑎2). If 𝑐2 ∉ 𝜋 (𝑎1), then
𝑣𝑐2 (𝜋) ≤ max{141.34, 119.67} = 141.34 (this is if 𝑐2 forms a coalition with 𝑁1 \ {𝑎1} or
𝑁3 \ {𝑎3}), while 𝑣𝑐2 ({𝑐2} ∪ 𝜋 (𝑎1)) ≥ 158.6 and it is easily seen that 𝑐2 can only improve

agents in 𝜋 (𝑎1). It follows that 𝑐2 ∈ 𝜋 (𝑎1).
If 𝑐3 ∉ 𝜋 (𝑎2), then 𝜋 (𝑎2) = {𝑎2, 𝑎3, 𝑏3} and 𝑐3 would deviate by joining 𝜋 (𝑎2). Hence,
{𝑎2, 𝑎3, 𝑐3} ⊆ 𝜋 (𝑎2). But then 𝑣𝑏2 (𝜋) ≤ 159.6 (the best case being 𝜋 (𝑏2) = 𝑁1 ∪ {𝑏2, 𝑐2}),
while 𝑣𝑏2 ({𝑏2}∪𝜋 (𝑎2)) ≥ 171.6 (the worst case here is 𝜋 (𝑏2) = 𝑁3∪{𝑎2, 𝑏2} which is worse

than the smaller {𝑎2, 𝑏2, 𝑎3, 𝑐3}) and joining with 𝑏2 makes no agent worse off. In conclusion,

the initial assumption was wrong and 𝑏2 ∉ 𝜋 (𝑎1).
• Goal 2: 𝑐2 ∉ 𝜋 (𝑎1).
Second, assume for contradiction that 𝑐2 ∈ 𝜋 (𝑎1). As in the previous case, it is easily seen

that 𝜋 (𝑎2) ⊆ {𝑎2, 𝑏2} ∪ 𝑁3, 𝑎3 ∈ 𝜋 (𝑎2), and |𝜋 (𝑎2) | ≥ 3. If 𝑏2 ∉ 𝜋 (𝑎2), then 𝑣𝑏2 (𝜋) ≤ 118

(the best coalitions in 𝑁1 ∪ 𝑁2 and 𝑁2 ∪ 𝑁3 are {𝑏2, 𝑏1, 𝑐1} and {𝑏2, 𝑐3}, respectively) while
𝑣𝑏2 ({𝑏2} ∪ 𝜋 (𝑎2)) ≥ 155.5. Hence, 𝑏2 ∈ 𝜋 (𝑎2). But then 𝑣𝑐2 (𝜋) ≤ 168 while 𝑣𝑐2 ({𝑐2} ∪
𝜋 (𝑎2)) ≥ 169.75 and 𝑐2 would join 𝜋 (𝑎2) making no agent worse off. We conclude that

𝑐2 ∉ 𝜋 (𝑎1) and can therefore assume that 𝜋 (𝑎1) ⊆ 𝑁1 ∪ (𝑁5 \ {𝑎5}).
• Goal 3: 𝑐1 ∉ 𝜋 (𝑎1).
Third, assume for contradiction that 𝑐1 ∈ 𝜋 (𝑎1). Then, 𝑣𝑎5 (𝜋) ≤ max{223, 171} = 223

(where the first utility in the maximum refers to the coalition 𝑁4 ∪𝑁5 and the second utility

to 𝑁5 ∪ {𝑏1}). However, 𝑣𝑎5 ({𝑎5} ∪ 𝜋 (𝑎1)) ≥ 228. Since joining 𝜋 (𝑎1) with 𝑎5 makes no

agent worse off, this is not possible. Hence, 𝑐1 ∉ 𝜋 (𝑎1).
• Goal 4: 𝑏1 ∉ 𝜋 (𝑎1).

Forth, assume for contradiction that 𝑏1 ∈ 𝜋 (𝑎1). Then, 𝑣𝑐1 ({𝑐1} ∪ 𝜋 (𝑎1)) ≥ 152 and adding

𝑐1 to 𝜋 (𝑎1) leaves no agent worse off. Since, 𝑣𝑐1 ({𝑐1} ∪ 𝑁2) = 145.5, it must hold that

𝜋 (𝑐1) ⊆ {𝑐1} ∪ 𝑁5 and even {𝑎5, 𝑏5} ⊆ 𝜋 (𝑐1) since otherwise 𝑣𝑐1 (𝜋) ≤ 145.4. But then

𝑣𝑎1 (𝜋) ≤ 150.4 while 𝑣𝑎1 ({𝑎1} ∪ 𝜋 (𝑐1)) ≥ 221.75 and 𝑎1 would deviate making no agent

worse off. It follows that 𝑏1 ∉ 𝜋 (𝑎1).
• Goal 5: 𝜋 (𝑎1) ⊈ {𝑎1, 𝑐5, 𝑏5}.

It remains the case that 𝜋 (𝑎1) ⊆ {𝑎1, 𝑐5, 𝑏5}. If |𝜋 (𝑐1) | ≥ 2, then 𝑎1 would deviate by joining

𝜋 (𝑐1), making no agent worse off. If, however, 𝑐1 is in a singleton coalition, then 𝑐1 would

join 𝜋 (𝑎1), making no agent worse off and improving her utility.

It follows that no coalition for agent 𝑎1 can be possible in an IS partition 𝜋 , implying that the

instance admits no IS partition. □

Employing this counterexample, the methods by Brandl et al. [13], which originate from hardness

constructions by Sung and Dimitrov [31], can be used to show that it is NP-hard to decide about

the existence of IS partitions in symmetric FHGs.

For the following corollary, we omit the full proof because it is analogous to the weaker statement

by Brandl et al. [13, Theorem 5]. The main method will also be applied in the proof of Theorem 5.3,
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which considers convergence of the IS dynamics in the case that the FHGs even have symmetric,

non-negative weights.

Corollary 5.2. Deciding whether there exists an individually stable partition in symmetric FHGs

is NP-hard.

Proof sketch. In the reduction by Brandl et al. [13, Theorem 5], we replace the non-symmetric

gadget by an agent-minimal symmetric FHG that admits no IS partition. Such an FHG exists

according to Theorem 5.1.
9
The weights in the symmetric part of their reduced instances must be

large enough to incentivize the agent in the gadget to stay in a coalition outside the gadget. □

If we consider symmetric, non-negative utilities, the grand coalition forms an NS, and therefore

IS, partition of the agents. However, deciding about the convergence of the IS dynamics starting

with the singleton partition is NP-hard. The reduction uses similar methods as Sung and Dimitrov

[31] and Brandl et al. [13]. We can avoid negative weights by the fact that, due to symmetry of the

weights, in a dynamics starting with the singleton partition, all coalitions that can be obtained in

the process must have strictly positive mutual utility for all pairs of agents in the coalition.

Theorem 5.3. ∃-IS-Sequence-FHG is NP-hard and ∀-IS-Sequence-FHG is coNP-hard, even in

symmetric FHGs with non-negative weights. The former is even true if the initial partition is the

singleton partition.

From now on, we consider simple FHGs. We start with the additional assumption of symmetry.

Proposition 5.4. The dynamics of IS deviations starting from the singleton partition converges in

simple symmetric FHGs in at most O(𝑛2) steps. The dynamics may take Ω(𝑛
√
𝑛) steps.

Proof. We start with the lower bound. Consider the FHG induced by the complete graph on

𝑛 = 𝑘 (𝑘 + 1)/2 agents for some non-negative integer 𝑘 ≥ 1. We partition the agents arbitrarily into

sets 𝐶1, . . . ,𝐶𝑘 where |𝐶 𝑗 | = 𝑗 for 𝑗 = 1, . . . , 𝑘 . Now, we perform two phases of IS deviations. In the

first phase, we form the coalitions 𝐶 𝑗 by having agents join one by one. In the second phase, there

are 𝑘 − 1 steps. In step 𝑗 , the agents of coalition 𝐶 𝑗 join coalitions 𝐶 𝑗+1, . . . ,𝐶𝑘 one after each other,

thereby performing 𝑘 − 𝑗 deviations each. The total number of deviations in the second phase is

therefore

∑𝑘−1
𝑗=1 𝑗 · (𝑘 − 𝑗) = 1

6
(𝑘 − 1)𝑘 (𝑘 + 1) = Θ(𝑘3) = Θ(𝑘2

√
𝑘2) = Θ(𝑛

√
𝑛). In particular, there

can be Ω(𝑛
√
𝑛) IS deviation steps starting from the singleton partition.

For the upper bound, let a simple and symmetric FHG be given. Note that all coalitions formed

through the deviation dynamics are cliques. Hence, every deviation step will increase the total

number of edges in all coalitions. More precisely, the dynamics will increase the potential Λ(𝜋) =∑
𝐶∈𝜋 |𝐶 | ( |𝐶 | − 1)/2 in every step by at least 1. Since the total number of edges is bounded by

𝑛(𝑛 − 1)/2, this proves the upper bound. □

Note that there is a simple way to converge in a linear number of steps starting with the singleton

partition by forming largest cliques and removing them from consideration.
10
Surprisingly, it seems

a lot harder to prove (non-)convergence of the dynamics if we start from an arbitrary partition,

and we leave this as an open problem.

If we allow for asymmetries, the dynamics is not guaranteed to converge anymore. For instance,

the IS dynamics on an FHG induced by a directed 3-cycle will not converge for any initial partition

except for the grand coalition. We can, however, characterize convergence on simple asymmetric

9
In fact, we can use a subgame of the game constructed in Theorem 5.1. Note that we have no proof of agent-minimality of

this game but we can simply remove agents until it is agent-minimal.

10
The number of steps is linear even though finding such a sequence for an external coordinator would be computationally

hard because it would require to solve a maximum clique problem.
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FHGs. Tractability depends on the structure of the utilities. First, we consider dynamics starting

from the singleton partition on simple asymmetric FHGs.

The key insight is that throughout the dynamic process on a simple asymmetric FHG starting from

the singleton partition, the subgraphs induced by coalitions are always transitive and complete.
11

Convergence is then shown by a potential function argument.

Proposition 5.5. The dynamics of IS deviations starting from the singleton partition converges in

simple asymmetric FHGs if and only if the underlying graph is acyclic. Moreover, under acyclicity, it

converges in O(𝑛4) steps.
Proof. Let 𝐺 = (𝑉 ,𝐴) be a simple asymmetric graph on 𝑛 = |𝑉 | vertices. If the graph contains

a cycle, it is easy to find a non-converging series of deviations. There exists a cycle of length at

least 3. We can then let a coalition of size 2 propagate along the cycle. More formally, assume that

{𝑐1, . . . , 𝑐 𝑗 } ⊆ 𝑉 induce a directed cycle, where (𝑐𝑖 , 𝑐𝑖+1) ∈ 𝐴 for 1 ≤ 𝑖 ≤ 𝑗 (here and in the remainder

of the proof, read indicesmodulo 𝑗 mapping to the representative in [ 𝑗]). Define (𝜋𝑘 )𝑘≥0 by letting 𝜋0
be the singleton partition, and for 𝑝 ≥ 0, 1 ≤ 𝑖 ≤ 𝑗 , let 𝜋𝑝 𝑗+𝑖 = {{𝑐𝑖 , 𝑐𝑖+1}}∪ {{𝑥} : 𝑥 ∈ 𝑉 \ {𝑐𝑖 , 𝑐𝑖+1}}.
Then, (𝜋𝑘 )𝑘≥0 is an IS dynamics of infinite length.

Assume that the graph is acyclic. Our first observation is that, in every step of the dynamics, all

subgraphs induced by coalitions are transitive and complete. Indeed, by induction, in a deviation,

the coalition that is left still induces a transitive and complete subgraph, and the new coalition

induced a transitive and complete subgraph before the deviation. Hence, every agent except one has

at least one outgoing edge and will only accept the new agent if she likes her. Since the deviating

agent must have non-negative utility after the deviation, she needs to approve the single agent

without outgoing edge. Hence, the newly formed coalition still induces a transitive and complete

subgraph.

The last argument also implies that the deviating agent has a utility of 1/𝑘 if she ends up in a

coalition of size 𝑘 after her deviation. We refer to this fact as (∗) in the sequel.

We will now define two potentials based on the agents that receive a utility of 0 in a partition,

and based on the coalition sizes. The first potential is monotonically decreasing and bounded. The

second potential is strictly increasing whenever the first potential is not strictly decreasing, and

bounded. Hence, we establish convergence of the dynamics.

First, fix a topological order of the agents, i.e., a bijection 𝜎 : 𝑉 → [𝑛] such that for all (𝑣,𝑤) ∈ 𝐴,
𝜎 (𝑣) < 𝜎 (𝑤). For a given partition 𝜋 of the agents, we define the vector 𝑣𝜎 (𝜋) of length |𝜋 | that
sorts the numbers max𝑖∈𝐶 𝜎 (𝑖) for 𝐶 ∈ 𝜋 in decreasing order, that is it sorts the coalitions in

decreasing topological score of the agent with the highest number due to the topological order.

This is exactly the unique agent in every coalition receiving 0 utility. In addition, we define the

vector 𝑤 (𝜋) of length |𝜋 | that sorts the coalition sizes in increasing order. Note that this vector

does not depend on the underlying topological order.

For two vectors 𝑣 = (𝑣𝑖 )𝑘𝑖=1 and𝑤 = (𝑤𝑖 )𝑙𝑖=1, not necessarily of the same length, we say

𝑣 >𝑙𝑒𝑥 𝑤 ⇐⇒ there is 𝑖 < max{𝑘, 𝑙} with
𝑣 𝑗 = 𝑤 𝑗 ∀1 ≤ 𝑗 ≤ 𝑖 and 𝑣𝑖+1 > 𝑤𝑖+1, or
𝑘 > 𝑙 and 𝑣 𝑗 = 𝑤 𝑗 ∀1 ≤ 𝑗 ≤ 𝑘 .

In other words, 𝑣 >𝑙𝑒𝑥 𝑤 if 𝑣 is lexicographically greater than𝑤 .

The key insight is that, for 𝜋 ′
formed from 𝜋 by an IS deviation, 𝑣𝜎 (𝜋 ′) <𝑙𝑒𝑥 𝑣𝜎 (𝜋), or 𝑣𝜎 (𝜋 ′) =𝑙𝑒𝑥

𝑣𝜎 (𝜋) and 𝑤 (𝜋 ′) >𝑙𝑒𝑥 𝑤 (𝜋). For a proof, assume that 𝜋 ′
is formed from 𝜋 by an IS deviation of

11
We identify the directed graphs𝐺 = (𝑉 ,𝐴) with relations 𝑅 where 𝑖 𝑅 𝑗 if and only if (𝑖, 𝑗 ) ∈ 𝐴. Hence, we call a directed

graph𝐺 = (𝑉 ,𝐴) transitive if (𝑖, 𝑗 ) ∈ 𝐴 and ( 𝑗, 𝑘 ) ∈ 𝐴 implies (𝑖, 𝑘 ) ∈ 𝐴 for every triple 𝑖, 𝑗, 𝑘 ∈ 𝑉 . We call it complete if

(𝑖, 𝑗 ) ∈ 𝐴 or ( 𝑗, 𝑖 ) ∈ 𝐴 for every pair 𝑖, 𝑗 ∈ 𝑉 .
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agent 𝑖 . Note that max𝑗∈𝜋 ′ (𝑖 ) 𝜎 ( 𝑗) = max𝑗∈𝜋 ′ (𝑖 )\{𝑖 } 𝜎 ( 𝑗). We distinguish two cases. Either 𝑖 =

argmax𝑗∈𝜋 (𝑖 ) 𝜎 ( 𝑗) and it follows 𝑣𝜎 (𝜋 ′) <𝑙𝑒𝑥 𝑣𝜎 (𝜋). Otherwise, 𝑣𝑖 (𝜋 (𝑖)) ≥ 1

|𝜋 (𝑖 ) | , and because 𝑖 is

improving her utility,
1

|𝜋 ′ (𝑖 ) |
(∗)
= 𝑣𝑖 (𝜋 ′) > 1

|𝜋 (𝑖 ) | . It follows that |𝜋 (𝑖) | > |𝜋 ′ (𝑖) |. Hence, |𝜋 ′ (𝑖) | − 1 <

min{|𝜋 ′ (𝑖) |, |𝜋 (𝑖) |}, and therefore𝑤 (𝜋 ′) >𝑙𝑒𝑥 𝑤 (𝜋).
We estimate the running time in two steps. First, we bound the number of times that the

lexicographic score of 𝑣𝜎 (𝜋) can decrease. Then, we estimate the number of deviations that can

happen while this score does not change. We call the first kind of deviations primal and the second

type secondary. Note that after a deviation, the maximal topological score in the joined coalition

remains the same because the deviating agent has to receive positive utility from some agent who

therefore has higher topological score. Hence, a primal deviation happens if and only if the agent

with highest topological score of the abandoned coalition performs the deviation.

Let us first discuss the idea how to bound the number of the primal deviations. To this end, given

a partition 𝜋 and an agent 𝑣 ∈ 𝑉 , we define a set𝐷𝜋𝑣 that stores a certain amount of deviating agents.

This set depends on the agent 𝑣 and the history of the dynamics until reaching 𝜋 . In every step of

the dynamics, the sum

∑
𝑣∈𝑉 |𝐷𝜋𝑣 | will be exactly the number of primal deviations so far. We ensure

that we can always add the agent 𝑣 performing a deviation to a set 𝐷𝜋𝑤 such that 𝜎 (𝑣) > 𝜎 (𝑥) for
all 𝑥 ∈ 𝐷𝜋𝑤 . Hence, at the end of the sequence of deviations,

∑
𝑣∈𝑉 |𝐷𝜋𝑣 | ≤ 𝑛2.

Initially, set 𝐷
𝜋0
𝑣 = ∅ for all 𝑣 ∈ 𝑉 and the starting partition 𝜋0 of the dynamics. Assume first

that agent 𝑣 performs a primary deviation that changes partition 𝜋 into partition 𝜋 ′
. Recall that in

this case, 𝑣 = argmax𝑥∈𝜋 (𝑣) 𝜎 (𝑥). If 𝑣 was in a singleton coalition, update 𝐷𝜋
′

𝑣 = {𝑣} and leave all

other sets the same, i.e., 𝐷𝜋
′

𝑥 = 𝐷𝜋𝑥 for all 𝑥 ≠ 𝑣 . Otherwise, let𝑤 = argmax𝑥∈𝜋 (𝑣)\{𝑣} 𝜎 (𝑥) be the
agent in 𝜋 (𝑣) different from 𝑣 of highest topological score, i.e., the agent in 𝜋 (𝑣) of second-highest
topological score. We update 𝐷𝜋

′
𝑣 = 𝐷𝜋𝑤 ∪{𝑣}, 𝐷𝜋 ′

𝑤 = ∅, and 𝐷𝜋 ′
𝑥 = 𝐷𝜋𝑥 for all 𝑥 ≠ 𝑣,𝑤 . If a secondary

deviation is performed from 𝜋 to 𝜋 ′
, leave all sets the same, i.e., 𝐷𝜋

′
𝑥 = 𝐷𝜋𝑥 for all 𝑥 ∈ 𝑉 .

Given a set of agents𝑊 ⊆ 𝑉 , let𝑚𝑊 = argmax𝑥∈𝑊 𝜎 (𝑥) be the agent in𝑊 maximizing the

topological score. We have the following invariants for every partition 𝜋 during the dynamics and

for every agent 𝑣 ∈ 𝑉 :

• If 𝑣 =𝑚𝜋 (𝑣) , then 𝐷
𝜋
𝑣 = ∅.

• If 𝑣 ≠𝑚𝜋 (𝑣) , then 𝜎 (𝑥) ≤ 𝜎 (𝑣) < 𝜎 (𝑚𝜋 (𝑣) ) for all 𝑥 ∈ 𝐷𝜋𝑣 .
• The number of primal deviations of the dynamics until partition 𝜋 is

∑
𝑣∈𝑉 |𝐷𝜋𝑣 |.

The first invariant follows directly from the update rules. Indeed, the agent in the newly formed

coalition of maximal topological score is the same, and if the agent of highest topological score in

the abandoned coalition changes, then we update her set to be the empty set. This proves the first

invariant.

The second invariant follows by induction. Assume that 𝑣 performs a deviation from 𝜋 to 𝜋 ′
. If 𝑣

performs a primary deviation and𝑤 = argmax𝑥∈𝜋 (𝑣)\{𝑣} 𝜎 (𝑥), then 𝐷𝜋
′

𝑣 \ {𝑣} = 𝐷𝜋𝑤 , and therefore

𝜎 (𝑥) ≤ 𝜎 (𝑤) < 𝜎 (𝑚𝜋 (𝑤 ) ) = 𝜎 (𝑣) < 𝜎 (𝑚𝜋 ′ (𝑣) ) for all 𝐷𝜋
′

𝑣 \ {𝑣} where we apply induction for 𝑤

and the fact that the agent in 𝜋 ′ (𝑣) which gives positive utility to 𝑣 has a higher topological score

than 𝑣 . If 𝑣 performs a secondary deviation, then for all 𝑥 ∈ 𝐷𝜋 ′
𝑣 , 𝜎 (𝑥) ≤ 𝜎 (𝑣) < 𝜎 (𝑚𝜋 ′ (𝑣) ), where

the first inequality follows by induction for 𝑣 .

The third invariant follows from the update rules because the agent newly added to a set has not

been in this set due to the second invariant. The third invariant implies that there can be at most

𝑛2 primal deviations, because for the terminal partition 𝜋∗
of the dynamics,

∑
𝑣∈𝑉 |𝐷𝜋∗

𝑣 | ≤ 𝑛2.
While the topological score is the same, there can be at most 𝑛2 secondary deviations, which

follows from the same reasoning as in the proof of Proposition 5.4. Hence, together there are at

most 𝑛4 deviations. □
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In the previous proposition, it seems that there is still space for improvement of the bound on

the running time, in particular due to the interplay of the two nested potentials.

The previous statement shows guaranteed convergence of the dynamics for simple asymmetric,

acyclic FHGs. In addition, it is easy to see that there is always a sequence converging after 𝑛 steps,

starting with the singleton partition. More precisely, one can use a topological order of the agents

and allow agents to deviate in decreasing topological order. It can be observed that in this way only

coalitions of size at most two can form. The idea is that when an agent 𝑖 wants to join a coalition

of at least two agents, then there exists an agent 𝑗 in this coalition with a greater index in the

topological order and non-zero utility. Therefore, agent 𝑗 would block agent 𝑖 to join. After an agent

had the opportunity to perform a deviation, she will not have an IS deviation available anymore.

There are two interesting further directions. One can weaken either the restriction on the initial

partition or on asymmetry. If we allow for general initial partitions, we immediately obtain hardness

results for simple asymmetric FHGs which are in particular a subclass of simple FHGs.

Theorem 5.6. ∃-IS-Sequence-FHG is NP-hard and ∀-IS-Sequence-FHG is coNP-hard, even in

simple asymmetric FHGs.

On the other hand, if we consider simple FHGs instead of simple asymmetric FHGs, then we

obtain a variant of the first part of the previous theorem where we require that the dynamics starts

from the singleton partition.

Theorem 5.7. ∃-IS-Sequence-FHG is NP-hard even in simple FHGs when starting from the singleton

partition.

6 DICHOTOMOUS HEDONIC GAMES
By taking into account the identity of other agents in the preferences of agents over coalitions, it

can be more complicated to get positive results regarding individual stability (see, e.g., Theorem 5.1).

However, by restricting the evaluation of coalitions to dichotomous preferences, the existence

of an IS partition is guaranteed [28], as well as convergence of the dynamics of IS deviations,

when starting from the grand coalition [11]. Nevertheless, the convergence of the dynamics is not

guaranteed for an arbitrary initial partition and no sequence of IS deviations may ever reach an IS

partition.

Proposition 6.1. The dynamics of IS deviations may never reach an IS partition in DHGs, whatever

the chosen path of deviations, even when starting from the singleton partition.

Proof. Let us consider an instance of a DHG with three agents. Their preferences are described

in the table below.

Agent 1 2 3

Approved coalitions {1, 2} {2, 3} {1, 3}
Disapproved coalitions {1}, {1, 3}, {1, 2, 3} {2}, {1, 2}, {1, 2, 3} {3}, {2, 3}, {1, 2, 3}

There is a unique IS partition which consists of the grand coalition {1, 2, 3}. We represent below

all possible IS deviations between all the other possible partitions. An IS deviation between two

partitions is indicated by an arrow mentioning the name of the deviating agent.



36 Felix Brandt, Martin Bullinger, and Anaëlle Wilczynski

{{1}, {2}, {3}} {{1, 2}, {3}}

{{1}, {2, 3}}

{{1, 3}, {2}}

1

2

3

1

2

3

One can check that the described deviations represent all possible IS deviations. A cycle is

necessarily reached when starting from any partition different from the grand coalition. □

Moreover, it is hard to decide on the existence of a sequence of IS deviations ending in an IS

partition, even when starting from the singleton partition, as well as checking convergence.

Theorem 6.2. ∃-IS-Sequence-DHG is NP-hard even when starting from the singleton partition,

and ∀-IS-Sequence-DHG is coNP-hard.

Note that the counterexample provided in the proof of Proposition 6.1 exhibits a global cycle

in the preferences of the agents: {1, 2} ≻1 {1, 3} ≻3 {2, 3} ≻2 {1, 2}. However, by considering

dichotomous preferences with common ranking property, that is, each agent has a threshold for

acceptance in a given global order of coalitions, we obtain convergence thanks to the potential

function argument used by Caskurlu and Kizilkaya [20] for proving the existence of a core-stable

partition in hedonic games with common ranking property.

Also note that when assuming that if a coalition is approved by one agent, then it must be

approved by all the members of the coalition (so-called symmetric dichotomous preferences), we

obtain a special case of preferences with common ranking property where all the approved coalitions

are at the top of the global order. Therefore, convergence is also guaranteed under symmetric

dichotomous preferences.

7 CONCLUSION
Wehave investigated dynamics of deviations based on individual stability in hedonic games. The two

main questions we considered were whether there exists some sequence of deviations terminating

in an IS partition, and whether all sequences of deviations terminate in an IS partition, i.e., the

dynamics converges. Many of our results are negative, that is, examples of cycles in dynamics or

even non-existence of IS partitions under strong preference restrictions. In particular, we have

answered a number of open problems proposed in the literature, which improve our understanding

of the limitations of dynamics. For all hedonic games under study, it turned out that the existence

of cycles for IS deviations is sufficient to prove the hardness of recognizing instances for which

there exists a finite sequence of deviations or whether all sequences of deviations are finite, i.e., the

dynamics converges. On the other hand, we have identified natural conditions for convergence

that are based on (i) the starting partition, (ii) selection rules for the performed deviation, and (iii)

preference restrictions such as a common scale for the agents (e.g., the common ranking property),

single-peakedness, or symmetry.

An overview of our results can be found in Table 1. While our hardness results show boundaries

for both the possible and guaranteed convergence of dynamics, our positive results mostly focus

on guaranteed convergence. In particular, we have made sophisticated use of potential functions to
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Table 1. Convergence and hardness results for the dynamics of IS deviations in various classes of hedonic

games. Symbol ✓ marks guaranteed convergence under the given preference restrictions and initial partition

(if applicable) while ◦ marks non-convergence, i.e., cycling dynamics. For all of our positive results except

Theorem 3.4, we can even show that the dynamics necessarily terminate after a polynomial number of steps.

Symbol ∃ (or ∀) denotes that problem ∃-IS-Sequence-HG (or ∀-IS-Sequence-HG) is NP-hard (or coNP-hard).

Class Guaranteed convergence Hardness

AHGs

✓ natural SP (single-peaked) (Theorem 3.4)

✓ neutral (Suksompong [30])◦ strict & general SP; singletons / grand coalition (Proposition 3.2)

∃ strict (Theorem 3.3)

∀ strict (Theorem 3.3)

HDGs

✓ strict & natural SP; singletons; solitary homogeneity (Theorem 4.4)

◦ any three of: strict, natural SP, singletons,

and solitary homogeneity (Theorem 4.2)

∃ strict (Theorem 4.5)

∀ strict (Theorem 4.5)

FHGs

✓ simple & symmetric; singletons (Proposition 5.4)

✓ acyclic digraph (Theorem 5.5)◦ symmetric (Theorem 5.1)

∃ symmetric (Theorem 5.3)

∃ simple; singletons (Theorem 5.7)

∃ simple asym. (Theorem 5.6)

∀ symmetric (Theorem 5.3)

∀ simple asym. (Theorem 5.6)

DHGs

✓ grand coalition (Boehmer and Elkind [11])

✓ common ranking property or symmetric (Caskurlu and Kizilkaya [20])◦ singletons (Proposition 6.1)

∃ singletons (Theorem 6.2)

∀ general (Theorem 6.2)

show the polynomial running time of the dynamics for anonymous hedonic games and hedonic

diversity games with restrictions at the boundary of convergence. Our convergence result for HDGs

features a highly non-trivial reduction to AHGs and therefore reveals a deep relationship of these

two classes under natural single-peakedness. This is a rare case in the literature because most

reductions use source problems unrelated to hedonic games.

An important message of our results is that the consideration of dynamics can offer important

novel insights regarding the reachability of stable states, even if the static picture drawn by asking

for the mere existence of stability seems clear. For instance, FHGs with non-negative utilities and

HDGs always admit stable states, while it is hard to decide if we can reach a stable state from some

initial partition, even under severe restrictions. On the other hand, dynamics always converge

in naturally single-peaked AHGs, which is in accordance with the existence of stable partitions

observed by Bogomolnaia and Jackson [12]. In other words, the existence and the distributed

attainability of stable states do not necessarily coincide.

While our results cover a broad range of hedonic games considered in the literature, there are

still promising directions for further research. First, even though our hardness results hold under

strong restrictions, the complexity of these questions remains open for some interesting preference

restrictions, some of which do not guarantee convergence. Following our work, the most intriguing

case for guaranteed convergence concerns simple symmetric FHGs with arbitrary initial partitions.

Since our positive results mainly concern guaranteed convergence, there are also interesting

open problems concerning the existence of a path to stability. In general, there is hope that less of

the restrictions necessary for guaranteed convergence suffice for a path to stability. This especially

concerns HDGs. Since solitary homogeneity is just a selection rule among possible deviations,

Theorem 4.4 implies that there always exists a path to stability from the singleton partition in

HDGs where agents have strict and single-peaked preferences. On the other hand, Proposition 4.3,

our result about conditions under which cycling can necessarily occur, leaves space for possibilities.
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Two intriguing questions are whether there always exists a path to stability in HDGs where agents’

preferences are strict and single-peaked, or when the dynamics start with the singleton partition.

Possible convergence of the dynamics is closely related to the investigation of specific selection

rules for the performed deviations. With the exception of Theorem 4.4, we do not have to impose

any restrictions on the performed deviations to obtain our results for guaranteed convergence.

However, apart from possible convergence, selecting appropriate deviations may also lead to quick

termination of the dynamics, even in classes of hedonic games that allow for cyclic IS deviations.

For instance, for simple symmetric FHGs, there is the possibility of convergence such that each

agent deviates at most once, but the selection of the deviating agents in this approach requires to

solve a maximum clique problem (cf. the discussion after Proposition 5.4).

An open problem concerning the convergence speed of dynamics is to bound the number of steps

until convergence in AHGs under weak and single-peaked preferences. Determining the shortest

sequence of deviations until a stable outcome is reached will likely lead to further intractabilities.

In this vein, Boehmer et al. [10] provide first results by proving hardness of finding the shortest

path to stability for several dynamics in additively separable hedonic games. Similarly, it would be

interesting to perform a more detailed analysis of lower bounds for the number of steps that the

dynamics may take, similar to the lower bound in Proposition 5.4.

In principal, one can define dynamics based on other stability concepts such as Nash stability

or contractual individual stability. For the latter, cycling is not possible, and therefore an analysis

within the complexity class PLS as local search algorithms is a natural approach that measures

the complexity of convergence. Such an analysis is also appropriate for dynamics guaranteed

to converge based on a potential function argument as it was already done for Nash stability in

additively separable hedonic games [25].

Finally, the end states reached in the dynamics we consider do not provide information beyond

individual stability. One could therefore additionally aim to reach efficient outcomes, potentially

measured amongst stable outcomes. The notion of Pareto optimality seems natural here because it

gives also rise to a natural improvement dynamics. Indeed, Bogomolnaia and Jackson [12] consider

this problem for naturally single-peaked AHGs where their algorithm constructs an IS partition

that is weakly Pareto-optimal.
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APPENDIX: OMITTED PROOFS
In the appendix, we provide the proofs for the hardness reductions, which were omitted in the

main part of the paper.
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A ANONYMOUS HEDONIC GAMES
The reductions in this and the following section are from (3,B2)-SAT, a variant of the Satisfia-

bility problem known to be NP-complete [7]. In an instance of (3,B2)-SAT, we are given a CNF

propositional formula 𝜑 where every clause 𝐶 𝑗 , for 1 ≤ 𝑗 ≤ 𝑚, contains exactly three literals and

every variable 𝑥𝑖 , for 1 ≤ 𝑖 ≤ 𝑝 , appears exactly twice as a positive literal and twice as a negative

literal.

Theorem 3.3. ∃-IS-Sequence-AHG is NP-hard and ∀-IS-Sequence-AHG is coNP-hard, even for

strict preferences.

We prove the two hardness results by providing separate reductions for each problem in the next

two lemmas.

Lemma A.1. ∃-IS-Sequence-AHG is NP-hard even for strict preferences.

Proof. Let us perform a reduction from (3,B2)-SAT. Given an instance of (3,B2)-SAT, we con-

struct an AHG as follows.

For each ℓ th occurrence (ℓ ∈ {1, 2}) of a positive literal 𝑥𝑖 (or negative literal 𝑥𝑖 ), we create a
literal-agent𝑦ℓ𝑖 (or𝑦

ℓ
𝑖 ). All literal-agents are singletons in the initial partition 𝜋0. Let us consider four

integers 𝛼 , 𝛽+, 𝛽− and 𝛾 such that (1) 𝑞 ·𝛼 +𝑥 ≠ 𝑟 · 𝛽+ +𝑦 ≠ 𝑠 · 𝛽− +𝑧 ≠ 𝑡𝛾 +𝑤 for every 𝑟, 𝑠, 𝑡 ∈ [𝑝],
𝑞 ∈ [𝑚], 𝑥,𝑦, 𝑧 ∈ {0, 1, 2} and 𝑤 ∈ [7] and, without loss of generality, 𝛼 > 𝛽+ > 𝛽− > 𝛾 > 1. For

instance, we can set the following values: 𝛼 = 𝑚5
, 𝛽+ = 𝑚4

, 𝛽− = 𝑚3
and 𝛾 = 𝑚2

(condition (1)
is satisfied since in a (3,B2)-SAT instance, it holds that𝑚 ≥ 4 and 𝑝 = 3/4𝑚). For each clause 𝐶 𝑗 ,

we create 𝑗𝛼 dummy clause-agents who are all grouped within the same coalition 𝐾 𝑗 in the initial

partition 𝜋0. For each literal 𝑥𝑖 (or 𝑥𝑖 ), we create one variable-agent 𝑧𝑖 (or 𝑧𝑖 ) and 𝑖𝛽
+ − 1 (or 𝑖𝛽− − 1)

dummy variable-agents who are all grouped within the same coalition 𝑍𝑖 (or 𝑍 𝑖 ) in the initial

partition 𝜋0. Finally, for each variable 𝑥𝑖 , we create 𝑖𝛾 dummy agents who are all grouped within

the same coalition𝐺1

𝑖 in the initial partition 𝜋0, 𝑖𝛾 +3 dummy agents who are all grouped within the

same coalition 𝐺2

𝑖 in the initial partition 𝜋0 and 𝑖𝛾 + 5 dummy agents who are all grouped within

the same coalition 𝐺3

𝑖 in the initial partition 𝜋0. These dummy agents are used as a gadget for a

cycle. Although we have created many agents, the construction remains polynomial by considering

reasonable values of 𝛼 , 𝛽+, 𝛽− and 𝛾 , as previously described.

The preferences of the agents over sizes of coalitions are given in Table 2. By the design of

the preferences of the members of the initial coalitions in 𝜋0 (i.e., the members of the initial non-

singleton coalitions accept at most two additional agents in their coalition and otherwise are happy

with their coalition) and by condition (1), all the sizes of non-singleton coalitions explicitly given

in the preferences can be reached only in one way, which is the one described in the preferences,

i.e., by the addition of at most two agents in a specific initial non-singleton coalition. It follows that

the preferences of the agents can be expressed in terms of preferences for joining, or that one or

two agents join, a specific non-singleton coalition from the initial partition 𝜋0.

We claim that there exists a sequence of IS deviations starting from 𝜋0 which leads to an IS

partition if and only if formula 𝜑 is satisfiable.

Suppose first that there exists a truth assignment of the variables 𝜙 that satisfies all the clauses.

Let us denote by ℓ𝑗 a chosen literal-agent associated with an occurrence of a literal true in 𝜙 which

belongs to clause 𝐶 𝑗 . Since all the clauses of 𝜑 are satisfied by 𝜙 , there exists such a literal-agent ℓ𝑗
for each clause𝐶 𝑗 . For every clause𝐶 𝑗 , let literal-agent ℓ𝑗 join coalition𝐾 𝑗 . These IS deviations make

all the dummy clause-agents and the chosen literal-agents the most happy as possible, therefore

none of them will deviate afterwards or let other agents enter their coalition. Then, let all remaining

literal-agents 𝑦ℓ𝑖 (or 𝑦
ℓ
𝑖 ) deviate by joining coalition 𝑍𝑖 (or 𝑍 𝑖 ). Since 𝜙 is a truth assignment of the

variables, for each variable 𝑥𝑖 , the two literal-agents corresponding to the literal of variable 𝑥𝑖 that
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Table 2. Preferences of the agents in the reduced instance of Lemma A.1, for every 1 ≤ 𝑖 ≤ 𝑝 , 1 ≤ 𝑗 ≤ 𝑚,

ℓ ∈ {1, 2}. Notation 𝑐𝑙 (𝑥 ℓ
𝑖
) (or 𝑐𝑙 (𝑥 ℓ𝑖 )) stands for the index of the clause to which the ℓth occurrence of literal

𝑥𝑖 (or 𝑥𝑖 ) belongs, the framed value is the size of the initial coalition in partition 𝜋0, and [. . . ] denotes an
arbitrary order over the rest of the coalition sizes.

𝑧𝑖 : |𝑍𝑖 | + 2 ≻ |𝐺1

𝑖 | + 2 ≻ |𝐺2

𝑖 | + 1 ≻ |𝐺3

𝑖 | + 2 ≻ |𝐺3

𝑖 | + 1 ≻ |𝐺1

𝑖 | + 1 ≻ |𝑍𝑖 | + 1 ≻ |𝑍𝑖 | ≻ [. . . ]

𝑧𝑖 : |𝑍 𝑖 | + 2 ≻ |𝐺3

𝑖 | + 2 ≻ |𝐺2

𝑖 | + 1 ≻ |𝐺1

𝑖 | + 2 ≻ |𝐺1

𝑖 | + 1 ≻ |𝐺3

𝑖 | + 1 ≻ |𝑍 𝑖 | + 1 ≻ |𝑍 𝑖 | ≻ [. . . ]
𝑦ℓ𝑖 : |𝐾𝑐𝑙 (𝑥 ℓ

𝑖
) | + 1 ≻ |𝑍𝑖 | + 2 ≻ |𝑍𝑖 | + 1 ≻ 1 ≻ [. . . ]

𝑦ℓ𝑖 : |𝐾𝑐𝑙 (𝑥 ℓ𝑖 ) | + 1 ≻ |𝑍 𝑖 | + 2 ≻ |𝑍 𝑖 | + 1 ≻ 1 ≻ [. . . ]

𝐾 𝑗 : |𝐾 𝑗 | + 1 ≻ |𝐾 𝑗 | ≻ [. . . ]
𝑍𝑖 \ {𝑧𝑖 } : |𝑍𝑖 | + 2 ≻ |𝑍𝑖 | + 1 ≻ |𝑍𝑖 | ≻ |𝑍𝑖 | − 1 ≻ [. . . ]

𝑍 𝑖 \ {𝑧𝑖 } : |𝑍 𝑖 | + 2 ≻ |𝑍 𝑖 | + 1 ≻ |𝑍 𝑖 | ≻ |𝑍 𝑖 | − 1 ≻ [. . . ]
𝐺1

𝑖 : |𝐺1

𝑖 | + 2 ≻ |𝐺1

𝑖 | + 1 ≻ |𝐺1

𝑖 | ≻ [. . . ]

𝐺2

𝑖 : |𝐺2

𝑖 | + 1 ≻ |𝐺2

𝑖 | ≻ [. . . ]

𝐺3

𝑖 : |𝐺3

𝑖 | + 2 ≻ |𝐺3

𝑖 | + 1 ≻ |𝐺3

𝑖 | ≻ [. . . ]

is false in 𝜙 both deviate in this second round of deviations. Therefore, there exists a coalition 𝑍𝑖

or 𝑍 𝑖 that is joined by two literal-agents and thus whose members all reach their most preferred

size |𝑍𝑖 | + 2 or |𝑍 𝑖 | + 2. It follows that no member of such a newly formed coalition would move

afterwards or let other agents enter the coalition: all members of 𝑍𝑖 or 𝑍 𝑖 get their most preferred

size while the two joining literal-agents get their secondmost preferred size and their most preferred

size is not accessible anymore (their associated clause coalition has already been joined by another

literal-agent). Consequently, for each variable 𝑥𝑖 , at most one coalition between 𝑍𝑖 and 𝑍 𝑖 may

not be joined by two literal-agents and, if there is one, it must be the coalition that corresponds

to the literal of variable 𝑥𝑖 that is true in 𝜙 . In such a case, we let the associated variable-agent 𝑧𝑖
or 𝑧𝑖 deviate for joining coalition 𝐺

2

𝑖 , and if one literal-agent previously joined the corresponding

variable-coalition, she deviates to be alone. Such a literal-agent then gets her fourth most preferred

size while her most preferred ones are not accessible anymore (because the variable-agent has left

the coalition and her associated clause coalition has already been joined by another literal-agent).

Moreover, such a variable-agent 𝑧𝑖 or 𝑧𝑖 , by joining coalition 𝐺2

𝑖 , gets her third most preferred size

while her most preferred ones are not accessible (no two additional agents want to enter the initial

coalition 𝑍𝑖 or 𝑍 𝑖 and only one additional agent, herself, is present in the gadget associated with

variable 𝑥𝑖 ). Also, note that, by the design of the preferences, no dummy agent in the gadget has an

incentive to move to another coalition. All in all, no agent can then move in an IS deviation, and

thus the reached partition is IS.

Suppose now that there exists no truth assignment of the variables that satisfies all the clauses.

That means that it is not possible that each clause coalition is joined by a literal-agent associated

with this clause while two other literal-agents 𝑦1𝑖 and 𝑦
2

𝑖 join coalition 𝑍𝑖 (or 𝑦
1

𝑖 and 𝑦
2

𝑖 join coalition

𝑍 𝑖 ), for each variable 𝑥𝑖 . Moreover, since, by design of the preferences, each literal-agent prefers

to join clause coalitions rather than variable coalitions, it holds that in a maximal sequence of

IS deviations, all dummy clause-agents in each coalition 𝐾 𝑗 will be completely satisfied with a
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{𝐺1

𝑖 ,𝐺
2

𝑖 ∪ {𝑧𝑖 },𝐺3

𝑖 ∪ {𝑧𝑖 }} {𝐺1

𝑖 ,𝐺
2

𝑖 ,𝐺
3

𝑖 ∪ {𝑧𝑖 , 𝑧𝑖 }} {𝐺1

𝑖 ,𝐺
2

𝑖 ∪ {𝑧𝑖 },𝐺3

𝑖 ∪ {𝑧𝑖 }}

{𝐺1

𝑖 ∪ {𝑧𝑖 },𝐺2

𝑖 ∪ {𝑧𝑖 },𝐺3

𝑖 }{𝐺1
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𝑖 ,𝐺
3

𝑖 }{𝐺1

𝑖 ∪ {𝑧𝑖 },𝐺2

𝑖 ∪ {𝑧𝑖 },𝐺3

𝑖 }

{𝐺1

𝑖 ∪ {𝑧𝑖 },𝐺2

𝑖 ,𝐺
3

𝑖 ∪ {𝑧𝑖 }}

{𝐺1

𝑖 ∪ {𝑧𝑖 },𝐺2

𝑖 ,𝐺
3

𝑖 ∪ {𝑧𝑖 }}

𝑧𝑖 𝑧𝑖
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𝑧𝑖𝑧𝑖

Fig. 7. Necessary cycle of IS deviations within the gadget associated with variable 𝑥𝑖 in the reduced instance

of Lemma A.1.

coalition size equal to |𝐾 𝑗 | + 1 (if a clause coalition is not joined by a literal-agent, then a literal-

agent associated with this clause has an incentive to join this coalition, no matter her current

coalition). It means that after a maximal sequence of IS deviations, each clause coalition is joined

by a literal-agent associated with this clause. Therefore, by the previous argument derived from

the assumption that there exists no truth assignment of the variables that satisfies all the clauses,

there must exist a variable 𝑥𝑖 such that at most one literal-agent joins coalition 𝑍𝑖 and at most one

literal-agent joins coalition 𝑍 𝑖 . It follows that both variable-agents 𝑧𝑖 and 𝑧𝑖 have an incentive to

deviate to the gadget associated with variable 𝑥𝑖 (their respective most preferred coalition sizes

|𝑍𝑖 | + 2 and |𝑍 𝑖 | + 2 can never be reached, while they prefer to join some coalitions in the gadget

than staying in their current coalition of size |𝑍𝑖 | or |𝑍𝑖 | + 1 for 𝑧𝑖 , and |𝑍 𝑖 | or |𝑍 𝑖 | + 1 for 𝑧𝑖 ). Within

the gadget associated with variable 𝑥𝑖 , variable-agents 𝑧𝑖 and 𝑧𝑖 are the only agents who can deviate

and we necessarily reach the cycle illustrated in Figure 7.

It follows that no sequence of IS deviations can reach an IS partition. □

Lemma A.2. ∀-IS-Sequence-AHG is coNP-hard even for strict preferences.

Proof. For this purpose, we prove the NP-hardness of the complement problem, which asks

whether there exists a cycle of IS deviations. Let us perform a reduction from (3,B2)-SAT. Given an

instance of (3,B2)-SAT, we construct an AHG as follows.

For each ℓ th occurrence (ℓ ∈ {1, 2}) of a positive literal 𝑥𝑖 (or negative literal 𝑥𝑖 ), we create a
literal-agent 𝑦ℓ𝑖 (or 𝑦

ℓ
𝑖 ). We create another agent 𝑡 . All these agents are singletons in the initial

partition 𝜋0. Let us consider five integers 𝛼 , 𝛽
+
1
, 𝛽−

1
, 𝛽+

2
and 𝛽−

2
such that (1) 𝑞 · 𝛼 + 𝑥 ≠ 𝑟 · 𝛽+

1
+ 𝑦 ≠

𝑠 · 𝛽−
1
+ 𝑧 ≠ 𝑡 · 𝛽+

2
+ 𝑣 ≠ 𝑢 · 𝛽−

2
+𝑤 for every 𝑟, 𝑠, 𝑡, 𝑢 ∈ [𝑝], 𝑞 ∈ [𝑚] and 𝑥,𝑦, 𝑧, 𝑣,𝑤 ∈ {0, 1, 2} and,

without loss of generality, 𝛼 > 𝛽+
1
> 𝛽−

1
> 𝛽+

2
> 𝛽−

2
> 1. For instance, we can set the following

values: 𝛼 =𝑚5
, 𝛽+

1
=𝑚4

, 𝛽−
1
=𝑚3

, 𝛽+
2
=𝑚2

, 𝛽−
2
=𝑚 (condition (1) is satisfied since in a (3,B2)-SAT

instance, it holds that𝑚 ≥ 4 and 𝑝 = 3/4𝑚). For each clause 𝐶 𝑗 , we then create 𝑗 · 𝛼 dummy clause

agents grouped within the same coalition 𝐾 𝑗 in the initial partition 𝜋0. We also create (𝑚 + 1) · 𝛼
dummy agents grouped within the same coalition 𝐾𝑚+1 in initial partition 𝜋0. Finally, for each

literal 𝑥𝑖 (or 𝑥𝑖 ) and each ℓ ∈ {1, 2}, we create 𝑖 · 𝛽+ℓ (or 𝑖 · 𝛽−ℓ ) dummy variable agents grouped



Reaching Individually Stable Coalition Structures 43

Table 3. Preferences of the agents in the reduced instance of Lemma A.2, for every 1 ≤ 𝑖 ≤ 𝑝 , 1 ≤ 𝑖′ < 𝑝 ,

1 ≤ 𝑗 ≤ 𝑚 + 1, ℓ ∈ {1, 2}. Notation 𝑐𝑙 (𝑥 ℓ
𝑖
) (or 𝑐𝑙 (𝑥 ℓ𝑖 )) stands for the index of the clause to which the ℓth

occurrence of literal 𝑥𝑖 (or 𝑥𝑖 ) belongs, the framed value is the size of the initial coalition in partition 𝜋0, and

[. . . ] denotes an arbitrary order over the rest of the coalition sizes.

𝑦1𝑖 : |𝐾𝑐𝑙 (𝑥1
𝑖
) | + 2 ≻ |𝐾𝑐𝑙 (𝑥1

𝑖
)+1 | + 2 ≻ |𝐾𝑐𝑙 (𝑥1

𝑖
)+1 | + 1 ≻ |𝐾𝑐𝑙 (𝑥1

𝑖
) | + 1 ≻ |𝑌 1

𝑖 | + 2 ≻ |𝑌 2

𝑖 | + 2 ≻ |𝑌 2

𝑖 | + 1 ≻ |𝑌 1

𝑖 | + 1 ≻ 1 ≻ [. . . ]
𝑦2
𝑖′ : |𝐾𝑐𝑙 (𝑥2

𝑖′ )
| + 2 ≻ |𝐾𝑐𝑙 (𝑥2

𝑖′ )+1
| + 2 ≻ |𝐾𝑐𝑙 (𝑥2

𝑖′ )+1
| + 1 ≻ |𝐾𝑐𝑙 (𝑥2

𝑖′ )
| + 1 ≻ |𝑌 2

𝑖′ | + 2 ≻ |𝑌 1

𝑖′+1 | + 2 ≻ |𝑌 1

𝑖′+1 | + 1 ≻ |𝑌 1

𝑖′+1 | + 2 ≻
|𝑌 1

𝑖′+1 | + 1 ≻ |𝑌 2

𝑖′ | + 1 ≻ 1 ≻ [. . . ]
𝑦2𝑝 : |𝐾𝑐𝑙 (𝑥2𝑝 ) | + 2 ≻ |𝐾𝑐𝑙 (𝑥2𝑝 )+1 | + 2 ≻ |𝐾𝑐𝑙 (𝑥2𝑝 )+1 | + 1 ≻ |𝐾𝑐𝑙 (𝑥2𝑝 ) | + 1 ≻ |𝑌 2

𝑝 | + 2 ≻ |𝐾1 | + 2 ≻ |𝐾1 | + 1 ≻ |𝑌 2

𝑝 | + 1 ≻ 1 ≻ [. . . ]
𝑦1𝑖 : |𝐾𝑐𝑙 (𝑥1𝑖 ) | + 2 ≻ |𝐾𝑐𝑙 (𝑥1𝑖 )+1 | + 2 ≻ |𝐾𝑐𝑙 (𝑥1𝑖 )+1 | + 1 ≻ |𝐾𝑐𝑙 (𝑥1𝑖 ) | + 1 ≻ |𝑌 1

𝑖 | + 2 ≻ |𝑌 2

𝑖 | + 2 ≻ |𝑌 2

𝑖 | + 1 ≻ |𝑌 1

𝑖 | + 1 ≻ 1 ≻ [. . . ]
𝑦2𝑖′ : |𝐾𝑐𝑙 (𝑥2

𝑖′ )
| + 2 ≻ |𝐾𝑐𝑙 (𝑥2

𝑖′ )+1
| + 2 ≻ |𝐾𝑐𝑙 (𝑥2

𝑖′ )+1
| + 1 ≻ |𝐾𝑐𝑙 (𝑥2

𝑖′ )
| + 1 ≻ |𝑌 2

𝑖′ | + 2 ≻ |𝑌 1

𝑖′+1 | + 2 ≻ |𝑌 1

𝑖′+1 | + 1 ≻ |𝑌 1

𝑖′+1 | + 2 ≻
|𝑌 1

𝑖′+1 | + 1 ≻ |𝑌 2

𝑖′ | + 1 ≻ 1 ≻ [. . . ]
𝑦2𝑝 : |𝐾𝑐𝑙 (𝑥2𝑝 ) | + 2 ≻ |𝐾𝑐𝑙 (𝑥2𝑝 )+1 | + 2 ≻ |𝐾𝑐𝑙 (𝑥2𝑝 )+1 | + 1 ≻ |𝐾𝑐𝑙 (𝑥2𝑝 ) | + 1 ≻ |𝑌 2

𝑝 | + 2 ≻ |𝐾1 | + 2 ≻ |𝐾1 | + 1 ≻ |𝑌 2

𝑝 | + 1 ≻ 1 ≻ [. . . ]
𝑡 : |𝐾𝑚+1 | + 2 ≻ |𝑌 1

1
| + 2 ≻ |𝑌 1

1
| + 1 ≻ |𝑌 1

1
| + 2 ≻ |𝑌 1

1
| + 1 ≻ |𝐾𝑚+1 | + 1 ≻ 1 ≻ [. . . ]

𝐾 𝑗 : |𝐾 𝑗 | + 2 ≻ |𝐾 𝑗 | + 1 ≻ |𝐾 𝑗 | ≻ 1 ≻ [. . . ]

𝑌 ℓ𝑖 : |𝑌 ℓ𝑖 | + 2 ≻ |𝑌 ℓ𝑖 | + 1 ≻ |𝑌 ℓ𝑖 | ≻ 1 ≻ [. . . ]

𝑌
ℓ

𝑖 : |𝑌 ℓ𝑖 | + 2 ≻ |𝑌 ℓ𝑖 | + 1 ≻ |𝑌 ℓ𝑖 | ≻ 1 ≻ [. . . ]

within the same coalition 𝑌 ℓ𝑖 (or 𝑌
ℓ

𝑖 ) in the initial partition 𝜋0. Although we have created many

agents, the construction remains polynomial by considering reasonable values of 𝛼 , 𝛽+
1
, 𝛽−

1
, 𝛽+

2
and

𝛽−
2
, as previously described.

The preferences of the agents over sizes of coalitions are given in Table 3. By the design of

the preferences of the members of the initial coalitions in 𝜋0 (i.e., the members of the initial non-

singleton coalitions accept at most two additional agents in their coalition and otherwise are happy

with their coalition) and by condition (1), all the sizes of non-singleton coalitions explicitly given

in the preferences can be reached only in one way, which is the one described in the preferences,

i.e., by the addition of at most two agents in a specific initial non-singleton coalition. It follows that

the preferences of the agents can be expressed in terms of preferences for joining, or that one or

two agents join, a specific non-singleton coalition from the initial partition 𝜋0.

We claim that there exists a cycle of IS deviations if and only if formula 𝜑 is satisfiable.
12

The global idea of the proof is that a cycle of IS deviations necessarily involves, as deviating

agents, agent 𝑡 and (𝑖) one literal-agent for each clause (the associated literal occurrence of the

literal-agent belongs to the clause), as well as (𝑖𝑖) the two literal-agents associated with a same literal

for each variable. All these agents must be distinct, implying the existence of a truth assignment of

the variables that satisfies all the clauses. The cycle of IS deviations is such that the literal-agents

corresponding to case (𝑖) alternate between joining the coalition of dummy clause agents associated

with their clause and the one associated with the next clause (w.r.t. the indices of clauses), and the

literal-agents corresponding to case (𝑖𝑖) alternate between joining the coalition of dummy variable

agents associated with their literal occurrence and the one associated with the other occurrence

of the same literal, if the literal-agent corresponds to the first occurrence of the literal, or the

first occurrence of the chosen literal of the next variable (w.r.t. the indices of variables), if the

literal-agent corresponds to the second occurrence of the literal. The example of such a cycle can

be found in Figure 8.

12
Note that the singleton partition is nevertheless always IS.
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Fig. 8. Example for the cycle of IS deviations described in the reduced instance of Lemma A.2. The illustration

is for a yes-instance of (3,B2)-SAT with four clauses and three variables where 𝜑 ≡ (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨
𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3). We consider the truth assignment of the variables 𝜙 where literals 𝑥1,

𝑥2 and 𝑥3 are true. Assignment 𝜙 satisfies formula 𝜑 with, e.g., literal 𝑥1 which makes clauses 𝐶1 and 𝐶3 true,

literal 𝑥2 which makes clause𝐶2 true, and literal 𝑥3 which makes clause𝐶4 true. By using the notations of the

proof, we thus have ℓ1 = 𝑦
1

1
, ℓ2 = 𝑦

2

2
, ℓ3 = 𝑦

2

1
, ℓ4 = 𝑦

2

3
and, for every 𝑟 ∈ {1, 2}, 𝑍𝑟

1
= 𝑌

𝑟
1
, 𝑍𝑟

2
= 𝑌

𝑟
2
, and 𝑍𝑟

3
= 𝑌 𝑟

3
.

Suppose first that formula 𝜑 is satisfiable by a truth assignment of the variables denoted by 𝜙 .

Let us denote by ℓ𝑗 a chosen literal-agent associated with an occurrence of a literal true in 𝜙 which

belongs to clause 𝐶 𝑗 . Since all the clauses of 𝜑 are satisfied by 𝜙 , there exists such a literal-agent ℓ𝑗
for each clause 𝐶 𝑗 . Further, let us denote by 𝑧

1

𝑖 and 𝑧
2

𝑖 the literal-agents associated with the two

occurrences of the literal of variable 𝑥𝑖 which is false in 𝜙 . In the same vein, let us denote by 𝑍 1

𝑖

and 𝑍 2

𝑖 the coalitions of dummy variable agents associated with 𝑧1𝑖 and 𝑧
2

𝑖 , respectively. Since 𝜙 is

a truth assignment of the variables, 𝑧1𝑖 , 𝑧
2

𝑖 , 𝑍
1

𝑖 and 𝑍
2

𝑖 all correspond to the same literal (either 𝑥𝑖
or 𝑥𝑖 ) and it holds that

⋃
1≤ 𝑗≤𝑚 ℓ𝑗 ∩

⋃
1≤𝑖≤𝑝 {𝑧1𝑖 , 𝑧2𝑖 } = ∅. We will construct a cycle of IS deviations

involving, as deviating agents, the literal-agents ℓ𝑗 , for every 1 ≤ 𝑗 ≤ 𝑚, the literal-agents 𝑧1𝑖 and

𝑧2𝑖 , for every 1 ≤ 𝑖 ≤ 𝑝 , and agent 𝑡 . Since𝑚 is even in a (3,B2)-SAT (recall that𝑚 = 4/3𝑝), there is
an odd number of deviating agents in total. The main steps of the cycle are illustrated in Figure 8.

First of all, let agent 𝑧2𝑝 and then agent ℓ1 join coalition 𝐾1. For each 1 < 𝑖 ≤ 𝑝 , let agent 𝑧2𝑖−1 and

then agent 𝑧1𝑖 join coalition 𝑍 1

𝑖 . Let agent 𝑡 and then agent 𝑧1
1
join coalition 𝑍 1

1
. For each even 𝑗 such

that 3 < 𝑗 ≤ 𝑚, let agent ℓ𝑗−1 and then agent ℓ𝑗 join coalition𝐾 𝑗 . Finally, let agent ℓ2 join coalition𝐾3.
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The reached partition is 𝜋 := {𝐾1 ∪ {ℓ1, 𝑧2𝑝 }, 𝐾2, 𝐾3 ∪ {ℓ2}, 𝐾4 ∪ {ℓ3, ℓ4}, 𝐾5, 𝐾6 ∪ {ℓ5, ℓ6}, 𝐾7, . . . , 𝐾𝑚 ∪
{ℓ𝑚−1, ℓ𝑚}, 𝐾𝑚+1, 𝑍 1

1
∪{𝑡, 𝑧1

1
}, 𝑍 2

1
, 𝑍 1

2
∪{𝑧2

1
, 𝑧1

2
}, 𝑍 2

2
, . . . , 𝑍 1

𝑝 ∪{𝑧2𝑝−1, 𝑧1𝑝 }, 𝑍 2

𝑝 , 𝑍
1

1
, 𝑍

2

1
, . . . , 𝑍

1

𝑝 , 𝑍
2

𝑝 }, where
coalition 𝑍

ℓ

𝑖 refers to 𝑌
ℓ

𝑖 if 𝑍
ℓ
𝑖 = 𝑌

ℓ
𝑖 and to 𝑌 ℓ𝑖 if 𝑍 ℓ𝑖 = 𝑌

ℓ

𝑖 . Partition 𝜋 is the first step of the cycle (see

Figure 8).

From partition 𝜋 , let literal-agent ℓ3 deviate from current coalition 𝐾4 ∪ {ℓ3, ℓ4} to join coalition

𝐾3 ∪ {ℓ2}. This deviation makes literal-agent ℓ4 worse off, who then deviates to join coalition

𝐾5. Then, the same deviations occur for literal-agents ℓ5 and ℓ6, and so on. More generally, for

every odd 𝑗 such that 3 ≤ 𝑗 ≤ 𝑚 by increasing order of indices, literal-agent ℓ𝑗 leaves coalition

𝐾 𝑗+1 ∪ {ℓ𝑗 , ℓ𝑗+1} to join coalition 𝐾 𝑗 ∪ {ℓ𝑗−1} and then literal-agent ℓ𝑗+1, who is worse off by this

deviation, deviates to join coalition 𝐾 𝑗+2. After that, agent 𝑡 deviates from coalition 𝑍 1

1
∪ {𝑡, 𝑧1

1
} to

join coalition 𝐾𝑚+1 ∪ {ℓ𝑚}, which makes literal-agent 𝑧1
1
worse off. Then, for each 1 ≤ 𝑖 ≤ 𝑝 by

increasing order of indices, let literal-agent 𝑧1𝑖 deviate from coalition 𝑍 1

𝑖 ∪ {𝑧1𝑖 } to join coalition

𝑍 2

𝑖 and then, if 𝑖 < 𝑝 , literal-agent 𝑧2𝑖 deviates from coalition 𝑍 1

𝑖+1 ∪ {𝑧2𝑖 , 𝑧1𝑖+1} to join coalition

𝑍 2

𝑖 ∪ {𝑧1𝑖 }, which makes literal-agent 𝑧1𝑖+1 worse off. Afterwards, literal-agent 𝑧
2

𝑝 deviates from

coalition 𝐾1 ∪ {𝑧2𝑖 , ℓ1} to join coalition 𝑍 2

𝑝 ∪ {𝑧1𝑝 }, which makes literal-agent ℓ1 worse off. We thus

reach partition 𝜋1 := {𝐾1 ∪ {ℓ1}, 𝐾2, 𝐾3 ∪ {ℓ2, ℓ3}, 𝐾4, 𝐾5 ∪ {ℓ4, ℓ5}, 𝐾6, 𝐾7 ∪ {ℓ6, ℓ7}, . . . , 𝐾𝑚−1 ∪ {ℓ𝑚−2,

ℓ𝑚−1}, 𝐾𝑚, 𝐾𝑚+1∪{ℓ𝑚, 𝑡}, 𝑍 1

1
, 𝑍 2

1
∪{𝑧1

1
, 𝑧2

1
}, 𝑍 1

2
, 𝑍 2

2
∪{𝑧1

2
, 𝑧2

2
}, . . . , 𝑍 1

𝑝 , 𝑍
2

𝑝 ∪{𝑧1𝑝 , 𝑧2𝑝 }, 𝑍
1

1
, 𝑍

2

1
, . . . , 𝑍

1

𝑝 , 𝑍
2

𝑝 }
(see Figure 8).

Then, from partition 𝜋1, for every odd 𝑗 such that 1 ≤ 𝑗 < 𝑚 by increasing order of indices, let

literal-agent ℓ𝑗 deviate from coalition 𝐾 𝑗 ∪ {ℓ𝑗 } to join coalition 𝐾 𝑗+1 and then, if 𝑗 < 𝑚 − 1, literal-

agent ℓ𝑗+1 deviates from 𝐾 𝑗+2 ∪ {ℓ𝑗+1, ℓ𝑗+2} to join coalition 𝐾 𝑗+1 ∪ {ℓ𝑗 }, which makes literal-agent

ℓ𝑗+2 worse off. Afterwards, literal-agent ℓ𝑚 deviates from𝐾𝑚+1∪{ℓ𝑚, 𝑡} to join coalition𝐾𝑚∪{ℓ𝑚−1},
which makes literal-agent 𝑡 worse off. Let agent 𝑡 then deviate from coalition 𝐾𝑚+1 ∪ {𝑡} to join

coalition 𝑍 1

1
and literal-agent 𝑧1

1
deviate from coalition 𝑍 2

1
∪ {𝑧1

1
, 𝑧2

1
} to join coalition 𝑍 1

1
∪ {𝑡},

which makes literal-agent 𝑧2
1
worse off. Then, for each 1 ≤ 𝑖 < 𝑝 by increasing order of indices, let

literal-agent 𝑧2𝑖 deviate from coalition 𝑍 2

𝑖 ∪ {𝑧2𝑖 } to join coalition 𝑍 1

𝑖+1, and literal-agent 𝑧1𝑖+1 deviate
from coalition 𝑍 2

𝑖+1 ∪ {𝑧1𝑖+1, 𝑧2𝑖+1} to join coalition 𝑍 1

𝑖+1 ∪ {𝑧2𝑖 }, which makes literal-agent 𝑧2𝑖+1 worse
off. And then, let literal-agent 𝑧2𝑝 deviate from coalition 𝑍 2

𝑝 ∪ {𝑧2𝑝 } to join coalition 𝐾1, leading to

partition 𝜋2 (see Figure 8). Afterwards, literal-agent ℓ1 deviates from coalition 𝐾2 ∪ {ℓ1, ℓ2} to join

coalition 𝐾1 ∪ {𝑧2𝑝 }, which makes literal-agent ℓ2 worse off. Finally, let literal-agent ℓ2 deviate from

coalition 𝐾2 ∪ {ℓ2} to join coalition 𝐾3, and we have finally reached partition 𝜋 , leading to a cycle.

Suppose now that there exists a cycle of IS deviations. Observe first that no dummy agent can

deviate. Indeed, the only coalition sizes that are preferred by a dummy agent to the size of her

initial coalition are the size of the current coalition plus one and the size of the current coalition

plus two. These sizes cannot be reached by joining other coalitions by condition (1), and the fact

that the other coalitions do not want to integrate more than two additional agents in their coalition.

Therefore, the only possible deviations are when the dummy agents let at most two agents join

their coalition. It follows, by construction of the preferences, that no agent can belong to a coalition

whose size is ranked after size 1 in her preferences, i.e., we do not have to care about the preferences

within [. . . ] in the preference ranking of the agents. Indeed, a literal-agent or agent 𝑡 (for the sake

of simplicity we also talk about agent 𝑡 when referring to literal-agents since the behavior is similar),

whose initial coalition is of size one, can join some coalitions of dummy agents and sometimes

accepts one additional literal-agent in such coalitions. The worst thing that can happen to these

deviating literal-agents is that the other literal-agent, who has joined the same coalition of dummy

agents as her, leaves the coalition. However, in such a case, by construction of the preferences, both

literal-agents are still in a coalition whose size is ranked before one in their preferences.
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Observe that literal-agents can only join coalitions of dummy agents with at most one other

literal-agent in this coalition and that no literal-agent can join another literal-agent outside a

coalition of dummy agents, because size two is not ranked before size one in the preferences of the

agents (recall that a coalition of dummy agents cannot be of size smaller than 2). Moreover, since

the literal-agents can never be in a coalition of size less preferred than one, once a literal-agent

deviates from her initial coalition where she is alone, she has no incentive to come back to the

coalition where she is alone. Hence, the deviations in the cycle must be performed by literal-agents

who join different coalitions of dummy agents.

Because only literal-agents can deviate and all non-singleton coalitions of any reached partition

must be of the form of a coalition of dummy agents (from the initial partition) potentially joined

by one or two literal-agents, each deviating literal-agent 𝑎𝑔 in the cycle must be left at some step

in order to come back to a less preferred coalition. Since literal-agent 𝑎𝑔 can be left only by one

other literal-agent, it follows that the current coalition of agent 𝑎𝑔 was of size |𝐾 | + 2 for a given

coalition 𝐾 of dummy agents and becomes of size |𝐾 | + 1. To be able to come back to a previous

less preferred coalition, agent 𝑎𝑔 must prefer |𝐾 | + 2 over |𝐾 | + 1. Moreover, since literal-agent 𝑎𝑔 is

a deviating agent, there must be intermediate sizes in the preference ranking of agent 𝑎𝑔 between

|𝐾 | + 2 and |𝐾 | + 1. Say that literal-agent 𝑎𝑔 corresponds to a literal-agent 𝑧ℓ𝑖 where 𝑧𝑖 refers either

to literal 𝑦𝑖 or to literal 𝑦𝑖 , and 𝑍
ℓ
𝑖 refers to the associated clause of dummy variable agents, i.e.,

𝑍 ℓ𝑖 = 𝑌
ℓ
𝑖 if 𝑧ℓ𝑖 = 𝑦

ℓ
𝑖 , and 𝑍

ℓ
𝑖 = 𝑌

ℓ

𝑖 if 𝑧
ℓ
𝑖 = 𝑦

ℓ
𝑖 . Moreover, denote by 𝑗 the index of the clause to which

the literal associated with 𝑧ℓ𝑖 belongs, i.e., 𝑗 = 𝑐𝑙 (𝑥 ℓ𝑖 ) if 𝑧ℓ𝑖 = 𝑦ℓ𝑖 and 𝑗 = 𝑐𝑙 (𝑥
ℓ
𝑖 ) if 𝑧ℓ𝑖 = 𝑦

ℓ
𝑖 . Then, by

construction of the preferences, coalition 𝐾 of dummy agents can only be: (𝑎) 𝐾 𝑗 , i.e., the coalition
associated with the clause to which the occurrence of the literal of the literal-agent belongs, or

(𝑏) 𝑍 ℓ𝑖 , i.e., the coalition associated with the occurrence of the literal of the literal-agent. We detail

below the possible cases for coalition 𝐾 .

(a) If 𝐾 is the coalition of dummy clause agents 𝐾 𝑗 , then the other literal-agent who leaves the

coalition cannot be associated with an occurrence of a literal belonging to the corresponding

clause. Indeed, otherwise, by construction of the preferences, the size of this coalition would

be the most preferred one for this leaving literal-agent, contradicting her IS deviation

from this coalition. Therefore, according to the preferences of the literal-agents, the only

possibility is that this other literal-agent who leaves coalition 𝐾 𝑗 is associated with an

occurrence of a literal belonging to 𝐶 𝑗−1 if 𝑗 > 1 or is agent 𝑧2𝑝 ∈ {𝑦2𝑝 , 𝑦2𝑝 } if 𝑗 = 1. Due to

the preferences of the literal-agents, if a literal-agent leaves such a coalition, it is necessarily

for joining the coalition of dummy agents 𝐾 𝑗−1 (which has an additional literal-agent) if

𝑗 > 1 or 𝑍 2

𝑝 (with an additional literal-agent) if 𝑗 = 1. In the latter case ( 𝑗 = 1), this is the

only possibility even if the associated deviating agent 𝑧2𝑝 prefers several other coalition sizes

over |𝐾1 | + 2, because the other choices would prevent her to come back to size |𝐾1 | + 2: the

worst thing that can occur after some steps if 𝑧2𝑝 chooses preferred coalitions other than

𝑍 2

𝑝 is that she would be in a coalition of size |𝐾𝑐𝑙 (𝑥2𝑝 ) | + 1 or |𝐾𝑐𝑙 (𝑥2𝑝 )+1 | + 1 if 𝑧2𝑝 = 𝑦2𝑝 , or

|𝐾𝑐𝑙 (𝑥2𝑝 ) | + 1 or |𝐾𝑐𝑙 (𝑥2𝑝 )+1 | + 1 if 𝑧2𝑝 = 𝑦2𝑝 , and the two sizes in both cases are preferred to

|𝐾1 | + 2, which contradicts the cycle.

(b) 1. If 𝐾 is the coalition of dummy variable agents 𝑍 1

𝑖 , i.e., ℓ = 1, then the only possibility is

that the other literal-agent who leaves the coalition is literal-agent 𝑧2𝑖−1 ∈ {𝑦2𝑖−1, 𝑦
2

𝑖−1}
if 𝑖 > 1, or agent 𝑡 if 𝑖 = 1.

If 𝑖 > 1, following the same argument as in case (a) for agent 𝑧2𝑝 , literal-agent 𝑧
2

𝑖−1 cannot
deviate to coalitions of dummy clause agents, otherwise she would never come back to

the current coalition size. If 𝑍 1

𝑖 = 𝑌 1

𝑖 , then the only possibility is that literal-agent 𝑧2𝑖−1
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deviates for joining coalition 𝑍 2

𝑖−1 (and an additional literal-agent). Otherwise, i.e., if

𝑍 1

𝑖 = 𝑌
1

𝑖 , then literal-agent 𝑧2𝑖−1 can deviate to join 𝑍 2

𝑖−1 (and an additional literal-agent),

but she could also deviate for joining the coalition of dummy variable agents 𝑌 1

𝑖 . In

the latter case, by construction of the preferences, the only other agent who can also

join coalition 𝑌 1

𝑖 is literal-agent 𝑦1𝑖 . If 𝑦
1

𝑖 never joins this coalition, then agent 𝑧2𝑖−1
would impact no deviating agent by staying in this coalition, and it would not enable

her to come back to a previous less preferred coalition since no agent can leave the

coalition. Therefore, because she still prefers coalition 𝑍 2

𝑖−1, she would deviate anyway

to coalition 𝑍 2

𝑖−1. Otherwise, i.e., if 𝑦
1

𝑖 joins the coalition (before or after 𝑧2𝑖−1), it means

that agent𝑦1𝑖 reaches the best possible coalition of dummy variable agents. By following

the same arguments as in case (a) for agent 𝑧2𝑝 , agent 𝑦
1

𝑖 cannot deviate to coalitions of

dummy clause agents, otherwise she would never come back to the current coalition

size. It follows that agent 𝑦1𝑖 has no reason to deviate from the coalition she forms with

𝑧2𝑖−1 and 𝑌
1

𝑖 . Therefore, in order to be left at some point of the cycle in order to come

back to a previous less preferred coalition, agent 𝑧2𝑖−1 still needs to deviate and the only
possibility is to join coalition 𝑍 2

𝑖−1 (and an additional literal-agent).

If 𝑖 = 1, the same arguments can be applied and then agent 𝑡 deviates to join the

coalition of dummy clause agents 𝐾𝑚+1.
2. If 𝐾 is the coalition of dummy variable agents 𝑍 2

𝑖 , i.e., ℓ = 2, then the only possibility

is that the other literal-agent who leaves the coalition is literal-agent 𝑧1𝑖 (i.e., the

literal-agent that is associated with the first occurrence of the same literal as 𝑧ℓ𝑖 ). Since,

literal-agent 𝑧1𝑖 cannot deviate to join a coalition of dummy clause agents (by following

the same arguments as in case (a) for agent 𝑧2𝑝 ), she will necessarily join the coalition

of dummy variable agents 𝑍 1

𝑖 (with an additional literal-agent).

To summarize, if there is a cycle, only the following can occur:

(1) agent 𝑡 in coalition 𝐾𝑚+1 can only be left by a literal-agent corresponding to an occurrence

of a literal belonging to clause𝐶𝑚 who deviates to join the coalition of dummy clause agents

𝐾𝑚 ;

(2) a literal-agent 𝑦ℓ𝑖 (or 𝑦
ℓ
𝑖 ) in a coalition of dummy clause agents 𝐾 𝑗 (for 1 < 𝑗 ≤ 𝑚), corre-

sponding to the clause 𝐶 𝑗 to which the ℓ th occurrence of 𝑥𝑖 (or 𝑥𝑖 ) belongs, can only be left

by a literal-agent corresponding to an occurrence of a literal belonging to clause 𝐶 𝑗−1 who
deviates to join the coalition of dummy clause agents 𝐾 𝑗−1;

(3) a literal-agent 𝑦ℓ𝑖 (or 𝑦
ℓ
𝑖 ) in the coalition of dummy clause agents 𝐾1, corresponding to the

clause 𝐶1 to which the ℓ th occurrence of 𝑥𝑖 (or 𝑥𝑖 ) belongs, can only be left by literal-agent

𝑦2𝑝 or 𝑦
2

𝑝 who joins the coalition of dummy variable agents 𝑌 2

𝑝 or 𝑌
2

𝑝 , respectively;

(4) a literal-agent 𝑦2𝑖 (or 𝑦
2

𝑖 ), for 1 ≤ 𝑖 ≤ 𝑝 , in a coalition of dummy variable agents 𝑌 2

𝑖 (or 𝑌
2

𝑖 )

can only be left by literal-agent 𝑦1𝑖 (or 𝑦
1

𝑖 ) who joins the coalition of dummy variable agents

𝑌 1

𝑖 (or 𝑌
1

𝑖 );

(5) a literal-agent 𝑦1𝑖 (or 𝑦
1

𝑖 ), for 1 < 𝑖 ≤ 𝑝 , in a coalition of dummy variable agents 𝑌 1

𝑖 (or 𝑌
1

𝑖 )

can only be left by a literal-agent 𝑦2𝑖−1 or 𝑦
2

𝑖−1 who eventually joins the coalition of dummy

variable agents 𝑌 2

𝑖−1 or 𝑌
2

𝑖−1, respectively;

(6) literal-agent 𝑦1
1
(or 𝑦1

1
) in the coalition of dummy variable agents 𝑌 1

1
(or 𝑌

1

1
) can only be left

by agent 𝑡 who joins the coalition of dummy clause agents 𝐾𝑚+1.
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Therefore, as soon as there is one deviating literal-agent in the cycle, it implies that there exists

a whole chain of deviating agents in the cycle, who alternate between joining coalitions of dummy

agents which are consecutive in the following cycle over initial coalitions: 𝐾1 < 𝐾2 < · · · < 𝐾𝑚 <

𝐾𝑚+1 < 𝑍 1

1
< 𝑍 2

1
< 𝑍 1

2
< 𝑍 2

2
< · · · < 𝑍 1

𝑝 < 𝑍 2

𝑝 < 𝐾1, where 𝑍
1

𝑖 and 𝑍
2

𝑖 refer either to 𝑌
1

𝑖 and 𝑌 2

𝑖 , or

to 𝑌
1

𝑖 and 𝑌
2

𝑖 . More precisely, for the cycle to occur, we need, as deviating agents, (𝑖) for each clause,

a literal-agent corresponding to an occurrence of a literal belonging to this clause who alternates

between the coalition of dummy clause agents associated with this clause and the next coalition in

the previously mentioned cycle over initial coalitions (cases (1)-(3)) and, (𝑖𝑖) for each variable, two

literal-agents corresponding to the same literal, who alternate between the coalition of dummy

variable agents associated with their literal occurrence and the next coalition in the previously

mentioned cycle over initial coalitions (cases (3)-(6)). As described in the previous case distinctions,

these two groups of deviating literal-agents ((𝑖) and (𝑖𝑖)) are distinct because, by construction

of the preferences, once a literal-agent reaches the coalition of dummy clause agents associated

with the clause to which her corresponding literal belongs, she cannot be in a coalition of less

preferred size, and in particular the coalition of dummy variable agents associated with her literal

(recall that only literal-agents can deviate and that at most two literal-agents can join a coalition of

dummy agents). Moreover, as summarized in case (4), we need that the two deviating literal-agents

associated with each variable (group (𝑖𝑖)) correspond to the same literal of the variable. Hence, by

setting to true the literals associated with the deviating literal-agents of group (𝑖) and to false the

literals associated with the deviating literal-agents of group (𝑖𝑖) (and arbitrarily the rest of literals),

we get a valid truth assignment of the variables which satisfies all the clauses. □

B HEDONIC DIVERSITY GAMES
In this section, we provide the missing proofs for hedonic diversity games.

Theorem 4.5. ∃-IS-Sequence-HDG is NP-hard and ∀-IS-Sequence-HDG is coNP-hard, even for

strict preferences.

We prove the two hardness results by providing separate reductions for each problem in the next

two lemmas. The proofs for these two lemmas (Lemmas B.1 and B.2) work in the same way as the

proofs of Lemmas A.1 and A.2, respectively, except that we have to ensure appropriate ratios of

red agents in each constructed initial coalition in order to guarantee, similarly as in the proofs of

Lemmas A.1 and A.2, that the preferences of the agents over ratios can be expressed in terms of

preferences over initial non-singleton coalitions augmented by one or two agents of a given type

(red or blue). Instead of playing only with the size of coalitions for the design of the reductions,

like in the proofs of Lemmas A.1 and A.2, we need here to play with both the size of the coalitions

and the proportion of red and blue agents within them.

Lemma B.1. ∃-IS-Sequence-HDG is NP-hard even for strict preferences.

Proof. Let us perform a reduction from (3,B2)-SAT. The proof works in the same way as the

proof of Lemma A.1. Given an instance of (3,B2)-SAT, we construct an HDG as follows.

For each ℓ th occurrence (ℓ ∈ {1, 2}) of a positive literal 𝑥𝑖 (or negative literal 𝑥𝑖 ), we create a red
literal-agent 𝑦ℓ𝑖 (or a blue literal-agent 𝑦

ℓ
𝑖 ). All literal-agents are singletons in the initial partition 𝜋0.

Let us consider three integers 𝛼 , 𝛽 and 𝛾 such that (1) 𝛼 > 2𝑚 − 1, 𝛽 > max{3𝑝 − 2; 3𝑝𝛼 + 3𝑝 − 2},
𝛾 > max{12𝑝 − 2; 6𝑝𝛽 + 12𝑝 − 1}. For instance, we can set the following values: 𝛼 =𝑚2

, 𝛽 =𝑚4
and

𝛾 =𝑚7
(one can verify that condition (1) is satisfied, especially because in a (3,B2)-SAT instance, it

holds that𝑚 ≥ 4 and 𝑝 = 3/4𝑚). For each clause 𝐶 𝑗 , we then create 𝛼 dummy clause-agents with

among them 2 𝑗 − 1 red agents. They are all grouped within the same coalition 𝐾 𝑗 in the initial

partition 𝜋0. For each literal 𝑥𝑖 (or 𝑥𝑖 ), we create a red variable-agent 𝑧𝑖 (or a blue variable-agent 𝑧𝑖 )
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Table 4. Preferences of the agents in the reduced instance of Lemma B.1, for every 1 ≤ 𝑖 ≤ 𝑝 , 1 ≤ 𝑗 ≤ 𝑚,

ℓ ∈ {1, 2}. Notation 𝑐𝑙 (𝑥 ℓ
𝑖
) (or 𝑐𝑙 (𝑥 ℓ𝑖 )) stands for the index of the clause to which the ℓth occurrence of literal

𝑥𝑖 (or 𝑥𝑖 ) belongs, the framed value corresponds to the ratio of the initial coalition in partition 𝜋0, and [. . . ]
denotes an arbitrary order over the rest of the coalition ratios.

𝑧𝑖 :
3𝑖
𝛽+2 ≻ 6(𝑝−𝑖 )+2

𝑖𝛾+2 ≻ 6(𝑝−𝑖 )+4
𝑖𝛾+1 ≻ 6(𝑝−𝑖 )+6

𝑖𝛾+2 ≻ 6(𝑝−𝑖 )+6
𝑖𝛾+1 ≻ 6(𝑝−𝑖 )+2

𝑖𝛾+1 ≻ 3𝑖−1
𝛽+1 ≻ 3𝑖 − 2

𝛽
≻ [. . . ]

𝑧𝑖 :
3𝑖−2
𝛽+2 ≻ 6(𝑝−𝑖 )+6

𝑖𝛾+2 ≻ 6(𝑝−𝑖 )+3
𝑖𝛾+1 ≻ 6(𝑝−𝑖 )+2

𝑖𝛾+2 ≻ 6(𝑝−𝑖 )+1
𝑖𝛾+1 ≻ 6(𝑝−𝑖 )+5

𝑖𝛾+1 ≻ 3𝑖−2
𝛽+1 ≻ 3𝑖 − 2

𝛽
≻ [. . . ]

𝑦ℓ𝑖 :
2𝑐𝑙 (𝑥 ℓ

𝑖
)

𝛼+1 ≻ 3𝑖
𝛽+2 ≻ 3𝑖−1

𝛽+1 ≻ 1 ≻ [. . . ]
𝑦ℓ𝑖 :

2𝑐𝑙 (𝑥 ℓ𝑖 )−1
𝛼+1 ≻ 3𝑖−2

𝛽+2 ≻ 3𝑖−2
𝛽+1 ≻ 0 ≻ [. . . ]

𝐾 𝑗 :
2𝑗

𝛼+1 ≻ 2𝑗−1
𝛼+1 ≻ 2 𝑗 − 1

𝛼
≻ [. . . ]

𝑍𝑖 \ {𝑧𝑖 } : 3𝑖
𝛽+2 ≻ 3𝑖−1

𝛽+1 ≻ 3𝑖 − 2

𝛽
≻ 3𝑖−3

𝛽−1 ≻ [. . . ]

𝑍 𝑖 \ {𝑧𝑖 } : 3𝑖−2
𝛽+2 ≻ 3𝑖−2

𝛽+1 ≻ 3𝑖 − 2

𝛽
≻ 3𝑖−2

𝛽−1 ≻ [. . . ]

𝐺1

𝑖 :
6(𝑝−𝑖 )+2
𝑖𝛾+2 ≻ 6(𝑝−𝑖 )+2

𝑖𝛾+1 ≻ 6(𝑝−𝑖 )+1
𝑖𝛾+1 ≻ 6(𝑝 − 𝑖) + 1

𝑖𝛾
≻ [. . . ]

𝐺2

𝑖 :
6(𝑝−𝑖 )+4
𝑖𝛾+1 ≻ 6(𝑝−𝑖 )+3

𝑖𝛾+1 ≻ 6(𝑝 − 𝑖) + 3

𝑖𝛾
≻ [. . . ]

𝐺3

𝑖 :
6(𝑝−𝑖 )+6
𝑖𝛾+2 ≻ 6(𝑝−𝑖 )+6

𝑖𝛾+1 ≻ 6(𝑝−𝑖 )+5
𝑖𝛾+1 ≻ 6(𝑝 − 𝑖) + 5

𝑖𝛾
≻ [. . . ]

and 𝛽 − 1 dummy variable-agents with among them 3𝑖 − 2 red agents (𝑧𝑖 included). They are all

grouped within the same coalition 𝑍𝑖 (or 𝑍 𝑖 ) in the initial partition 𝜋0. Finally, for each variable 𝑥𝑖 ,

we create three coalitions in partition 𝜋0 of dummy agents 𝐺1

𝑖 , 𝐺
2

𝑖 and 𝐺
3

𝑖 of size 𝑖𝛾 with among

them, 6(𝑝−𝑖) +1, 6(𝑝−𝑖) +3, or 6(𝑝−𝑖) +5 red agents, for each coalition respectively. These dummy

agents are used as a gadget for a cycle. Although we have created many agents, the construction

remains polynomial by considering reasonable values of 𝛼 , 𝛽 and 𝛾 , as previously described.

The preferences of the agents over ratios of red agents are given in Table 4.

We claim that there exists a sequence of IS deviations starting from 𝜋0 which leads to an IS

partition if and only if formula 𝜑 is satisfiable.

Suppose first that there exists a truth assignment of the variables 𝜙 that satisfies all the clauses.

Let us denote by ℓ𝑗 a chosen literal-agent associated with an occurrence of a literal true in 𝜙 which

belongs to clause 𝐶 𝑗 . Since all the clauses of 𝜑 are satisfied by 𝜙 , there exists such a literal-agent ℓ𝑗
for each clause𝐶 𝑗 . For every clause𝐶 𝑗 , let literal-agent ℓ𝑗 join coalition𝐾 𝑗 . These IS deviations make

the chosen literal-agents reach their most preferred ratio so none of them will deviate afterwards.

For the clause-agents, they all reach either their first or second most preferred ratio but have no

possibility to improve their satisfaction in the latter case so none of them will deviate afterwards

neither. Then, let all remaining literal-agents 𝑦ℓ𝑖 (or 𝑦
ℓ
𝑖 ) deviate by joining coalition 𝑍𝑖 (or 𝑍 𝑖 ). Since

𝜙 is a truth assignment of the variables, for each variable 𝑥𝑖 , there exists a coalition 𝑍𝑖 or 𝑍 𝑖 that is
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joined by two literal-agents and thus reaches the most preferred ratio
3𝑖
𝛽+2 or

3𝑖−2
𝛽+2 . It follows that

no member of such a newly formed coalition would move afterwards or let other agents enter the

coalition: all members of 𝑍𝑖 or 𝑍 𝑖 get their most preferred ratio while the two joining literal-agents

get their second most preferred ratio and their most preferred ratio is not accessible anymore (their

associated clause coalition has already been joined by another literal-agent). For each variable

𝑥𝑖 , at most one coalition between 𝑍𝑖 and 𝑍 𝑖 may not be joined by two literal-agents and, if there

is one, it must be the coalition that corresponds to the literal of variable 𝑥𝑖 that is true in 𝜙 . In

such a case, we let the associated variable-agent 𝑧𝑖 or 𝑧𝑖 deviate for joining coalition 𝐺2

𝑖 , and if one

literal-agent previously joined the corresponding variable-coalition 𝑍𝑖 or 𝑍 𝑖 , she deviates to be

alone. Such a literal-agent then gets her fourth most preferred ratio while her most preferred ones

are not accessible anymore (because the variable-agent has left the coalition and her associated

clause coalition has already been joined by another literal-agent). Moreover, such a variable-agent

𝑧𝑖 (or 𝑧𝑖 ), by joining coalition 𝐺2

𝑖 , gets her third most preferred ratio while her most preferred ones

are not accessible: no two additional red (or blue) agents want to enter the initial coalition 𝑍𝑖 (or 𝑍 𝑖 )

and only one additional agent, herself, is present in the gadget associated with variable 𝑥𝑖 , whereas

variable-agent 𝑧𝑖 (or 𝑧𝑖 ) in the gadget prefers ratios which differ by one blue agent (or red agent)

from the ratio of the current coalitions. Also, note that, by the design of the preferences, no dummy

agent in the gadget has an incentive to move to another coalition. All in all, no agent can then

move in an IS deviation, and thus the reached partition is IS.

Suppose now that there exists no truth assignment of the variables that satisfies all the clauses.

That means that it is not possible that one literal-agent joins each clause coalition while two

literal-agents 𝑦1𝑖 and 𝑦
2

𝑖 join coalition 𝑍𝑖 or 𝑦
1

𝑖 and 𝑦
2

𝑖 join coalition 𝑍 𝑖 for each variable 𝑥𝑖 . By

construction of the preferences, the only agents who want to join a coalition 𝐾 𝑗 are literal-agents

associated with a literal belonging to clause 𝐶 𝑗 and the only agents who want to join a coalition

𝑍𝑖 (or 𝑍 𝑖 ) are literal-agents 𝑦
1

𝑖 and 𝑦
2

𝑖 (or 𝑦
1

𝑖 and 𝑦
2

𝑖 ). Moreover, since each literal-agent prefers to

join clause coalitions rather than variable coalitions, it holds that in a maximal sequence of IS

deviations, all clause-agents in 𝐾 𝑗 will reach one of the two most preferred ratios,
2𝑗

𝛼+1 in case a red

literal-agent joined or
2𝑗−1
𝛼+1 in case a blue literal-agent joined. In both cases, they have no incentive

to deviate afterwards. However, in such a case, there exists a variable 𝑥𝑖 such that at most one

literal-agent joins coalition 𝑍𝑖 and at most one literal-agent joins coalition 𝑍 𝑖 . It follows that both

variable-agents 𝑧𝑖 and 𝑧𝑖 have an incentive to deviate to the gadget associated with variable 𝑥𝑖 (their

respective most preferred ratios
3𝑖
𝛽+2 and

3𝑖−2
𝛽+2 can never be reached). Within the gadget associated

with variable 𝑥𝑖 , variable-agents 𝑧𝑖 and 𝑧𝑖 are the only agents who can deviate and we necessarily

reach a cycle, which is the same as described in Figure 7 for the proof of Lemma A.1.

Finally, we must verify that all the fractions described in the preferences with different variables

are indeed different.

• For gadget coalitions, since 𝛾 > 12𝑝 − 2, it holds that
6(𝑝−𝑖 )+6
𝑖𝛾+1 >

6(𝑝−𝑖 )+6
𝑖𝛾+2 >

6(𝑝−𝑖 )+5
𝑖𝛾

>

6(𝑝−𝑖 )+5
𝑖𝛾+1 >

6(𝑝−𝑖 )+4
𝑖𝛾+1 >

6(𝑝−𝑖 )+3
𝑖𝛾

>
6(𝑝−𝑖 )+3
𝑖𝛾+1 >

6(𝑝−𝑖 )+2
𝑖𝛾+1 >

6(𝑝−𝑖 )+2
𝑖𝛾+2 >

6(𝑝−𝑖 )+1
𝑖𝛾

>
6(𝑝−𝑖 )+1
𝑖𝛾+1 for

every 𝑖 ∈ [𝑝]. Moreover, it holds that
6(𝑝−𝑖 )+6
𝑖𝛾+1 >

6(𝑝−(𝑖+1)+1
(𝑖+1)𝛾+1 for every 𝑖 ∈ [𝑝 − 1] so all

the values associated with ratios preferred to the initial ones are different for all gadget

coalitions.

• For variable coalitions, since 𝛽 > 3𝑝 − 2, it holds that
3𝑖
𝛽+2 > 3𝑖−1

𝛽+1 > 3𝑖−2
𝛽

> 3𝑖−2
𝛽+1 > 3𝑖−2

𝛽+2 for

every 𝑖 ∈ [𝑝]. Moreover, it holds that
3𝑖
𝛽+2 <

3(𝑖+1)−2
𝛽+2 for every 𝑖 ∈ [𝑝 − 1] so all the values

associated with ratios preferred to the initial ones are different for all variable coalitions.
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• For clause coalitions, since 𝛼 > 2𝑚 − 1, it holds that
2𝑗−1
𝛼+1 <

2𝑗−1
𝛼

<
2𝑗

𝛼+1 for every 𝑗 ∈ [𝑚].
Moreover, it holds that

2𝑗

𝛼+1 <
2( 𝑗+1)−1
𝛼+1 for every 𝑗 ∈ [𝑚 − 1] so all the values associated

with ratios preferred to the initial ones are different for all clause coalitions.

It remains to check that the ratios associated with clause, variable or gadget coalitions do not

interfere with each other. Since 𝛾 > 6𝑝𝛽 + 12𝑝 − 1, it holds that the highest reachable ratio

associated with a gadget coalition is smaller than the smallest reachable ratio associated with a

variable coalition, i.e.,
6𝑝

𝛾+1 < 1

𝛽+2 . Since 𝛽 > 3𝑝𝛼 + 3𝑝 − 2, it holds that the highest reachable ratio

associated with a variable coalition is smaller than the smallest reachable ratio associated with a

clause coalition, i.e.,
3𝑝

𝛽+2 < 1

𝛼+1 . Therefore, all the reachable ratios are indeed different for clause,

variable and gadget coalitions. It follows that the previously described deviations are indeed the

only possible ones and hence no sequence of IS deviations can reach an IS partition. □

Lemma B.2. ∀-IS-Sequence-HDG is coNP-hard even for strict preferences.

Proof. For this purpose, we prove the NP-hardness of the complement problem, which asks

whether there exists a cycle of IS deviations. The proof works in the same way as the proof of

Lemma A.2. Let us perform a reduction from (3,B2)-SAT. Given an instance of (3,B2)-SAT, we

construct an HDG as follows.

For each ℓ th occurrence (ℓ ∈ {1, 2}) of a positive literal 𝑥𝑖 (or negative literal 𝑥𝑖 ), we create a
red literal-agent 𝑦ℓ𝑖 (or a blue literal-agent 𝑦ℓ𝑖 ). We create another red agent 𝑡 . All these agents

are singletons in the initial partition 𝜋0. Let us consider four integers 𝛼 , 𝛽
+
1
, 𝛽−

1
and 𝛽2 such that

(1) 𝛼 > 6𝑚 + 2, 𝛽+
1

> max{4𝑝 − 2; (2𝑝 + 1)𝛼 + 4𝑝}, 𝛽−
1

> max{4𝑝 − 2; 2𝑝𝛽+
1
+ 2𝑝 − 2} and

𝛽2 > max{3𝑝 − 2; 3𝑝𝛽−
1
+ 4𝑝}. For instance, we can set the following values: 𝛼 = 𝑚3

, 𝛽+
1
= 𝑚5

,

𝛽−
1
=𝑚7

and 𝛽2 =𝑚
9
(one can verify that condition (1) is satisfied, especially because in a (3,B2)-

SAT instance, it holds that𝑚 ≥ 4 and 𝑝 = 3/4𝑚). For each clause 𝐶 𝑗 , we then create 𝛼 dummy

clause-agents with among them 3 𝑗 − 2 red agents. They are all grouped within the same coalition

𝐾 𝑗 in the initial partition 𝜋0. We also create 𝛼 dummy agents with among them 3𝑚 + 1 red agents,

they are all grouped within the same coalition 𝐾𝑚+1 in initial partition 𝜋0. For each first occurrence

of literal 𝑥𝑖 (or 𝑥𝑖 ), we create 𝛽
+
1
(or 𝛽−

1
) dummy variable agents with among them 2𝑖 − 1 red agents,

they are all grouped within the same coalition 𝑌 1

𝑖 (or 𝑌
1

𝑖 ) in the initial partition 𝜋0. Finally, for

each second occurrence of literal 𝑥𝑖 (or 𝑥𝑖 ), we create 𝛽2 dummy variable agents with among them

3𝑖 − 2 red agents, they are all grouped within the same coalition 𝑌 2

𝑖 (or 𝑌
2

𝑖 ) in the initial partition

𝜋0. Although we have created many agents, the construction remains polynomial by considering

reasonable values of 𝛼 , 𝛽+
1
, 𝛽−

1
and 𝛽2, as previously described.

The preferences of the agents over coalition ratios are given in Table 5.

We claim that there exists a cycle of IS deviations if and only if formula 𝜑 is satisfiable. We

omit the formal proof of equivalence which follows exactly the same arguments as the proof of

Lemma A.2 with even the same name of agents and fixed coalitions. When given a truth assignment

of the variables which satisfies formula 𝜑 , it is easy to see that the cycle described in the first part

of the proof of Lemma A.2 can also occur in this instance (see Figure 8 for an example of such a

cycle), proving the if part. For the only if part, the same arguments as the ones given in the second

part of the proof of Lemma A.2 also hold, except that we need to adapt to the context of evaluations

of coalitions based on red agent ratios. Instead of speaking about agents who prefer one or two

additional agents, here we need to speak about agents who prefer one or two red or blue additional

agents where, in our construction, literal-agents related to positive literals 𝑥𝑖 are red agents and

literal-agents related to negative literals 𝑥𝑖 are blue agents. This difference is already reflected in

the construction of the preferences of the agents. Indeed, when in our cycle we want deviating

literal-agents that correspond to the same literal, the red/blue type is fixed in the preferences of the
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Table 5. Preferences of the agents in the reduced instance of Lemma B.2, for every 1 ≤ 𝑖 ≤ 𝑝 , 1 ≤ 𝑖′ < 𝑝 ,

1 ≤ 𝑗 ≤ 𝑚 + 1, ℓ ∈ {1, 2}. Notation 𝑐𝑙 (𝑥 ℓ
𝑖
) (or 𝑐𝑙 (𝑥 ℓ𝑖 )) stands for the index of the clause to which the ℓth

occurrence of literal 𝑥𝑖 (or 𝑥𝑖 ) belongs, the framed value corresponds to the ratio of the initial coalition in

partition 𝜋0, and [. . . ] denotes an arbitrary order over the rest of the coalition ratios.

𝑦1𝑖 :
3𝑐𝑙 (𝑥1𝑖 )
𝛼+2 ≻ 3𝑐𝑙 (𝑥1𝑖 )−1

𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑖 )+1)
𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑖 )+1)−1

𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑖 )+1)−1
𝛼+1 ≻ 3𝑐𝑙 (𝑥1𝑖 )−1

𝛼+1 ≻
2𝑖+1
𝛽+
1
+2 ≻ 2𝑖

𝛽+
1
+2 ≻ 3𝑖

𝛽2+2 ≻ 3𝑖−1
𝛽2+1 ≻ 2𝑖

𝛽+
1
+1 ≻ 1 ≻ [. . . ]

𝑦2
𝑖′ :

3𝑐𝑙 (𝑥1
𝑖′ )

𝛼+2 ≻ 3𝑐𝑙 (𝑥1
𝑖′ )−1

𝛼+2 ≻ 3(𝑐𝑙 (𝑥1
𝑖′ )+1)

𝛼+2 ≻ 3(𝑐𝑙 (𝑥1
𝑖′ )+1)−1
𝛼+2 ≻ 3(𝑐𝑙 (𝑥1

𝑖′ )+1)−1
𝛼+1 ≻ 3𝑐𝑙 (𝑥1

𝑖′ )−1
𝛼+1 ≻

3𝑖′

𝛽2+2 ≻ 2(𝑖′+1)+1
𝛽+
1
+2 ≻ 2(𝑖′+1)

𝛽+
1
+2 ≻ 2(𝑖′+1)

𝛽+
1
+1 ≻ 2(𝑖′+1)+1

𝛽−
1
+2 ≻ 2(𝑖′+1)

𝛽−
1
+2 ≻ 2(𝑖′+1)

𝛽−
1
+1 ≻ 3𝑖′−1

𝛽2+1 ≻ 1 ≻ [. . . ]

𝑦2𝑝 :

3𝑐𝑙 (𝑥1𝑝 )
𝛼+2 ≻ 3𝑐𝑙 (𝑥1𝑝 )−1

𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑝 )+1)
𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑝 )+1)−1

𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑝 )+1)−1
𝛼+1 ≻ 3𝑐𝑙 (𝑥1𝑝 )−1

𝛼+1 ≻
3𝑝

𝛽2+2 ≻ 3

𝛼+2 ≻ 2

𝛼+2 ≻ 2

𝛼+1 ≻ 3𝑝−1
𝛽2+1 ≻ 1 ≻ [. . . ]

𝑦1𝑖 :
3𝑐𝑙 (𝑥1𝑖 )−1
𝛼+2 ≻ 3𝑐𝑙 (𝑥1𝑖 )−2

𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑖 )+1)−1
𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑖 )+1)−2

𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑖 )+1)−2
𝛼+1 ≻ 3𝑐𝑙 (𝑥1𝑖 )−2

𝛼+1 ≻
2𝑖

𝛽−
1
+2 ≻ 2𝑖−1

𝛽−
1
+2 ≻ 3𝑖−2

𝛽2+2 ≻ 3𝑖−2
𝛽2+1 ≻ 2𝑖−1

𝛽−
1
+1 ≻ 0 ≻ [. . . ]

𝑦2𝑖′ :
3𝑐𝑙 (𝑥1

𝑖′ )−1
𝛼+2 ≻ 3𝑐𝑙 (𝑥1

𝑖′ )−2
𝛼+2 ≻ 3(𝑐𝑙 (𝑥1

𝑖′ )+1)−1
𝛼+2 ≻ 3(𝑐𝑙 (𝑥1

𝑖′ )+1)−2
𝛼+2 ≻ 3(𝑐𝑙 (𝑥1

𝑖′ )+1)−2
𝛼+1 ≻ 3𝑐𝑙 (𝑥1

𝑖′ )−2
𝛼+1 ≻

3𝑖′−2
𝛽2+2 ≻ 2(𝑖′+1)

𝛽+
1
+2 ≻ 2(𝑖′+1)−1

𝛽+
1
+2 ≻ 2(𝑖′+1)−1

𝛽+
1
+1 ≻ 2(𝑖′+1)

𝛽−
1
+2 ≻ 2(𝑖′+1)−1

𝛽−
1
+2 ≻ 2(𝑖′+1)−1

𝛽−
1
+1 ≻ 3𝑖′−2

𝛽2+1 ≻ 0 ≻ [. . . ]

𝑦2𝑝 :

3𝑐𝑙 (𝑥1𝑝 )−1
𝛼+2 ≻ 3𝑐𝑙 (𝑥1𝑝 )−2

𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑝 )+1)−1
𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑝 )+1)−2

𝛼+2 ≻ 3(𝑐𝑙 (𝑥1𝑝 )+1)−2
𝛼+1 ≻ 3𝑐𝑙 (𝑥1𝑝 )−2

𝛼+1 ≻
3𝑝−2
𝛽2+2 ≻ 2

𝛼+2 ≻ 1

𝛼+2 ≻ 1

𝛼+1 ≻ 3𝑝−2
𝛽2+1 ≻ 0 ≻ [. . . ]

𝑡 : 3𝑚+3
𝛼+2 ≻ 3𝑚+2

𝛼+2 ≻ 3

𝛽+
1
+2 ≻ 2

𝛽−
1
+2 ≻ 2

𝛽+
1
+1 ≻ 2

𝛽−
1
+1 ≻ 3𝑚+2

𝛼+1 ≻ 1 ≻ [. . . ]

𝐾 𝑗 :
3𝑗

𝛼+2 ≻ 3𝑗−1
𝛼+2 ≻ 3𝑗−2

𝛼+2 ≻ 3𝑗−1
𝛼+1 ≻ 3𝑗−2

𝛼+1 ≻ 3 𝑗 − 2

𝛼
≻ [. . . ]

𝑌 1

𝑖 :
2𝑖+1
𝛽+
1
+2 ≻ 2𝑖

𝛽+
1
+2 ≻ 2𝑖

𝛽+
1
+1 ≻ 2𝑖−1

𝛽+
1
+1 ≻ 2𝑖 − 1

𝛽+
1

≻ [. . . ]

𝑌
1

𝑖 :
2𝑖

𝛽−
1
+2 ≻ 2𝑖−1

𝛽−
1
+2 ≻ 2𝑖

𝛽−
1
+1 ≻ 2𝑖−1

𝛽−
1
+1 ≻ 2𝑖 − 1

𝛽−
1

≻ [. . . ]

𝑌 2

𝑖 :
3𝑖
𝛽2+2 ≻ 3𝑖−1

𝛽2+1 ≻ 3𝑖 − 2

𝛽2
≻ [. . . ]

𝑌
2

𝑖 :
3𝑖−2
𝛽2+2 ≻ 3𝑖−2

𝛽2+1 ≻ 3𝑖 − 2

𝛽2
≻ [. . . ]

agents (e.g., we want that only literal-agents 𝑦1𝑖 and 𝑦
2

𝑖 , who are red agents, can join the coalition

of dummy variable agents 𝑌 2

𝑖 , therefore the preferences of the members of 𝑌 2

𝑖 are constructed in

such a way that they can only accept up to two additional red agents). Alternatively, when the

type of the deviating literal-agents is not known a priori in the cycle, we specify all possible new

ratios in the preferences, in order to take into account every possible combination of types for

deviating agents. It is the case, e.g., for the preferences of the coalitions of dummy clause agents

𝐾 𝑗 because we do not know a priori which literal will satisfy the corresponding clause. Therefore,

for the preferences of 𝐾 𝑗 , we specify preferences for two additional literal-agents which can be of

any type, by nevertheless ensuring that two additional agents is more preferred than only one (in
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order to come back to the same idea as in the proof of Lemma A.2). Even if an arbitrary preference

ranking is chosen between coalition ratios that correspond to the same number of additional agents,

this does not impact the proof because only one of these ratios can be reached, depending on the

type of agent who enters the coalition.

The only point that must be additionally checked is that all the fractions described in the

preferences with different variables are indeed different.

• For clause coalitions, since𝛼 > 6𝑚+2, it holds that 3𝑗

𝛼+2 >
3𝑗−1
𝛼+1 >

3𝑗−1
𝛼+2 >

3𝑗−2
𝛼

>
3𝑗−2
𝛼+1 >

3𝑗−2
𝛼+2

for every 𝑗 ∈ [𝑚 + 1]. Moreover, it holds that
3𝑗

𝛼+2 <
3( 𝑗+1)−2
𝛼+2 for every 𝑗 ∈ [𝑚] so all the

values associated with ratios preferred to the initial ones are different for all clause coalitions.

• For variable coalitions associated with the first positive occurrence of a variable, since

𝛽+
1
> 4𝑝 − 2, it holds that

2𝑖+1
𝛽+
1
+2 > 2𝑖

𝛽+
1
+1 > 2𝑖

𝛽+
1
+2 > 2𝑖−1

𝛽+
1

> 2𝑖−1
𝛽+
1
+1 for every 𝑖 ∈ [𝑝]. Moreover,

it holds that
2𝑖+1
𝛽+
1
+2 <

2(𝑖+1)−1
𝛽+
1
+1 for every 𝑖 ∈ [𝑝 − 1] so all the values associated with ratios

preferred to the initial ones are different for all variable coalitions associated with the first

positive occurrence of a variable.

• For variable coalitions associated with the first negative occurrence of a variable, since

𝛽−
1
> 4𝑝 − 2, it holds that

2𝑖
𝛽−
1
+2 > 2𝑖

𝛽−
1
+2 > 2𝑖−1

𝛽−
1

> 2𝑖−1
𝛽−
1
+1 > 2𝑖−1

𝛽−
1
+2 for every 𝑖 ∈ [𝑝]. Moreover,

it holds that
2𝑖

𝛽−
1
+2 <

2(𝑖+1)−1
𝛽−
1
+2 for every 𝑖 ∈ [𝑝 − 1] so all the values associated with ratios

preferred to the initial ones are different for all variable coalitions associated with the first

negative occurrence of a variable.

• For variable coalitions associated with the second occurrence of a literal, since 𝛽2 > 3𝑝 − 2,

it holds that
3𝑖
𝛽2+2 > 3𝑖−1

𝛽2+1 > 3𝑖−2
𝛽2

> 3𝑖−2
𝛽2+1 > 3𝑖−2

𝛽2+2 for every 𝑖 ∈ [𝑝]. Moreover, it holds that

3𝑖
𝛽2+2 <

3(𝑖+1)−2
𝛽2+2 for every 𝑖 ∈ [𝑝 − 1] so all the values associated with ratios preferred to the

initial ones are different for all variable coalitions associated with the second occurrence of

a literal.

It remains to check that the ratios associated with clause or variable coalitions do not interfere

with each other. Since 𝛽2 > 3𝑝𝛽−
1
+ 4𝑝 , it holds that the highest reachable ratio associated with a

variable coalition related to the second occurrence of a literal is smaller than the smallest reachable

ratio associated with a variable coalition related to the first negative occurrence of a variable, i.e.,

3𝑝

𝛽2+2 < 1

𝛽−
1
+2 . Since 𝛽

−
1
> 2𝑝𝛽+

1
+ 2𝑝 − 2, it holds that the highest reachable ratio associated with a

variable coalition related to the first negative occurrence of a variable is smaller than the smallest

reachable ratio associated with a variable coalition related to the first positive occurrence of a

variable, i.e.,
2𝑝

𝛽−
1
+2 < 1

𝛽+
1
+1 . Since 𝛽

+
1
> (2𝑝 + 1)𝛼 + 4𝑝 , it holds that the highest reachable ratio

associated with a variable coalition related to the first positive occurrence of a variable is smaller

than the smallest reachable ratio associated with a clause coalition, i.e.,
2𝑝+1
𝛽+
1
+2 < 1

𝛼+2 . Therefore,

all the reachable ratios are indeed different for all clause and variable coalitions. It follows that

the deviations described in the second part of the proof of Lemma A.2 are the only possible ones.

Hence the described cycle is actually the only possible one. □

C FRACTIONAL HEDONIC GAMES
The hardness reductions in this section are from the NP-complete problem Exact Cover by 3-Sets

[27]. An instance of Exact Cover by 3-Sets consists of a tuple (𝑅, 𝑆), where 𝑅 is a ground set

together with a set 𝑆 of 3-element subsets of 𝑅. A Yes-instance is an instance so that there exists a

subset 𝑆 ′ ⊆ 𝑆 that partitions 𝑅.
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Theorem 5.3. ∃-IS-Sequence-FHG is NP-hard and ∀-IS-Sequence-FHG is coNP-hard, even in

symmetric FHGs with non-negative weights. The former is even true if the initial partition is the

singleton partition.

We provide separate reductions for the two hardness results in the next lemmas.

Lemma C.1. ∃-IS-Sequence-FHG is NP-hard even in symmetric FHGs with non-negative weights

where the initial partition is the singleton partition.

Proof. We provide a reduction from Exact Cover by 3-Sets. Let (𝑅, 𝑆) be an instance of

Exact Cover by 3-Sets. The intuition of the proof is as follows. Elements from the ground set 𝑅

are represented by gadgets corresponding to a non-negative version of the game constructed in

Theorem 5.1. The sets 𝑠 in 𝑆 are represented by cliques of size 4 where one agent is irrelevant to

agents outside the clique, and the other three agents represent the three elements 𝑟 ∈ 𝑠 and are

linked to the respective gadgets representing 𝑟 . The correspondence occurs because all cliques

corresponding to a set 𝑠 can simultaneously prevent cycling in all gadgets corresponding to agents

in 𝑠 .

Let us specify the construction. We may assume that every 𝑟 ∈ 𝑅 occurs in at least one set

of 𝑆 . Let 𝑚𝑟 := |{𝑠 ∈ 𝑆 : 𝑟 ∈ 𝑠}| − 1 ≥ 0, for 𝑟 ∈ 𝑅. We define the symmetric FHG on agent

set 𝑁 , where the underlying graph consists of a 4-clique for every set in 𝑆 , and 𝑚𝑟 copies of

a non-negative version of the example from Theorem 5.1. Formally, 𝑁 =
⋃
𝑠∈𝑆 ({𝑡𝑠 } ∪ {𝑠𝑖 : 𝑖 ∈

𝑠}) ∪⋃
𝑟 ∈𝑅

⋃𝑚𝑟

𝑣=1
{𝑎𝑟,𝑣𝑤 , 𝑏𝑟,𝑣𝑤 , 𝑐𝑟,𝑣𝑤 : 𝑤 = 1, . . . , 5}, and non-negative, symmetric weights are given as

follows.

• For all 𝑟 ∈ 𝑅, 𝑣 ∈ {1, . . . ,𝑚𝑟 }, and𝑤 ∈ {1, . . . , 5},
– 𝑣 (𝑎𝑟,𝑣𝑤 , 𝑏𝑟,𝑣𝑤 ) = 𝑣 (𝑏𝑟,𝑣𝑤 , 𝑐𝑟,𝑣𝑤 ) = 𝑣 (𝑎𝑟,𝑣𝑤 , 𝑐𝑟,𝑣𝑤 ) = 228,

– 𝑣 (𝑎𝑟,𝑣𝑤 , 𝑎𝑟,𝑣𝑤+1) = 436, 𝑣 (𝑎𝑟,𝑣𝑤 , 𝑏𝑟,𝑣𝑤+1) = 228, 𝑣 (𝑎𝑟,𝑣𝑤 , 𝑐𝑟,𝑣𝑤+1) = 248,

– 𝑣 (𝑏𝑟,𝑣𝑤 , 𝑎𝑟,𝑣𝑤+1) = 223, 𝑣 (𝑏𝑟,𝑣𝑤 , 𝑏𝑟,𝑣𝑤+1) = 171, 𝑣 (𝑏𝑟,𝑣𝑤 , 𝑐𝑟,𝑣𝑤+1) = 236, and

– 𝑣 (𝑐𝑟,𝑣𝑤 , 𝑎𝑟,𝑣𝑤+1) = 223, 𝑣 (𝑐𝑟,𝑣𝑤 , 𝑏𝑟,𝑣𝑤+1) = 171, 𝑣 (𝑐𝑟,𝑣𝑤 , 𝑐𝑟,𝑣𝑤+1) = 188.

• 𝑣 (𝑡𝑠 , 𝑠𝑖 ) = 304, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑠 ,
• 𝑣 (𝑠 𝑗 , 𝑠𝑖 ) = 304, 𝑠 ∈ 𝑆, 𝑖, 𝑗 ∈ 𝑠 ,
• 𝑣 (𝑠𝑖 , 𝑎𝑖,𝑣

1
) = 304, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑠 , 𝑣 ∈ {1, . . . ,𝑚𝑟 }, and

• 𝑣 (𝑥,𝑦) = 0 for all agents 𝑥,𝑦 ∈ 𝑁 such that the weight is not defined, yet.

In the above definition, all indices are to be read modulo 5 (where the modulo function is assumed

to map to {1, . . . , 5}). For 𝑠 ∈ 𝑆 , define 𝑁 𝑠 = {𝑡𝑠 } ∪ {𝑠𝑖 : 𝑖 ∈ 𝑠}.
Assume first that (𝑅, 𝑆) is a Yes-instance and let 𝑆 ′ ⊆ 𝑆 be a partition of 𝑅. For 𝑟 ∈ 𝑅, let

𝜎𝑟 : {𝑠 ∈ 𝑆 \ 𝑆 ′ : 𝑟 ∈ 𝑠} → {1, . . . ,𝑚𝑟 } be a bijection. Note that the domain and image of 𝜎𝑟
have the same cardinality for every 𝑟 ∈ 𝑅, because 𝑆 ′ is a partition of 𝑅. Consider the partition

𝜋 =
⋃
𝑟 ∈𝑅

⋃𝑚𝑟

𝑣=1
{{𝑎𝑟,𝑣

2
, 𝑏
𝑟,𝑣
2
, 𝑐
𝑟,𝑣
2
, 𝑎
𝑟,𝑣
3
, 𝑏
𝑟,𝑣
3
, 𝑐
𝑟,𝑣
3
}, {𝑎𝑟,𝑣

4
, 𝑏
𝑟,𝑣
4
, 𝑐
𝑟,𝑣
4
, 𝑎
𝑟,𝑣
5
, 𝑏
𝑟,𝑣
5
, 𝑐
𝑟,𝑣
5
}, {𝑏𝑟,𝑣

1
, 𝑐
𝑟,𝑣
1
}}∪⋃𝑠∈𝑆 ′ {𝑁 𝑠 }∪⋃

𝑠∈𝑆\𝑆 ′ {{𝑡𝑠 }}∪{{𝑠𝑖 , 𝑎
𝑖,𝜎𝑖 (𝑠 )
1

} : 𝑖 ∈ 𝑠}. It is quickly checked that 𝜋 is IS. Moreover, 𝜋 can be reached by

deviations starting from the singleton partition, by forming the coalitions one by one. In particular,

coalitions of the type {𝑎𝑟,𝑣
2
, 𝑏
𝑟,𝑣
2
, 𝑐
𝑟,𝑣
2
, 𝑎
𝑟,𝑣
3
, 𝑏
𝑟,𝑣
3
, 𝑐
𝑟,𝑣
3
} can be formed by having 𝑎

𝑟,𝑣
3

join 𝑏
𝑟,𝑣
3
, forming a

coalition that is subsequently joined by 𝑐
𝑟,𝑣
3
, 𝑎
𝑟,𝑣
2
, 𝑏
𝑟,𝑣
2
, and finally 𝑐

𝑟,𝑣
2
. Hence, it is possible to reach

an IS partition with IS deviations, starting with the singleton partition.

Now, assume that it is possible to reach an IS partition 𝜋 by starting the dynamics from the

singleton partition. Define by 𝐺 = (𝑁, 𝐸) the graph with edge set 𝐸 = {{𝑑, 𝑒} : 𝑣 (𝑑, 𝑒) > 0}, a
combinatorial representation of the unweighted version of the FHG under consideration. Note that

all coalitions of 𝜋 are cliques in 𝐺 , because all agents that get part of a coalition of size at least 2

have positive utility and would block any further agent that does not award them positive utility.

Now, consider a set of agents 𝐷 := {𝑎𝑟,𝑣𝑤 , 𝑏𝑟,𝑣𝑤 , 𝑐𝑟,𝑣𝑤 : 𝑤 = 1, . . . , 5} for some 𝑟 ∈ 𝑅, 𝑣 ∈ {1, . . . ,𝑚𝑟 }.
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Assume for contradiction that for all agents 𝑑 ∈ 𝐷 , 𝜋 (𝑑) ⊆ 𝐷 . This yields an IS partition of the

game considered in Theorem 5.1. This is due to the fact that no agents with mutual negative utility

would form a coalition, and a deviation with negative weights would still be a deviation if these

weights are set to 0. This is a contradiction. Hence, some agent in 𝐷 forms a coalition with an

agent outside 𝐷 . By the fact that all coalitions in 𝜋 are cliques in 𝐺 , the only such agent can be

𝑎
𝑟,𝑣
1
. By the same fact, 𝜋 (𝑎𝑟,𝑣

1
) ∩ 𝐷 = {𝑎𝑟,𝑣

1
} and there exists a unique 𝑠 ∈ 𝑆 with 𝑟 ∈ 𝑠 such that

𝜋 (𝑎𝑟,𝑣
1
) = {𝑎𝑟,𝑣

1
, 𝑠𝑟 }.

Next, let 𝑠 ∈ 𝑆 . We claim that {𝑡𝑠 } ∈ 𝜋 or 𝑁 𝑠 ∈ 𝜋 . Otherwise, consider 𝑟 ∈ 𝑠 with 𝑠𝑟 ∉ 𝜋 (𝑡𝑠 ).
Again by the clique property, 𝑣𝑠𝑟 (𝜋) ≤ 304

2
and 𝜋 (𝑡𝑠 ) ⊆ 𝑁 𝑠 . Hence, 𝑣𝑠𝑟 (𝜋 (𝑡𝑠 ) ∪ {𝑠𝑟 }) ≥ 608

3
, and

every agent in 𝜋 (𝑡𝑠 ) would welcome 𝑠𝑟 . This contradicts the individual stability of 𝜋 .

Consider the set 𝑇 = {𝑠 ∈ 𝑆 : {𝑡𝑠 } ∈ 𝜋}. Then, for every 𝑠 ∈ 𝑇 and 𝑟 ∈ 𝑠 , there exists 𝑣 ∈
{1, . . . ,𝑚𝑟 } with 𝜋 (𝑠𝑟 ) = {𝑎𝑟,𝑣

1
, 𝑠𝑟 }. Otherwise, 𝜋 (𝑠𝑟 ) ⊆ 𝑁 𝑠 and 𝑡𝑠 can perform a deviation by

joining 𝜋 (𝑠𝑟 ). Hence, the sets in 𝑇 cover every element in 𝑟 ∈ 𝑅 exactly𝑚𝑟 times (in order to form

all the required coalitions of the type {𝑎𝑟,𝑣
1
, 𝑠𝑟 }). Since 𝑆 covers every 𝑟 ∈ 𝑅 exactly𝑚𝑟 + 1 times,

the set 𝑆 ′ = 𝑆 \𝑇 forms a partition of 𝑅. Hence, (𝑅, 𝑆) is a Yes-instance. □

Lemma C.2. ∀-IS-Sequence-FHG is coNP-hard even in symmetric FHGs with non-negative weights.

Proof. For this purpose, we prove the NP-hardness of the complement problem, which asks

whether there exists a cycle of IS deviations. We provide a reduction from Exact Cover by 3-Sets.

Let (𝑅, 𝑆) be an instance of Exact Cover by 3-Sets. Let 𝑙 = |𝑆 | − |𝑅 |/3. Choose 𝛼 with a

polynomial-size representation in the input size satisfying
𝑙
𝑙+1𝛼 < 152 < 𝑙+1

𝑙+2𝛼 . For the reduction to

work, any number satisfying these boundaries suffices, and for a polynomial-size representation,

one can for example use 𝛼 = 1

2
· 152

(
𝑙+1
𝑙

+ 𝑙+2
𝑙+1

)
.

Define the symmetric FHG on agent set 𝑁 where 𝑁 = 𝑅 ∪ {𝑟𝑠 : 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑠} ∪ {𝑠1, 𝑠2 : 𝑠 ∈
𝑆} ∪ {𝑎𝑤, 𝑏𝑤, 𝑐𝑤 : 𝑤 = 1, . . . , 5}. We define 𝐶 = {𝑎𝑤, 𝑏𝑤, 𝑐𝑤 : 𝑤 = 1, . . . , 5}. The utilities are given as

follows.

• For all𝑤 ∈ {1, . . . , 5}, reading indices modulo 5 (where the modulo function is assumed to

map to {1, . . . , 5}),
– 𝑣 (𝑎𝑤, 𝑏𝑤) = 𝑣 (𝑏𝑤, 𝑐𝑤) = 𝑣 (𝑎𝑤, 𝑐𝑤) = 228,

– 𝑣 (𝑎𝑤, 𝑎𝑤+1) = 436, 𝑣 (𝑎𝑤, 𝑏𝑤+1) = 228, 𝑣 (𝑎𝑤, 𝑐𝑤+1) = 248,

– 𝑣 (𝑏𝑤, 𝑎𝑤+1) = 223, 𝑣 (𝑏𝑤, 𝑏𝑤+1) = 171, 𝑣 (𝑏𝑤, 𝑐𝑤+1) = 236, and

– 𝑣 (𝑐𝑤, 𝑎𝑤+1) = 223, 𝑣 (𝑐𝑤, 𝑏𝑤+1) = 171, 𝑣 (𝑐𝑤, 𝑐𝑤+1) = 188.

• For all 𝑠 ∈ 𝑆 ,
– 𝑣 (𝑎1, 𝑠2) = 𝑣 (𝑠1, 𝑠2) = 𝛼 ,
– 𝑣 (𝑠1, 𝑟𝑠 ) = 𝛼 , 𝑣 (𝑟𝑠 , 𝑟 ) = 2𝛼 , 𝑟 ∈ 𝑆 , and

• 𝑣 (𝑥,𝑦) = 0 for all agents 𝑥,𝑦 ∈ 𝑁 such that the weight is not defined, yet.

Finally, define 𝜋0 = {{𝑟 } : 𝑟 ∈ 𝑅} ∪ {{𝑠1, 𝑖𝑠 , 𝑗𝑠 , 𝑘𝑠 } : {𝑖, 𝑗, 𝑘} = 𝑠 ∈ 𝑆} ∪ {{𝑎1} ∪ {𝑠2 : 𝑠 ∈ 𝑆}} ∪
{{𝑏1, 𝑐1}, {𝑎2, 𝑏2, 𝑐2, 𝑎3, 𝑏3, 𝑐3}, {𝑎4, 𝑏4, 𝑐4, 𝑎5, 𝑏5, 𝑐5}}. The reduction is illustrated in Figure 9.

We claim that (𝑅, 𝑆) is a Yes-instance if and only if the IS dynamics starting with 𝜋0 can cycle.

First assume that (𝑅, 𝑆) is a Yes-instance and let 𝑆 ′ ⊆ 𝑆 be a partition of 𝑅 by the sets in 𝑆 . We

consider three stages of deviations. In the first stage, the agents in a coalition with some 𝑠1 for

𝑠 ∈ 𝑆 ′ join the agents of type 𝑟𝑣 . This will leave all agents in {𝑠1 : 𝑠 ∈ 𝑆 ′} in singleton coalitions.

In the second stage, agents 𝑠2 for 𝑠 ∈ 𝑆 ′ join their copies 𝑠1. This leaves the agent 𝑎1 with a

utility of
𝑙
𝑙+1𝛼 < 152 = 𝑣𝑎1 ({𝑎1, 𝑏1, 𝑐1}). Therefore, we can have 𝑎1 join {𝑏1, 𝑐1}. From now on,

we consider the subgame induced by the agents in 𝐶 . In this subgame, the partition is currently

𝜎 = {{𝑎1, 𝑏1, 𝑐1}, {𝑎2, 𝑏2, 𝑐2, 𝑎3, 𝑏3, 𝑐3}, {𝑎4, 𝑏4, 𝑐4, 𝑎5, 𝑏5, 𝑐5}}. We can cycle indefinitely by letting the
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𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼

𝑗 𝑘 𝑥𝑖 𝑦 𝑧

2𝛼 2𝛼 2𝛼 2𝛼

2𝛼 2𝛼2𝛼 2𝛼 2𝛼

𝑎1

𝛼 𝛼 𝛼

𝜋0

Fig. 9. Schematic of the symmetric FHG of the hardness construction in Lemma C.2. The figure is based

on the instance ({𝑖, 𝑗, 𝑘, 𝑥,𝑦, 𝑧}, {𝑡,𝑢, 𝑣}) with 𝑡 = {𝑖, 𝑗, 𝑘}, 𝑢 = { 𝑗, 𝑘, 𝑥}, and 𝑣 = {𝑥,𝑦, 𝑧}. The non-singleton
coalitions above 𝑎1 of the initial partition 𝜋0 are depicted in gray. The only possibility for 𝑎1 to deviate is

if two of 𝑡2, 𝑢2, or 𝑣2 perform a deviation, which in turn can only happen if the coalition partners of their

respective counterparts 𝑡1, 𝑢1, or 𝑣1 have been deviating before.

agents of one coalition of size 6 in 𝜎 join the coalition of size 3. More exactly, let 𝑎5, 𝑏5, and 𝑐5
join {𝑎1, 𝑏1, 𝑐1}. Then, we reach the partition {{𝑎1, 𝑏1, 𝑐1, 𝑎5, 𝑏5, 𝑐5}, {𝑎2, 𝑏2, 𝑐2, 𝑎3, 𝑏3, 𝑐3}, {𝑎4, 𝑏4, 𝑐4}}
which only differs from 𝜎 by an index shift. Hence, we can repeat the same triplet of deviations

indefinitely.

Conversely, assume that there exists an infinite sequence of deviations starting from 𝜋0. Agents

of the type 𝑟𝑠 can perform at most one deviation joining the agent 𝑟 if she is still in a singleton

coalition. After this deviation, they land in a coalition that cannot be altered anymore. Therefore,

agents of the type 𝑟 for 𝑟 ∈ 𝑅 will never deviate, because they cannot receive positive utility, unless

joining an agent of the type 𝑟𝑠 , which will never leave her coalition with 𝑠1 unless joining 𝑟 . Agents

of the type 𝑠1 will never perform a deviation, because every agent that leaves her coalition can

never be joined again, and the agent 𝑠2 can only perform a deviation by joining 𝑠1. In turn, agents

of the type 𝑠2 can only deviate if their copy 𝑠1 is forced into a singleton coalition. At this point, they

can deviate exactly once, forming a coalition that can never be changed again.

Agents in 𝐶 \ {𝑎1} can only perform a deviation after 𝑎1 has performed a deviation. Thus, the

only possibility for an infinite length of deviations is if 𝑎1 performs a deviation. Since 𝑎1 cannot

join the coalition of agents of the type 𝑠2 again, once they left her coalition, the only possible

deviation is by joining the coalition {𝑏1, 𝑐1}, obtaining a utility of 152. The utility of 𝑎1 for any subset
𝐶 ⊆ 𝜋0 (𝑎1) that can arise as her coalition before she deviated for the first time is 𝑣𝑎1 (𝐶) = ℎ

1+ℎ𝛼 for

ℎ = 𝐶 ∩ {𝑠2 : 𝑠 ∈ 𝑆}. It follows that 𝑎1 can only deviate once all except 𝑙 agents of the type 𝑠2 have

left her coalition.

Now let 𝜋 ′
be the partition right before the first deviation of 𝑎1 and define 𝑆 ′ = {𝑠 ∈ 𝑆 : 𝑠2 ∈

𝜋 ′ (𝑠1)}. Then, 𝑆 ′ consists of exactly |𝑅 |/3 elements. Recall our discussion of which deviations must
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𝑎1
1

𝑎1
2

𝑎1
3

|𝑆 | − |𝑅 |
3

many

𝑗1 𝑘1 𝑥1

𝜋0

Fig. 10. Schematic of the simple asymmetric FHG of the hardness construction in Lemma C.3. The figure

is based on the instance ({𝑖, 𝑗, 𝑘, 𝑥,𝑦, 𝑧}, {𝑡,𝑢, 𝑣}) with 𝑡 = {𝑖, 𝑗, 𝑘}, 𝑢 = { 𝑗, 𝑘, 𝑥}, and 𝑣 = {𝑥,𝑦, 𝑧}. The non-
singleton coalitions of the initial partition 𝜋0 are depicted in gray.

have occurred such that agents of the type 𝑠2 can perform a deviation. For this, all of the agents 𝑟𝑠

for 𝑟 ∈ 𝑠 must have deviated. Since the agent 𝑟 can be joined by at most one such agent, the sets

in 𝑆 ′ must be disjoint. Hence, the only way that all except 𝑙 agents of type 𝑠2 have left 𝜋0 (𝑎1) is if
𝑆 ′ covers precisely the elements of 𝑅. In total, 𝑆 ′ forms a partition of 𝑅. Consequently, (𝑅, 𝑆) is a
Yes-instance. □

Theorem 5.6. ∃-IS-Sequence-FHG is NP-hard and ∀-IS-Sequence-FHG is coNP-hard, even in

simple asymmetric FHGs.

We prove the two hardness results by providing separate reductions for each problem in the next

two lemmas.

Lemma C.3. ∃-IS-Sequence-FHG is NP-hard even in simple asymmetric FHGs.

Proof. We provide a reduction from Exact Cover by 3-Sets.

Let (𝑅, 𝑆) be an instance of Exact Cover by 3-Sets. We may assume that every 𝑟 ∈ 𝑅 occurs in at

least one set of 𝑆 . Let𝑚𝑟 := |{𝑠 ∈ 𝑆 : 𝑟 ∈ 𝑠}|−1 ≥ 0, and 𝑙 = |𝑆 |− |𝑅 |/3. Define the simple asymmetric

FHG based on the directed graph 𝐺 = (𝑉 ,𝐴), where 𝑉 =
⋃
𝑟 ∈𝑅{𝑟1, . . . , 𝑟𝑚𝑟

} ∪ 𝑆 ∪ ⋃
𝑠∈𝑆 {𝑟𝑠 : 𝑟 ∈

𝑠} ∪⋃𝑙
𝑣=1{𝑎𝑣1, 𝑎𝑣2, 𝑎𝑣3} and 𝐴 =

⋃
𝑠∈𝑆 ({(𝑠, 𝑟𝑠 ), (𝑟𝑠 , 𝑟1), . . . , (𝑟𝑠 , 𝑟𝑚𝑟

) : 𝑟 ∈ 𝑆} ∪ {(𝑠, 𝑎1
1
), . . . , (𝑠, 𝑎𝑙

1
)}) ∪⋃𝑙

𝑣=1{(𝑎𝑣1, 𝑎𝑣2), (𝑎𝑣2, 𝑎𝑣3), (𝑎𝑣3, 𝑎𝑣1)}.
Finally, define the partition 𝜋0 =

⋃
𝑎∈𝑉 \(𝑆∪{𝑟𝑠 : 𝑠∈𝑆,𝑟 ∈𝑠 }) {{𝑎}} ∪ {{𝑠, 𝑖𝑠 , 𝑗𝑠 , 𝑘𝑠 } : {𝑖, 𝑗, 𝑘} = 𝑠 ∈

𝑆}. The reduction is illustrated in Figure 10. It depicts the simple asymmetric directed graph

corresponding to a small source instance together with the associated initial partition.

We claim that (𝑅, 𝑆) is a Yes-instance if and only if the IS dynamics starting with 𝜋0 can converge.

Assume first that (𝑅, 𝑆) is a Yes-instance and let 𝑆 ′ ⊆ 𝑆 be a partition of 𝑅 by sets in 𝑆 . Consider

the following deviations. First, the agents in the set

⋃
𝑠∈𝑆\𝑆 ′ {𝑟𝑠 : 𝑟 ∈ 𝑠} join one by one the agents

in

⋃
𝑟 ∈𝑅{𝑟1, . . . , 𝑟𝑚𝑟

} to end up in coalitions of size 2. Since 𝑆 ′ covers every element of 𝑅 exactly

once, this step can be performed. Next, the agents {𝑠 ∈ 𝑆 \ 𝑆 ′} join the agents {𝑎1
1
, . . . , 𝑎𝑙

1
} in an

arbitrary bijective way. Finally, agents 𝑎𝑣
2
join agents 𝑎𝑣

3
. It is quickly checked that the resulting

partition is individually stable.

Conversely, assume that there exists a converging sequence of deviations starting with the

partition 𝜋0 and terminating in partition 𝜋∗
. Then, one agent of every set {𝑎𝑣

1
, 𝑎𝑣

2
, 𝑎𝑣

3
} must form a
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Fig. 11. Schematic of the simple asymmetric FHG of the hardness construction in Lemma C.4. The figure

is based on the instance ({𝑖, 𝑗, 𝑘, 𝑥,𝑦, 𝑧}, {𝑡,𝑢, 𝑣}) with 𝑡 = {𝑖, 𝑗, 𝑘}, 𝑢 = { 𝑗, 𝑘, 𝑥}, and 𝑣 = {𝑥,𝑦, 𝑧}. The non-
singleton coalitions of the initial partition 𝜋0 are depicted in gray. The only possibility for 𝑏1 to deviate is

if one of 𝑡2, 𝑢2, or 𝑣2 performs a deviation, which in turn can only happen if the coalition partners of her

respective counterparts 𝑡1, 𝑢1, or 𝑣1 have been deviating before.

coalition with an agent outside of this set. The only possibility for this is if 𝑎𝑣
1
is joined by an agent

of type 𝑠 corresponding to a set 𝑠 ∈ 𝑆 . Every such agent can only perform a deviation if all the other

agents in her initial coalition have deviated before. Similar to the proof of Lemma C.2, each agent

of the type 𝑟 𝑗 for 𝑟 ∈ 𝑅 and 𝑗 ∈ [𝑚𝑟 ] can only joined by exactly one agent of the type 𝑟𝑠 , while this

is the only possible deviation that agents of the type 𝑟 𝑗 can do. Hence, the only possibility that 𝑙

agents of the type 𝑠 deviate to break cycling is if they correspond to 𝑙 sets from 𝑆 which cover each

element 𝑟 ∈ 𝑅 for𝑚𝑟 times. Hence, the remaining sets in 𝑆 form exactly a partition of the elements

in 𝑅. In other words, the set 𝑆 ′ = {𝑠 ∈ 𝑆 : 𝜋0 (𝑠) = 𝜋∗ (𝑠)} forms a partition of 𝑅. Hence, (𝑅, 𝑆) is a
Yes-instance. □

Lemma C.4. ∀-IS-Sequence-FHG is coNP-hard even in simple asymmetric FHGs.

Proof. For this purpose, we prove the NP-hardness of the complement problem, which asks

whether there exists a cycle of IS deviations. We provide a reduction from Exact Cover by 3-Sets.

Let (𝑅, 𝑆) be an instance of Exact Cover by 3-Sets. We may assume that every 𝑟 ∈ 𝑅 occurs

in at least one set of 𝑆 . Let 𝑚𝑟 := |{𝑠 ∈ 𝑆 : 𝑟 ∈ 𝑠}| − 1 ≥ 0, and 𝑙 = |𝑅 |/3. Define the simple

asymmetric FHG based on the graph 𝐺 = (𝑉 ,𝐴), where 𝑉 = {𝑟1, . . . , 𝑟𝑚𝑟
: 𝑟 ∈ 𝑅} ∪ {𝑟𝑠 : 𝑠 ∈ 𝑆, 𝑟 ∈

𝑠} ∪ {𝑠1, 𝑠2 : 𝑠 ∈ 𝑆} ∪ {𝑏1, 𝑏2, 𝑏3} ∪ {𝑎1, . . . , 𝑎𝑙 }, and 𝐴 =
⋃
𝑠∈𝑆 ({(𝑟𝑠 , 𝑟1), . . . , (𝑟𝑠 , 𝑟𝑚𝑠

), (𝑠1, 𝑟𝑠 ) : 𝑟 ∈
𝑠} ∪ {(𝑠1, 𝑠2),(𝑏1, 𝑠2)}) ∪ {(𝑎𝑣, 𝑏1) : 𝑣 = 1, . . . , 𝑙} ∪ {(𝑏2, 𝑏3), (𝑏3, 𝑏1)}.

Finally, define 𝜋0 = {{𝑟1}, . . . , {𝑟𝑚𝑟
} : 𝑟 ∈ 𝑅} ∪ {{𝑠1, 𝑖𝑠 , 𝑗𝑠 , 𝑘𝑠 } : {𝑖, 𝑗, 𝑘} = 𝑠 ∈ 𝑆} ∪ {{𝑏1} ∪ {𝑠2 : 𝑠 ∈

𝑆} ∪ {𝑎1, . . . , 𝑎𝑙 }} ∪ {{𝑏2}, {𝑏3}}. The reduction is illustrated in Figure 11.

We claim that (𝑅, 𝑆) is a Yes-instance if and only if the IS dynamics starting with 𝜋0 can cycle.

First assume that (𝑅, 𝑆) is a Yes-instance and let 𝑆 ′ ⊆ 𝑆 be a partition of 𝑅 by the sets in 𝑆 . We

consider three stages of deviations. In the first stage, the agents in a coalition with some 𝑠1 for

𝑠 ∉ 𝑆 ′ join the agents of type 𝑟𝑣 . This will leave all agents in {𝑠1 : 𝑠 ∉ 𝑆 ′} in singleton coalitions. In

the second stage, agents 𝑠2 for 𝑠 ∉ 𝑆
′
join their copies 𝑠1. This leaves the agent 𝑏1 with a utility of
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𝑙/(2𝑙 + 1) < 1

2
. Hence, we start cycling in the final stage by having 𝑏1 join 𝑏2, 𝑏2 join 𝑏3, 𝑏3 join 𝑏1,

and repeating these deviations.

Now, assume that there exists an infinite sequence of deviations starting from 𝜋0. Agents of the

type 𝑟𝑣 for 𝑣 = 1, . . . ,𝑚𝑟 will never deviate, because they cannot receive positive utility. Agents of

the type 𝑟𝑠 for 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑠 can only deviate once to join an agent of the former type. Then, no agent

can join their coalition, because the only agents 𝑟𝑠 would allow cannot deviate. In addition, 𝑟𝑠 can

never improve her utility again. Hence, this coalition will stay the same for the remainder of the

dynamics. Agents of the type 𝑠1 will never deviate, because they are initially in their best coalition,

and every agent that leaves can never be joined again. Next, agents of the type 𝑠2 can only deviate

if their copy 𝑠1 is forced into a singleton coalition. At this point, they can deviate exactly once,

forming a coalition that can never be changed again. Hence, after an agent 𝑠2 performs a deviation,

the agent 𝑠1 has utility 0 for the remainder of the dynamics. We refer to this fact as (∗). Moreover,

since there are only 3|𝑆 | − |𝑅 | agents of the type 𝑟𝑣 , at most
3 |𝑆 |− |𝑅 |

3
= |𝑆 | − |𝑅 |

3
agents of the type 𝑠2

can deviate, which means that at least
|𝑅 |
3

agents of the type 𝑠1 maintain a positive utility. We refer

to this fact as (Δ).
Agents 𝑎𝑣 for 1 ≤ 𝑣 ≤ 𝑙 can never deviate unless 𝑏1 leaves their coalition. Agents 𝑏2 and 𝑏3 can

only be involved in a deviation at most once until 𝑏1 forms a coalition of her own or performs a

deviation. Since 𝑏1 can never form a coalition of her own, the only possibility for an infinite length

of deviations is if 𝑏1 performs a deviation. Since 𝑏1 cannot join the coalition of agents of the type 𝑠2
again, once they left her coalition, the only possible deviation is by joining the agent 𝑏2 obtaining a

utility of
1

2
. The utility of 𝑏1 for any subset 𝐶 ⊆ 𝜋0 (𝑏1) that can arise before she deviated for the

first time is 𝑣𝑏1 (𝐶) = ℎ
𝑙+1+ℎ for ℎ = |𝐶 ∩ {𝑠2 : 𝑠 ∈ 𝑆}|. It follows that 𝑏1 can only deviate once all

except 𝑙 agents of the type 𝑠2 have left her coalition.

Now let 𝜋 ′
be the partition right before the first deviation of 𝑏1 and define 𝑆

′ = {𝑠 ∈ 𝑆 : 𝑣𝑠1 (𝜋 ′) >
0}. By (∗) and because at least |𝑆 | − 𝑙 agents have left 𝑏1, we know that |𝑆 ′ | ≤ |𝑆 | − (|𝑆 | − 𝑙) = |𝑅 |/3.
This, together with (Δ) implies that 𝑆 ′ consists of exactly |𝑅 |/3 elements. By the distribution

of agents of type 𝑟𝑣 , the only way that all except 𝑙 agents of type 𝑠2 have left 𝜋0 (𝑏1) is if 𝑆 ′
covers precisely the elements of 𝑅. Hence, 𝑆 ′ forms a partition of 𝑅. Consequently, (𝑅, 𝑆) is a
Yes-instance. □

Theorem 5.7. ∃-IS-Sequence-FHG is NP-hard even in simple FHGs when starting from the singleton

partition.

Proof. The reduction is from Exact Cover by 3-Sets.

Let an instance (𝑅, 𝑆) of Exact Cover by 3-Sets be given and set 𝑙 = |𝑆 | − |𝑅 |
3
. We construct

the simple FHG induced by the following directed graph 𝐺 = (𝑉 ,𝐴). Let 𝑉 = {𝑟1, 𝑟2, 𝑟3 : 𝑟 ∈
𝑅} ∪ {𝑠𝑖𝑣 : 𝑣 = 1, 2, 𝑖 ∈ 𝑠 for 𝑠 ∈ 𝑆} ∪ {𝑡𝑤𝑣 : 𝑣 = 1, 2, 3,𝑤 = 1, . . . , 𝑙} and edges given by 𝐴 =

{(𝑟1, 𝑟2), (𝑟2, 𝑟3), (𝑟3, 𝑟1) : 𝑟 ∈ 𝑅} ∪ {(𝑟1, 𝑠𝑟1), (𝑠𝑟1, 𝑟1) : 𝑟 ∈ 𝑠 for 𝑠 ∈ 𝑆} ∪ {(𝑠𝑖
1
, 𝑠𝑖

2
), (𝑠𝑖

2
, 𝑠𝑖

1
) : 𝑖 ∈ 𝑠 for 𝑠 ∈

𝑆} ∪ {(𝑡𝑤
1
, 𝑡𝑤
2
), (𝑡𝑤

2
, 𝑡𝑤
3
), (𝑡𝑤

3
, 𝑡𝑤
1
) : 𝑤 = 1, . . . , 𝑙} ∪ {(𝑡𝑤

1
, 𝑠𝑖

1
) : 𝑤 = 1, . . . , 𝑙, 𝑖 ∈ 𝑠 for 𝑠 ∈ 𝑆}. The

construction is illustrated in Figure 12. We define 𝑇𝑤 = {𝑡𝑤
1
, 𝑡𝑤
2
, 𝑡𝑤
3
} for𝑤 = 1, . . . , 𝑙 .

Assume first that there exists a 3-cover of 𝑅 through sets in 𝑆 and let 𝑆 ′ ⊆ 𝑆 be a set of 3-

element sets partitioning 𝑅. We will start by defining a partition that we can reach from the

singleton partition. To this end, we consider two functions that help us to define coalitions. Let

𝜎 : {1, . . . , 𝑙} → 𝑆 \ 𝑆 ′ be a bijection and let 𝜏 : 𝑅 → 𝑆 ′ be the function defined by 𝜏 (𝑟 ) = 𝑠 for the
unique 𝑠 ∈ 𝑆 ′ with 𝑟 ∈ 𝑠 , i.e., the function that maps an element of 𝑅 to its partition class. By this,

we can consider agents 𝜏 (𝑟 )𝑟
1
and 𝜎 (𝑤)𝑖

1
which associate agents in 𝑟 or elements in [𝑙] with specific

agents representing sets in 𝑆 ′ and 𝑆 \ 𝑆 ′.
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𝑖2 𝑖3
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𝑗2 𝑗3
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2
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2

𝑢 = {𝑖, 𝑗, 𝑘 }

𝑡1
1

𝑡1
2

𝑡1
3

𝑡2
1

𝑡2
2

𝑡2
3

𝑡𝑙
1

𝑡𝑙
2

𝑡𝑙
3

. . .

𝑙 = |𝑆 | − |𝑅 |
3

many

Fig. 12. Schematic of the simple FHG of the hardness construction in Theorem 5.7. Bidirected edges indicate

a mutual utility of 1.

We define the partition of agents 𝜋 = {{𝑟2, 𝑟3}, {𝑟1, 𝜏 (𝑟 )𝑟1} : 𝑟 ∈ 𝑅} ∪ {{𝑡𝑤
1
} ∪ {𝜎 (𝑤)𝑖

1
: 𝑖 ∈

𝜎 (𝑤)} : 𝑤 = 1, . . . , 𝑙} ∪ {{𝑠𝑖
2
} : 𝑠 ∈ 𝑆} ∪ {{𝑡𝑤

2
, 𝑡𝑤
3
} : 𝑤 = 1, . . . , 𝑙}.

Note that 𝜋 is IS. Let 𝑖 ∈ 𝑅 and 𝑤 ∈ [𝑙]. Agents of the type 𝑖2 or 𝑡𝑤
2
are in their best coalitions.

Agents of the type 𝑖3, 𝑡
𝑤
3
, or 𝑠𝑖

2
could only obtain positive utility by joining a coalition of which at least

one agent would get worse if they joined. Agents of the type 𝑖1 or 𝑡
𝑤
1
cannot join another coalition

that gives them positive utility because this would be blocked by an agent in that coalition. In

particular, 𝑖1 cannot join a coalition {𝑡 𝑗
1
, 𝑡𝑘
1
, 𝑡 𝑣
1
, 𝜎−1 (𝑡)} for 𝑡 ∈ 𝑆 \𝑆 ′ with 𝑖 ∈ 𝑡 , because 𝜎−1 (𝑡) blocks

this. Similarly, 𝑡𝑤
1
cannot join a coalition {𝑠𝑖

1
, 𝑖1} for 𝑖 ∈ 𝑅 or a coalition {𝑡𝑥

1
} ∪ {𝜎 (𝑥)𝑖

1
: 𝑖 ∈ 𝜎 (𝑥)}

for 𝑥 ≠ 𝑤 , because this is blocked by 𝑖1 and 𝑡
𝑥
1
, respectively. Finally, agents of the type 𝑠𝑖

1
obtain

utility 1/2 and cannot join 𝑠𝑖
2
. Any other deviation to a coalition that gives them positive utility is

blocked. Hence, 𝜋 is an IS partition of agents.

Note that 𝜋 can be obtained by IS deviations from the singleton partition by forming each of the

coalitions in 𝜋 . In particular, coalitions of the type {𝑡𝑤
1
} ∪ {𝜎 (𝑤)𝑖

1
: 𝑖 ∈ 𝜎 (𝑤)} are formed by letting

𝑡𝑤
1
join 𝜎 (𝑤)𝑖

1
for an arbitrary 𝑖 ∈ 𝜎 (𝑤) and then the two 𝜎 (𝑤) 𝑗

1
for 𝑗 ∈ 𝜎 (𝑤) \ {𝑖} join one after

another. This shows that we find a converging sequence if (𝑅, 𝑆) is a Yes-instance.
Conversely, assume that there exists an IS partition 𝜋 of the agents that can be reached by IS

deviations starting from the singleton partition. We denote the sequence of partitions by 𝜋0, . . . , 𝜋𝐿
for some integer 𝑙 , where 𝜋0 = {{𝑣} : 𝑣 ∈ 𝑉 } is the singleton partition, 𝜋𝐿 = 𝜋 , and partition 𝜋𝑝+1
can be reached from partition 𝜋𝑝 by an IS deviation of agent 𝑧𝑝 for 0 ≤ 𝑝 ≤ 𝑙 − 1.

We start with a technical invariant of the IS dynamics that turns out to be very useful in

determining the structure of the coalitions that agents of the type 𝑟1 and 𝑡
𝑤
1
eventually will be part

of.

To formulate the claim, denote 𝑆1 = {𝑠𝑖
1
: 𝑖 ∈ 𝑠 for 𝑠 ∈ 𝑆}, 𝑉 𝑟 = {𝑟1, 𝑟2, 𝑟3} for 𝑟 ∈ 𝑅, and

N = {𝑟1 : 𝑟 ∈ 𝑅}∪{𝑡𝑤
1
: 𝑤 = 1, . . . , 𝑙}∪{𝑠𝑖

2
: 𝑖 ∈ 𝑠 for 𝑠 ∈ 𝑆}. The setN contains precisely the agents

that have a directed edge to or from an agent in 𝑆1, i.e., the outgoing and incoming neighbors of

agents in 𝑆1. We simultaneously pose the following claims for 0 ≤ 𝑝 ≤ 𝐿:
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• 𝜋𝑝 (𝑟3) ⊆ 𝑉 𝑟 for 𝑟 ∈ 𝑅,
• 𝜋𝑝 (𝑟2) ⊆ 𝑉 𝑟 or 𝜋𝑝 (𝑟2) ⊆ {𝑟1, 𝑟2} ∪ {𝑠𝑟

1
: 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑠} for 𝑟 ∈ 𝑅,

• 𝜋𝑝 (𝑡𝑤𝑣 ) ⊆ 𝑇𝑤 for 𝑣 = 1, 2,𝑤 = 1, . . . , 𝑙 ,

• 𝑉 𝑟 ,𝑇𝑤 ∉ 𝜋𝑝 for 𝑟 ∈ 𝑅 and𝑤 = 1, . . . , 𝑙 ,

• 𝜋𝑝 (𝑠𝑖2) ⊆ {𝑠𝑖
1
, 𝑠𝑖

2
} for 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑠 ,

• 𝜋𝑝 (𝑎) ∩ N = {𝑎}, for 𝑎 ∈ N , and

• 𝜋𝑝 (𝑎) ∩ 𝑆1 ≠ ∅ implies 𝑣𝑎 (𝜋𝑝 ) > 0, for 𝑎 ∈ N .

The claim is initially true for the singleton partition 𝜋0. Assume that it holds after iteration 𝑝 for

0 ≤ 𝑝 ≤ 𝐿 − 1. Consider the agent 𝑧𝑝 that performs the IS deviation to reach 𝜋𝑝+1. If 𝑧𝑝 ∉ 𝑆1 ∪N ,

the claim holds for 𝑝 +1 because these agents can only join the coalition with agents in their 3-cycle

and if they want to join the coalition of an agent in N , this agent will block it if she already forms

a coalition with an agent in 𝑆1.

If 𝑧𝑝 ∈ N , she will only deviate if she receives positive utility afterwards. The claim is true by

induction if this positive utility comes from an agent outside 𝑆1. Otherwise, she joins the coalition

of 𝑥 ∈ 𝑆1. Then, 𝜋𝑝 (𝑥) ∩ N = ∅, because every agent 𝑦 ∈ 𝜋𝑝 (𝑦) ∩ N would block the inclusion of

agent 𝑧𝑝 (by the final claim). In addition, since 𝑧𝑝 is the deviating agent, she will receive positive

utility after this deviation. Hence, all claims hold.

Finally, if 𝑧𝑝 ∈ 𝑆1, she joins an agent in N (otherwise she would not receive positive utility in

𝜋𝑝+1). If she joins an agent of type 𝑠𝑖
2
, the claim follows because {𝑠𝑖

2
} ∈ 𝜋𝑝 by induction. If she joins

an agent of type 𝑖1 where 𝑖 ∈ 𝑠 , then 𝑖3 ∉ 𝜋𝑝 (𝑖1) (this agent would block the deviation). Hence, the

claim for the agent 𝑖2 follows by induction. In addition, the claim for the agent 𝑖1 follows because

no agent from N joins and she receives positive utility through 𝑠𝑖
1
afterwards. Other IS deviations

for the agents in 𝑆1 are not possible. Together, the claims are established. In particular, they all hold

for the IS partition 𝜋 .

We apply the claims to show that for every 𝑤 ∈ {1, . . . , 𝑙}, there exist 𝑠 ∈ 𝑆 and 𝑖 ∈ 𝑠 with

𝑠𝑖
1
∈ 𝜋 (𝑡𝑤

1
). Otherwise, 𝜋 (𝑡𝑤𝑣 ) ⊆ 𝑇𝑤 for 𝑣 = 1, 2, 3 and 𝑇𝑤 ∉ 𝜋 . Hence, 𝜋 is not individually stable.

Now, fix 𝑤 ∈ {1, . . . , 𝑙} and let 𝑠 ∈ 𝑆 and 𝑖 ∈ 𝑠 with 𝑠𝑖
1
∈ 𝜋 (𝑡𝑤

1
). We claim that 𝜋 (𝑡𝑤

1
) =

{𝑡𝑤
1
} ∪ {𝑠 𝑗

1
: 𝑗 ∈ 𝑠}. By the claims, 𝜋 (𝑡𝑤

1
) ⊆ {𝑡𝑤

1
} ∪ 𝑆1. Under this condition, 𝑣𝑠𝑢

1

(𝜋) ≤ 1

2
and

𝑣𝑠𝑢
1

(𝜋) = 1

2
only if 𝜋 (𝑡𝑤

1
) = {𝑡𝑤

1
} ∪ {𝑠 𝑗

1
: 𝑗 ∈ 𝑠}. Note that {𝑠𝑖

2
} ∈ 𝜋 . Hence, 𝑣𝑠𝑢

1

(𝜋) ≥ 1

2
since

otherwise 𝜋 is not IS. The claim follows.

Define 𝑆 ′ = 𝑆 \ {𝑠 ∈ 𝑆 : 𝑡𝑤
1
∈ 𝜋 (𝑠𝑖

1
) for 𝑖 ∈ 𝑠}. The coalitions of type {𝑡𝑤

1
} ∪ {𝑠 𝑗

1
: 𝑗 ∈ 𝑠} imply that

|𝑆 ′ | = |𝑆 | − (|𝑆 | − |𝑅 |/3) = |𝑅 |/3.
By the above claims, for every 𝑟 ∈ 𝑅, there exists 𝑠 ∈ 𝑆 with 𝑟 ∈ 𝑠 and 𝑠𝑟

1
∈ 𝜋 (𝑟1). In particular,

𝑠 ∈ 𝑆 ′. Hence, ⋃𝑠∈𝑆 ′ 𝑠 = 𝑅 and since |𝑆 ′ | = |𝑅 |/3 and |𝑠 | = 3 for all 𝑠 ∈ 𝑆 ′, the sets in 𝑆 ′ must be

disjoint. Hence, (𝑅, 𝑆) is a Yes-instance. □

D DICHOTOMOUS HEDONIC GAMES
Theorem 6.2. ∃-IS-Sequence-DHG is NP-hard even when starting from the singleton partition,

and ∀-IS-Sequence-DHG is coNP-hard.

We prove the two hardness results by providing separate reductions for each problem in the next

two lemmas.

Lemma D.1. ∃-IS-Sequence-DHG is NP-hard even when starting from the singleton partition.

Proof. Let us perform a reduction from (3,B2)-SAT as defined in the beginning of Appendix A.

Given an instance of (3,B2)-SAT, we construct a DHG as follows.

For each clause 𝐶 𝑗 , for 1 ≤ 𝑗 ≤ 𝑚, we create a clause-agent 𝑘 𝑗 and agents 𝑘2𝑗 and 𝑘
3

𝑗 . For each

variable 𝑥𝑖 , for 1 ≤ 𝑖 ≤ 𝑝 , we create a variable-agent 𝑣𝑖 and agents 𝑣2𝑖 and 𝑣
3

𝑖 . The agents 𝑘
2

𝑗 and 𝑘
3

𝑗
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Table 6. Coalitions approved by the agents in the reduced instance of Lemma D.1, for every 1 ≤ 𝑗 ≤ 𝑚,

1 ≤ 𝑖 ≤ 𝑝 and ℓ ∈ {1, 2}. Notation 𝑙𝑖𝑡𝑟
𝑗
stands for the literal-agent associated with the 𝑟 th literal of clause 𝐶 𝑗

(1 ≤ 𝑟 ≤ 3) and 𝑐𝑙 (𝑥 ℓ
𝑖
) (or 𝑐𝑙 (𝑥 ℓ𝑖 )) denotes the index of the clause to which literal 𝑥 ℓ

𝑖
(or 𝑥 ℓ𝑖 ) belongs. All the

coalitions that are not mentioned are disapproved by the agents.

Agents Approved coalitions

𝑘 𝑗 {𝑘 𝑗 , 𝑙𝑖𝑡1𝑗 }, {𝑘 𝑗 , 𝑙𝑖𝑡2𝑗 }, {𝑘 𝑗 , 𝑙𝑖𝑡3𝑗 }, {𝑘 𝑗 , 𝑘2𝑗 }
𝑣𝑖 {𝑣𝑖 , 𝑦1𝑖 , 𝑦2𝑖 }, {𝑣𝑖 , 𝑦

1

𝑖 , 𝑦
2

𝑖 }, {𝑣𝑖 , 𝑣2𝑖 }
𝑦ℓ𝑖 {𝑦ℓ𝑖 , 𝑦3−ℓ𝑖 }, {𝑦ℓ𝑖 , 𝑦3−ℓ𝑖 , 𝑣𝑖 }, {𝑦ℓ𝑖 , 𝑘𝑐𝑙 (𝑥 ℓ𝑖 ) }
𝑦ℓ𝑖 {𝑦ℓ𝑖 , 𝑦3−ℓ𝑖 }, {𝑦ℓ𝑖 , 𝑦3−ℓ𝑖 , 𝑣𝑖 }, {𝑦ℓ𝑖 , 𝑘𝑐𝑙 (𝑥 ℓ𝑖 ) }
𝑘2𝑗 {𝑘2𝑗 , 𝑘3𝑗 }
𝑘3𝑗 {𝑘 𝑗 , 𝑘3𝑗 }
𝑣2𝑖 {𝑣2𝑖 , 𝑣3𝑖 }
𝑣3𝑖 {𝑣𝑖 , 𝑣3𝑖 }

(or 𝑣2𝑖 and 𝑣
3

𝑖 ) are used to form a gadget involving clause-agent 𝑘 𝑗 (or variable-agent 𝑣𝑖 ) to reproduce

the counterexample provided in the proof of Proposition 6.1. For each ℓ th occurrence (ℓ ∈ {1, 2}) of
a positive literal 𝑥𝑖 (or negative literal 𝑥𝑖 ), we create a literal-agent 𝑦

ℓ
𝑖 (or 𝑦

ℓ
𝑖 ). Given a clause 𝐶 𝑗 , we

denote the three corresponding literal-agents by 𝑙𝑖𝑡1𝑗 , 𝑙𝑖𝑡
2

𝑗 , and 𝑙𝑖𝑡
3

𝑗 . The initial partition 𝜋0 is the

singleton partition, i.e., every agent is initially alone. The dichotomous preferences of the agents

are described in Table 6.

We claim that there exists a sequence of IS deviations starting from 𝜋0 which leads to an IS

partition if and only if formula 𝜑 is satisfiable.

Suppose first that there exists a truth assignment of the variables 𝜙 such that formula 𝜑 is

satisfiable. Let us denote by ℓ𝑗 a chosen literal-agent associated with an occurrence of a literal true

in 𝜙 which belongs to clause 𝐶 𝑗 . Since all the clauses of 𝜑 are satisfied by 𝜙 , there exists such a

literal-agent ℓ𝑗 for each clause 𝐶 𝑗 . Now let us denote by 𝑧1𝑖 and 𝑧
2

𝑖 the literal-agents associated with

the two occurrences of the literal of variable 𝑥𝑖 which is false in 𝜙 . Since 𝜙 is a truth assignment of

the variables that satisfies all the clauses of formula𝜑 , it holds that
⋃

1≤ 𝑗≤𝑚{ℓ𝑗 }∩
⋃

1≤𝑖≤𝑛{𝑧1𝑖 , 𝑧2𝑖 } = ∅.
Let us consider the following sequence of IS deviations starting from the singleton partition where

every agent has utility 0:

• For every 1 ≤ 𝑗 ≤ 𝑚, literal-agent ℓ𝑗 joins clause-agent 𝑘 𝑗 , which makes both agents happier

since they now belong to an approved coalition;

• For every 1 ≤ 𝑖 ≤ 𝑛, literal-agent 𝑧1𝑖 joins literal-agent 𝑧2𝑖 , which makes both agents happier

since they now belong to an approved coalition (they correspond to two occurrences of

the same literal), and then variable-agent 𝑣𝑖 joins them, which makes 𝑣𝑖 happier without

deteriorating the satisfaction of agents 𝑧1𝑖 and 𝑧
2

𝑖 ;

• For every two agents 𝑦1𝑖 and 𝑦2𝑖 (or 𝑦1𝑖 and 𝑦2𝑖 ) who were not involved in the previous

deviations (i.e., literal 𝑥𝑖 (or 𝑥𝑖 ) is true in 𝜙 but no occurrence of this literal has been used for

satisfiability of formula 𝜑), literal-agent 𝑦1𝑖 joins literal-agent 𝑦
2

𝑖 , which makes both agents

happier since they now belong to an approved coalition;

• For every 1 ≤ 𝑗 ≤ 𝑚, agent 𝑘2𝑗 joins agent 𝑘
3

𝑗 , which makes agent 𝑘2𝑗 happier and does not

deteriorate the satisfaction of agent 𝑘3𝑗 who still belongs to a disapproved coalition;
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• For every 1 ≤ 𝑖 ≤ 𝑛, agent 𝑣2𝑖 joins agent 𝑣3𝑖 , which makes agent 𝑣2𝑖 happier and does not

deteriorate the satisfaction of agent 𝑣3𝑖 who still belongs to a disapproved coalition.

We claim that the resulting partition is IS. Observe that the only dissatisfied agents (who are the

only ones who would have an incentive to still perform an IS deviation) are the literal-agents

who remained alone, agents 𝑘3𝑗 for every 1 ≤ 𝑗 ≤ 𝑚 and agents 𝑣3𝑖 for every 1 ≤ 𝑖 ≤ 𝑛. The

only better coalition for agent 𝑘3𝑗 is the one she would form with only clause-agent 𝑘 𝑗 . However,

there is no clause-agent 𝑘 𝑗 still alone since all the clauses are satisfied by truth assignment 𝜙 . The

only better coalition for agent 𝑣3𝑖 is the one she would form with only variable-agent 𝑣𝑖 . However,

there is no variable-agent 𝑣𝑖 still alone since 𝜙 is a truth assignment of all variables. For remaining

literal-agents, they must correspond to a true literal in 𝜙 for which the literal-agent associated with

the other occurrence of the literal already forms a pair with a clause-agent. Therefore, they cannot

join this other literal-agent. Moreover, they cannot join their associated clause-agent because she

is not alone anymore. Hence, there is no IS deviation from this partition, which is then IS.

Suppose now that there does not exist a truth assignment of the variables that satisfies all

the clauses of formula 𝜑 . Suppose that a clause-agent 𝑘 𝑗 cannot form a coalition with one of the

literal-agents associated with the literals of her clause. Then, the only possible approved coalition

for agent 𝑘 𝑗 is {𝑘 𝑗 , 𝑘2𝑗 }. This implies that there will be a cycle of IS deviations among the agents 𝑘 𝑗 ,

𝑘2𝑗 and 𝑘
3

𝑗 , as described in the proof of Proposition 6.1, by considering agents 𝑘 𝑗 , 𝑘
2

𝑗 and 𝑘
3

𝑗 as agents

1, 2, and 3, respectively, from the counterexample. Now suppose that a variable-agent 𝑣𝑖 cannot

form a coalition with either 𝑦1𝑖 and 𝑦
2

𝑖 , or 𝑦
1

𝑖 and 𝑦
2

𝑖 . Then, the only possible approved coalition for

agent 𝑣𝑖 is {𝑣𝑖 , 𝑣2𝑖 }. Therefore, there will be a cycle among the agents 𝑣𝑖 , 𝑣
2

𝑖 and 𝑣
3

𝑖 , as described in

the proof of Proposition 6.1, by considering agents 𝑣𝑖 , 𝑣
2

𝑖 and 𝑣
3

𝑖 as agents 1, 2, and 3, respectively,

from the counterexample. Therefore, since there is no possibility to find a truth assignment of the

variables which satisfies all the clauses, we cannot simultaneously have that each clause-agent 𝑘 𝑗
forms a coalition with one of the literal-agents associated with the literals of her clause, and that

each variable-agent 𝑣𝑖 forms a coalition with either 𝑦1𝑖 and 𝑦
2

𝑖 , or 𝑦
1

𝑖 and 𝑦
2

𝑖 . Hence, we necessarily

get a cycle in a sequence of IS deviations starting from the singleton partition. □

Lemma D.2. ∀-IS-Sequence-DHG is coNP-hard.

Proof. For this purpose, we prove the NP-hardness of the complement problem, which asks

whether there exists a cycle of IS deviations. Let us perform a reduction from the Satisfiability

problem which asks the satisfiability of a CNF propositional formula 𝜑 given by a set of clauses

𝐶1, . . . ,𝐶𝑚 over variables 𝑥1, . . . , 𝑥𝑝 . Given an instance of Satisfiability, we construct a DHG as

follows.

For each clause 𝐶 𝑗 , for 1 ≤ 𝑗 ≤ 𝑚, we create two clause-agents 𝑘 𝑗 and 𝑘
′
𝑗 . Let us denote by 𝑝𝑖

(or 𝑛𝑖 ) the number of occurrences of the positive (or negative) literal 𝑥𝑖 (or 𝑥𝑖 ) of variable 𝑥𝑖 in

formula 𝜑 . For each 𝑡 th occurrence of literal 𝑥𝑖 (or 𝑥𝑖 ) of variable 𝑥𝑖 , we create a literal-agent 𝑦
𝑡
𝑖

(or 𝑦𝑡𝑖 ). The initial partition is given by 𝜋0 := {{𝑦1𝑖 , . . . , 𝑦
𝑝𝑖
𝑖
, 𝑦1𝑖 , . . . , 𝑦

𝑛𝑖
𝑖
}1≤𝑖≤𝑝 , {𝑘 𝑗 , 𝑘 ′𝑗 }1≤ 𝑗≤𝑚}. The

dichotomous preferences of the agents over the coalitions to which they belong are summarized

below.

• Each literal-agent 𝑦𝑡𝑖 (or 𝑦
𝑡
𝑖 ), for 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑡 ≤ 𝑝𝑖 (or 1 ≤ 𝑡 ≤ 𝑛𝑖 ), gives utility 1 to:

– the coalitions to which agent 𝑘 ′𝑗 belongs, where 𝑘
′
𝑗 refers to the clause 𝐶 𝑗 to which the

𝑡 th occurrence of literal 𝑥𝑖 (or 𝑥𝑖 ) belongs, when no other literal-agent associated with

a literal of 𝐶 𝑗 is present, and

– all coalitions only composed of literal-agents associated with variable 𝑥𝑖 where at least

one literal-agent associated with 𝑥𝑖 (or 𝑥𝑖 ) is missing.
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All the other coalitions are valued 0.

• Each clause-agent 𝑘 𝑗 , for 1 ≤ 𝑗 ≤ 𝑚, only gives utility 1 to the coalitions which contain

clause-agent 𝑘 ′𝑗+1 and one literal-agent associated with a literal belonging to clause 𝐶 𝑗+1
(where𝑚 + 1 refers to 1). All the other coalitions are valued 0.

• Each clause-agent 𝑘 ′𝑗 , for 1 ≤ 𝑗 ≤ 𝑚, only gives utility 1 to the coalitions which contain

agent 𝑘 𝑗 . All the other coalitions are valued 0.

We claim that there exists a cycle of IS deviations if and only if formula 𝜑 is satisfiable.

Suppose first that formula 𝜑 is satisfiable by a truth assignment of the variables denoted by 𝜙 .

For each clause 𝐶 𝑗 , for 1 ≤ 𝑗 ≤ 𝑚, we choose a literal-agent 𝑦𝑡𝑖 (or 𝑦
𝑡
𝑖 ) such that the 𝑡 th occurrence

of literal 𝑥𝑖 (or 𝑥𝑖 ) belongs to clause 𝐶 𝑗 and literal 𝑥𝑖 (or 𝑥𝑖 ) is true in 𝜙 . By satisfiability of the

formula 𝜑 , there always exists such a literal-agent. Then, literal-agent 𝑦𝑡𝑖 (or 𝑦
𝑡
𝑖 ) deviates from

her coalition of literal-agents associated with variable 𝑥𝑖 to coalition {𝑘 𝑗 , 𝑘 ′𝑗 }. This deviation is

beneficial for the literal-agent because she values her new coalition with utility 1 since 𝑘 ′𝑗 belongs
to it, and her old coalition with utility 0 since no literal-agent associated with her opposite literal

has left the coalition of literal-agents associated with variable 𝑥𝑖 (we have chosen only literal-agents

associated with literals true in 𝜙). Moreover, this deviation does not decrease the utility of the

agents of the joined coalition: agent 𝑘 ′𝑗 still values the coalition with utility 1 since agent 𝑘 𝑗 belongs

to it and agent 𝑘 𝑗 still values the coalition with utility 0. Therefore, this deviation is an IS deviation.

After all these deviations, we reach a partition 𝜋 which contains the coalitions {𝑘 𝑗 , 𝑘 ′𝑗 , ℓ𝑗 } for every
1 ≤ 𝑗 ≤ 𝑚, where ℓ𝑗 denotes a literal-agent associated with a literal true in 𝜙 which belongs to

clause 𝐶 𝑗 .

We describe below the deviations that lead to come back to partition 𝜋 .

(1) For each 1 ≤ 𝑗 ≤ 𝑚, by increasing order of the indices, clause-agent 𝑘 𝑗 deviates to coalition

{𝑘 𝑗+1, 𝑘 ′𝑗+1, ℓ𝑗+1} (where𝑚 + 1 refers to 1). This deviation is beneficial for clause-agent 𝑘 𝑗

since she deviates to a coalition containing 𝑘 ′𝑗+1 and a literal-agent associated with a literal

belonging to clause 𝐶 𝑗+1. By design of the preferences, this deviation does not hurt the

members of the joined coalition, therefore it is an IS deviation. However, when clause-agent

𝑘 𝑗 has left her old coalition, this old coalition becomes either {𝑘 ′𝑗 , ℓ𝑗 } if 𝑗 = 1 or {𝑘 ′𝑗 , ℓ𝑗 , 𝑘 𝑗−1}
otherwise. Therefore, this deviation hurts clause-agent 𝑘 ′𝑗 from the old coalition. After all

these deviations, we reach a partition which contains the coalitions {𝑘 𝑗 , 𝑘 ′𝑗+1, ℓ𝑗+1} for every
1 ≤ 𝑗 ≤ 𝑚 (where𝑚 + 1 refers to 1).

(2) For each 1 ≤ 𝑗 ≤ 𝑚, by increasing order of the indices, clause-agent 𝑘 ′𝑗 deviates to coalition

{𝑘 𝑗 , 𝑘 ′𝑗+1, ℓ𝑗+1} (where𝑚 + 1 refers to 1), in order to recover utility 1 by belonging to the

same coalition as clause-agent 𝑘 𝑗 . By design of the preferences, this deviation does not

hurt the members of the joined coalition, therefore it is an IS deviation. However, when

clause-agent 𝑘 ′𝑗 has left her old coalition, this old coalition becomes either {𝑘 𝑗−1, ℓ𝑗 } if 𝑗 = 1

or {𝑘 𝑗−1, 𝑘 ′𝑗−1, ℓ𝑗 } otherwise. Therefore, this deviation hurts clause-agent ℓ𝑗 from the old

coalition. After all these deviations, we reach a partition which contains the coalitions

{𝑘 𝑗 , 𝑘 ′𝑗 , ℓ𝑗+1} for every 1 ≤ 𝑗 ≤ 𝑚 (where𝑚 + 1 refers to 1).

(3) For each 1 ≤ 𝑗 ≤ 𝑚, by increasing order of the indices, literal-agent ℓ𝑗 deviates to coalition

{𝑘 𝑗 , 𝑘 ′𝑗 , ℓ𝑗+1}, in order to recover utility 1 by belonging to the same coalition as clause-agent

𝑘 ′𝑗 . By design of the preferences, this deviation does not hurt the members of the joined

coalition, therefore it is an IS deviation. After all these deviations, we reach again partition 𝜋 .

Hence, there is a cycle in the sequence of IS deviations.

Suppose now that formula 𝜑 is not satisfiable. Observe that once a literal-agent has left her initial

coalition only composed of literal-agents related to the same variable, no literal-agent associated
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with the opposite literal can leave the coalition because she values it with utility 1. It follows that,

for any partition that is reachable by a sequence of IS deviations from the initial partition 𝜋0, the

subset of literal-agents that have left their initial variable-coalition (for joining clause-agents),

forms a valid truth assignment of the variables. Consequently, since formula 𝜑 is not satisfiable,

there exists a clause 𝐶 𝑗 such that none of the literal-agents, whose corresponding literal belongs to

𝐶 𝑗 , leave their initial variable-coalition. Therefore, for such a clause 𝐶 𝑗 , we have that clause-agent

𝑘 𝑗−1 (0 corresponds to𝑚) will never deviate (because a literal-agent ℓ𝑗 corresponding to clause 𝐶 𝑗
can never be in the same coalition as 𝑘 ′𝑗 ), and clause-agent 𝑘 ′𝑗−1 neither (𝑘

′
𝑗−1 initially belongs to a

coalition containing 𝑘 𝑗−1 that she values 1). We denote by 𝐽 := { 𝑗1, . . . , 𝑗𝑠 } the set of all indices of the
clauses such that no literal-agent associated with these clauses leaves her initial variable-coalition.

Note that, by construction of the preferences, no agent will ever deviate to enter in a coalition

only composed of literal-agents. Therefore, the coalitions containing only literal-agents who have

not deviated cannot be part of a cycle (no agent can enter them and all literal-agents associated

with the literal opposite to the one corresponding to the literal-agents who have left the coalition,

want to stay). Let us thus focus on the coalitions containing clause-agents. For every clause 𝐶𝑟 , a

clause-agent 𝑘𝑟 only wants to be in the same coalition as both clause-agent 𝑘 ′𝑟+1 and a literal-agent

ℓ𝑟+1 whose literal belongs to clause𝐶𝑟+1 (𝑚 + 1 corresponds to 1). While clause-agent 𝑘 ′𝑟 only wants

to be in the same coalition as 𝑘𝑟 and a literal-agent ℓ𝑟 , whose literal belongs to clause𝐶𝑟 , only wants

to be in the same coalition as 𝑘 ′𝑟 . From her initial variable-coalition and at any moment, literal-agent

ℓ𝑟 always has an incentive to join 𝑘 ′𝑟 , as long as 𝑘 ′𝑟 is not joined by another literal-agent associated

with clause 𝐶𝑟 . Clause-agent 𝑘
′
𝑟 always has an incentive to follow clause-agent 𝑘𝑟 , and 𝑘𝑟 always

has an incentive to follow agents 𝑘 ′𝑟+1 and ℓ𝑟+1 if they are together. It follows that from their initial

clause-coalition, agents 𝑘 ′𝑟 and 𝑘𝑟 can potentially be joined by ℓ𝑟 , which can bring other agents to

join the coalition: clause-agent 𝑘𝑟−1, and then clause-agent 𝑘 ′𝑟−1, potentially literal-agent ℓ𝑟−1, and
so on for agents related to clauses with consecutive smaller indices, as long as the clause-agents

related to the clause with the next index are joined by a literal-agent associated with that clause.

No agent can leave the coalition (they all get utility one), except agent 𝑘𝑟 who can join agents 𝑘 ′𝑟+1
and ℓ𝑟+1 if they are together in a coalition, which can bring all agents related to clause 𝐶𝑟 and to

clauses with consecutive smaller indices (as long as the clause-agents related to the clause with the

next index are joined by a literal-agent associated with that clause) to join her.

Since 𝐽 ≠ ∅, all in all, we will eventually reach a partition where, for each clause indices 𝑗𝑖
and 𝑗𝑖+1 in 𝐽 ( 𝑗𝑠+1 = 𝑗1), we have that clause-agents 𝑘 𝑗𝑖+1−1 and 𝑘

′
𝑗𝑖+1−1 are joined in their initial

coalition by a literal-agent ℓ𝑗𝑖+1−1 (if | 𝑗𝑖 − 𝑗𝑖+1 | > 1), and the agents 𝑘 ′𝑡 , 𝑘𝑡 and a literal-agent ℓ𝑡 , for

all 𝑗𝑖 < 𝑡 < 𝑗𝑖+1 − 1, and agents 𝑘 ′𝑗𝑖 and 𝑘 𝑗𝑖 . No agent has an incentive to leave or to enter this

coalition {𝑘 ′𝑗𝑖 , 𝑘 𝑗𝑖 , 𝑘
′
𝑗𝑖+1, 𝑘 𝑗𝑖+1, ℓ𝑗𝑖+1, . . . , 𝑘

′
𝑗𝑖+1−1, 𝑘 𝑗𝑖+1−1, ℓ𝑗𝑖+1−1} (recall that no literal-agent ℓ𝑗𝑖+1 or ℓ𝑗𝑖+1

can join a clause-agent), for every clause indices 𝑗𝑖 and 𝑗𝑖+1 in 𝐽 . Therefore, the reached partition is

IS, proving the claim. □
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