
Draft – July 4, 2008

On Iterated Dominance, Matrix Elimination, and Matched Paths

Felix Brandt∗ Felix Fischer† Markus Holzer‡

Abstract

We study computational problems that arise in the context of iterated dominance in anonymous
games, and show that deciding whether a game can be solved by means of iterated weak dominance
is NP-hard for anonymous games with three actions. For the case of two actions, this problem can be
reformulated as a natural elimination problem on a matrix. While enigmatic by itself, the latter turns out
to be a special case of matching along paths in a directed graph, which we show to be computationally
hard in general but also use to identify tractable cases of matrix elimination. We further identify different
classes of anonymous games where iterated dominance is in P and NP-complete, respectively.
Keywords: Algorithmic Game Theory, Computational Complexity, Iterated Dominance, Matching

1 Introduction

We study problems related to iterated dominance in anonymous and symmetric games. An anonymous
game is characterized by the fact that players do not distinguish between other players in the game, i.e.,
their payoff only depends on the numbers of other players playing the different actions, but not on their
identities. Anonymous games constitute a very natural class of multi-player games which is also highly
relevant in practice (cf. Daskalakis and Papadimitriou, 2007). A symmetric game additionally has identical
payoff functions for all players. A strategy of a player is a probability distribution over his actions. An action
of a particular player in a game is said to be weakly dominated if there exists a strategy guaranteeing him at
least the same payoff for any profile of actions of the other players, and strictly more payoff for some such
action profile. A dominated action may be discarded for the simple reason that the player will never face a
situation where he would benefit from using this action. The solution concept of iterated dominance works
by removing a dominated action and applying the same reasoning to the reduced game (see, e.g., Myerson,
1991). A game is then called solvable by iterated dominance if there is a sequence of eliminations that
leaves only one action for each player. In general, the result of the elimination process depends on the order
in which actions are eliminated. Iterated dominance has conceptual advantages over the more prominent
concept of Nash equilibrium in that it makes less assumptions on players’ rationality. Despite its elementary
nature, the computational properties of iterated dominance are not well understood, particularly in restricted
classes like anonymous games. Interestingly, anonymous games often arise in the context of voting, where
dominance solvability was originally introduced (Moulin, 1979).

Related Work Deciding whether a game can be solved by iterated weak dominance is NP-complete al-
ready for games with two players and two different payoffs (Gilboa et al., 1993; Conitzer and Sandholm,
2005). The corresponding problem for strict dominance, which requires the dominating strategy to be
strictly better under any circumstance, can be solved in polynomial time (see, e.g., Conitzer and Sandholm,

∗Institut für Informatik, Universität München, 80538 München, Germany, email: brandtf@tcs.ifi.lmu.de
†Institut für Informatik, Universität München, 80538 München, Germany, email: fischerf@tcs.ifi.lmu.de
‡Institut für Informatik, Technische Universität München, 85748 Garching, Germany, email: holzer@in.tum.de

1



Draft – July 4, 2008

2005). Knuth et al. (1988) provide an improved algorithm for the case of two players and dominance by
pure strategies, and show that computing the reduced game in this case is P-complete. Apart from work by
Brandt et al. (2006), we are not aware of any complexity results for iterated dominance in restricted classes
of games. The complexity of Nash equilibria in anonymous and symmetric games, on the other hand, has
been studied quite extensively. Symmetric games are guaranteed to possess a symmetric equilibrium, i.e.,
one where all players play the same strategy. Such an equilibrium can be found efficiently if the number of
actions is not too large compared to the number of players (Papadimitriou and Roughgarden, 2005). Com-
putational aspects of anonymous games have recently come under increased scrutiny due to their importance
in modeling large anonymous environments like the Internet. Anonymous games have been shown to admit
the efficient computation of approximate Nash equilibria—by a factor depending on the Lipschitz constant
of the payoff function and on the square of the number of actions—, and a polynomial-time approximation
scheme for the case of two actions (Daskalakis and Papadimitriou, 2007). Brandt et al. (2007) show that
the pure equilibrium problem in anonymous games is tractable if the number of actions is a constant, and
NP-complete if the number of actions grows in the number of players.

Results and Paper Structure We begin by introducing the relevant game-theoretic concepts. In Section 3
we then show that iterated dominance solvability is NP-hard for symmetric games with a growing number
of actions, and tractable for symmetric games with a constant number of actions. The only remaining case,
anonymous games with a constant number of actions, is then studied for the remainder of the paper. When
restricted to two actions, it can be reformulated as a natural elimination problem on matrices, which we do
in Section 4. While the complexity of this problem remains open, we point out connections to a matching
problem on paths of a directed graph in Section 5. The latter problem, which may be of independent interest,
is intractable in general but allows us to obtain efficient algorithms for restricted versions of matrix elimi-
nation. In Section 6 we finally use the matching formulation to show NP-hardness of iterated dominance in
anonymous games with three actions.

2 Preliminaries

An accepted way to model situations of strategic interaction is by means of a normal-form game (see, e.g.,
Myerson, 1991).

Definition 1 (normal-form game) A game in normal-form is a tuple Γ = (N, (Ai)i∈N , (pi)i∈N) where N is
a set of players and for each player i ∈ N, Ai is a nonempty set of actions available to player i, and
pi : (
�

i∈N Ai)→ R is a function mapping each action profile of the game (i.e., combination of actions) to a
real-valued payoff for player i.

A combination of actions s ∈
�

i∈N Ai is also called a profile of pure strategies. This concept can be
generalized to mixed strategy profiles s ∈ S =

�
i∈N S i, by letting players randomize over their actions. We

have S i denote the set of probability distributions over player i’s actions, or mixed strategies available to
player i. We further write n = |N | for the number of players in a game, si for the ith element of profile s, and
s−i for the vector of all elements but si.

A central aspect of symmetries in games is the inability to distinguish between other players. Following
Daskalakis and Papadimitriou (2007), the most general class of games with this property will be called
anonymous. Four different classes of games are then obtained by considering two additional characteristics:
identical payoff functions for all players and the ability to distinguish oneself from the other players. The
games obtained by adding the former property will be called symmetric, and presence of the latter will be
indicated by the prefix “self ”.1 For the obvious reason we only talk about games where the set of actions

1This terminology differs from the one used in our previous work (Brandt et al., 2007).

2



Draft – July 4, 2008

is the same for all players and write A = A1 = · · · = An and k = |A|, respectively, to denote this set and its
cardinality. We arrive at the following definition.

Definition 2 (symmetries) Let Γ = (N, (Ai)i∈N , (pi)i∈N) be a normal-form game, A a set of actions such that
Ai = A for all i ∈ N. For any permutation π : N → N of the set of players, let π′ : AN → AN be the
permutation of the set of action profiles given by π′((a1, a2, . . . , an)) = (aπ(1), . . . , aπ(n)). Γ is called

• anonymous if pi(s) = pi(π′(s)) for all s ∈ AN , i ∈ N and all π with π(i) = i,

• symmetric if pi(s) = p j(π′(s)) for all s ∈ AN , i, j ∈ N and all π with π( j) = i,

• self-anonymous if pi(s) = pi(π′(s)) for all s ∈ AN , i ∈ N, and

• self-symmetric if pi(s) = p j(π′(s)) for all s ∈ AN , i, j ∈ N.

The class of self-symmetric games equals the intersection of symmetric and self-anonymous games, and
both of these are strictly contained in the class of anonymous games. In the above definition, π′ is an
automorphism on the set of action profiles that preserves the number of players who play a particular action.
Thus, an intuitive and convenient way to describe an anonymous game is in terms of the equivalence classes
induced by π′, corresponding to the different values of #(s) = (#(a, s))a∈A for s ∈ AN . This description
requires only space polynomial in the number of players when the number of actions is bounded.

A well-known method for simplifying strategic games is the removal of actions that are weakly dom-
inated by some strategy of the same player, i.e., playing the former is never better than playing the latter,
while in some situation it is strictly worse. The removal of one or more dominated actions from the game
may render additional actions dominated, which may then iteratively be removed.

Definition 3 (iterated dominance) Let Γ = (N, (Ai)i∈N , (pi)i∈N). An action di ∈ Ai is said to be (weakly)
dominated by strategy si ∈ S i if for all b ∈

�
i∈N Ai, pi(b−i, di) ≤

∑
ai∈Ai si(ai)pi(b−i, ai) and for at least one

b̂ ∈
�

i∈N Ai, pi(b̂−i, di) <
∑

ai∈Ai si(ai)pi(b̂−i, ai).
A sequence a1, a2, . . . , ak of actions a j ∈ ∪i∈N Ai is called iterated (weak) dominance if for all j ≤ k, a j

is weakly dominated in the game (N, (A j
i )i∈N , (pi)i∈N) where A j

i = Ai \ { a` : ` < j }.

In contrast to iterated strict dominance, the result of this process depends on the order in which actions are
removed, since the elimination of an action may render actions of another player undominated (see, e.g.,
Apt, 2004). If at the end of the process only a single action remains for each player, we say that the game
has been solved. In the following, we call iterated dominance solvability (IDS) the computational problem
of deciding, for a given game Γ, whether there exists a sequence of eliminations of length

∑
i∈N(|Ai| − 1).

Iterated dominance eliminability (IDE) is given an action a ∈ Ai of some player i ∈ N and asks whether it is
possible to eliminate a.

3 Complexity of Iterated Dominance

Intuitively, a large number of actions nullifies the computational advantage obtained from symmetries by
allowing for a distinction of the players by means of the actions they play. Brandt et al. (2007) show that the
search for pure Nash equilibria becomes NP-hard as soon as the number of actions grows logarithmically
in the number of players. Since the explicit representation of anonymous games with a growing number of
players grows exponentially, one would expect natural instances of such games to be described succinctly (cf.
Papadimitriou and Roughgarden, 2005). While as a matter of fact the results of Brandt et al. (2007) are
established via a particular encoding, they nevertheless provide interesting insights into the influence of
restricted classes of payoff functions on the complexity of solving a game. After all it is far from obvious

3



Draft – July 4, 2008

that hardness results for general games extend to anonymous and symmetric games. We proceed to derive
a similar result for iterated dominance in self-symmetric games, hardness for the other classes follows by
inclusion. Detailed proofs of all results are deferred to the appendix.

Theorem 1 IDS and IDE are NP-hard for all four classes of anonymous games, even if the number of
actions grows logarithmically in the number of players, if only dominance by pure strategies is considered,
and if there are only two different payoffs.

In the case of symmetric games, iterated dominance becomes tractable when the number of actions is
bounded by a constant.

Theorem 2 For symmetric games with a constant number of actions, IDS and IDE can be decided in poly-
nomial time.

In light of these two results, only one interesting class remains, namely anonymous games with a con-
stant number of actions. To gain a better understanding of the problem, we restrict ourselves even further to
games with only two actions. It turns out that iterated dominance can reformulated as a natural elimination
problem on matrices. The latter problem will be the topic of the following section.

4 A Matrix Elimination Problem

Consider an m × n matrix X with entries from the natural numbers. We call a column c of X increasing
for an interval I over the rows of X if the entries in c are monotonically increasing in I, with a strict in-
crease somewhere in this interval. Analogously, we call c decreasing for I if its entries are monotonically
decreasing in I, with a strict decrease somewhere in this interval. We then say that c is active for I if it is
either increasing or decreasing for this interval. Now consider a process that starts with X and successively
eliminates pairs of a row and a column. Rows will only be eliminated from the top or bottom, such that the
remaining rows always form an interval over the rows of X. A column will only be eliminated if it is active
for the remaining rows. Elimination of an increasing column is accompanied by elimination of the top row.
Similarly, a decreasing column and the bottom row are eliminated at the same time. The process ends when
no active columns remain. In this paper we study two computational problems. Matrix elimination asks
whether for a given matrix there exists a sequence of such eliminations of length min(m − 1, n), i.e., one
that eliminates all columns of the matrix or all rows but one, depending on the dimensions of the original
matrix. Eliminability of a column asks whether a particular column can be eliminated at some point during
the elimination process.

More formally, the matrix elimination process can be described by a pair of sequences of equal length,
where the first sequence consists of column indices of X and the second sequence of elements of {0, 1},
corresponding to elimination of the top or bottom row, respectively. The first sequence will contain every
column index at most once. The ith element of the second sequence will be 0 or 1, respectively, if the column
corresponding to the ith element of the first sequence is increasing or decreasing in the interval described by
the number of 0s and 1s in the second sequence up to element i − 1.

Consider for example the sequence of matrices shown in Figure 1, obtained by starting with the 5 × 4
matrix on the left and successively eliminating columns b, a, c, and d. In this particular example, the process
ends when all rows and columns of the matrix have been eliminated. Of course, this does not always have
to be the case. Again consider the matrix on the left of Figure 1, with all entries in the second row from the
bottom replaced by 2. It is easy to see that in this case no column will be active after the first elimination step,
and elimination cannot continue. Since column b was the only active column in the first place, eliminating
just this one column is in fact all that can be done. A related phenomenon can be observed if we instead

4



Draft – July 4, 2008

a b c d
0 1 3 2 1
1 0 2 2 1
2 0 2 3 0
3 0 2 3 0
4 3 2 3 0

a b c d
1 2 1
0 2 1
0 3 0
0 3 0

a b c d
2 1
2 1
3 0

a b c d

1
0

Figure 1: A matrix and a sequence of eliminations

replace the top entry in the leftmost column by 0, and take a closer look at the matrix obtained after one
elimination. While we could continue eliminating at this point, it is already obvious that we will not obtain
a sequence of length 4. The reason is that one of the columns not eliminated so far, namely the leftmost one,
contains the same value in every row. This column cannot become active anymore, and, as a consequence,
will never be eliminated.

Let us define the problem more formally. For a set A, v ∈ An, and a ∈ A, denote by #(a, v) = |{ ` ≤ n :
v` = a }| the commutative image of a and v, and write v...k = (c1, c2, . . . , ck) for the prefix of v of length k ≤ n.
Further denote [n] = {1, 2, . . . , n} and [n]0 = {0, 1, . . . , n}.

Definition 4 (elimination sequence) Let X ∈ Nm×n be a matrix. A column k ∈ [n] of X is called increasing
in an interval [i, j] ⊆ [m] if the sequence xik, xi+1,k, . . . , x jk is monotonically increasing and xik < x jk, and
decreasing in [i, j] ⊆ [m] if xik, xi+1,k, . . . , x jk is monotonically decreasing and xik > x jk.

Then, an elimination sequence of length k for X is a pair (c, r) such that c ∈ [m]k, r ∈ {0, 1}k, and for
all i, j with 1 ≤ i < j ≤ k, ci , c j and

• ri = 0 and column ci is increasing in [#(0, r...i−1) + 1,m − #(1, r...i−1)], or

• ri = 1 and column ci is decreasing in [#(0, r...i−1) + 1,m − #(1, r...i−1)].

A column will be called active in an interval if it is either increasing or decreasing in this interval. What
really matters are not the actual matrix entries xi j, but rather the difference between successive entries xi j

and xi+1, j. A more intuitive way to look at the problem may thus be in terms of a different matrix with the
number of rows reduced by one, and entries describing the relative size of xi j and xi+1, j, e.g., arrows pointing
upward and downward, respectively, depending on whether xi j > xi+1, j or xi j < xi+1, j, and empty cells if
xi j = xi+1, j. According to this representation, a column can be deleted if it contains at least one arrow, and if
all arrows in this column point in the same direction. The corresponding row to be deleted is the one at the
base of the arrows.

We call matrix elimination (ME) the following computational problem: given a matrix X ∈ Nm×n, does X
have an elimination sequence of length min(m − 1, n)? The problem of eliminability of a column (CE) is
given k ∈ [n] and d ∈ {0, 1} and asks whether there exists an elimination sequence (c, r) such that for some i,
ci = k and ri = d.

Let us formally establish the relationship between IDS and ME, and between IDE and CE.

Lemma 1 IDS and IDE in anonymous games with two actions per player are polynomial time many-one
equivalent to ME and CE, respectively, restricted to instances with m = n + 1.

If we look for a way to solve a game as above with particular actions remaining for the different players, the
problem becomes equivalent to MED and thus tractable.

Without restrictions on m and n, ME and CE are equivalent. We prove this statement by showing equiv-
alence to the problem of deciding whether there exists an elimination sequence eliminating certain numbers

5



Draft – July 4, 2008

of rows from the top and bottom of the matrix. Several other questions, like the one of an elimination
sequence of a certain length, are equivalent as well.

Lemma 2 CE and ME are equivalent under disjunctive truth-table reductions.

If we restrict the problem to the case m > n, CE is at least as hard than ME in the sense that the latter
can be reduced to the former while there is no obvious reduction in the other direction. In general, the
case of ME where m > n appears easier than the one where m ≤ n. In the former every column has to
appear somewhere in the elimination sequence, while in the latter the set of columns effectively needs to
be partitioned into two sets of sizes m and n − m, respectively, of columns to be deleted and columns to be
discarded right away.

A natural way of obtaining restricted versions of ME is to consider special classes of matrices, like
matrices with entries in {0, 1} or with a bounded number of maximal intervals in which a particular column
is increasing or decreasing. One such restriction is to require that all columns are increasing or decreasing
in [1,m]. It is not too hard to show that this makes the problem tractable irrespective of the dimensions of
the matrix. We will formally state this result in the following section and prove it as a corollary of a more
general result. Unfortunately, tractability of this restricted case does not tell us a lot about the complexity
of ME in general. The latter obviously becomes almost trivial if the order of elimination for the columns is
known, i.e., if we ask for a specific vector c ∈ [n]k whether there exists a vector r ∈ {0, 1}k such that (c, r) is
an elimination sequence. This observation directly implies membership in NP. More interestingly, deciding
whether for a given r ∈ {0, 1}k there exist c ∈ [n]k such that (c, r) is an elimination sequence is also tractable.
The reason is the specific “life cycle” of a column. Consider a matrix X, two intervals I, J ⊆ [m] over the
rows of X such that J ⊆ I, and a column c ∈ [n] that is active in both I and J. Then, c must also be active
for any interval K such that J ⊆ K ⊆ I, and c must either be increasing for all three intervals, or decreasing
for all three intervals. Thus, r determines for every i ∈ [k] a set of possible values for ci, and leaves us with
a matching problem in a bipartite graph with edges in [n] × [k]. A simple greedy algorithm is sufficient
to solve this problem in polynomial time. Closer inspection reveals that it can in fact be decomposed into
two independent matching problems on convex bipartite graphs, for which the best known upper bound is
NC2 (Glover, 1967). As we will see in the following section, yet another way to make the problem tractable
is to provide a set of k pairs (c j, r j) that have to appear in corresponding places in the sequences of rows and
columns, while leaving open the ordering of these pairs.

But what if nothing about c and r is known? Despite the fact that we can only eliminate the top or bottom
row of the matrix in each step, this still amounts to an exponential number of possible sequences. The
current bound for matching in convex bipartite graphs means that there is not much hope for constructing an
algorithm that determines r nondeterministically and computes a matching on the fly. We can nevertheless
use the above reasoning to recast the problem in the more general framework of matching on paths. For
this, we will identify intervals and pairs of intervals over the rows of X by vertices and edges of a directed
graph G, and will then label each edge (I, J) by the identifiers of the columns of X that take I to J. An
elimination sequence of length k for X then corresponds to a path of length k in G which starts at the vertex
corresponding to the interval [1,m], such that there exists a matching of size k between the edges on this path
and the columns of X. In particular, by fixing a particular path, we obtain the bipartite matching problem
described above. A more detailed discussion of this problem is the topic of the following section. We first
study the problem as such, and return to matrix elimination toward the end of the section.

5 Matched Paths

Let us formally define the matching problem described in the previous section. This problem generalizes
the well-studied class of matching problems between two disjoint sets, or bipartite matching problems, by

6



Draft – July 4, 2008

requiring that the elements of one of the two sets form a certain sub-structure of a combinatorial struc-
ture. This problem is particularly interesting from a computational perspective if identifying the underlying
combinatorial structure can be done in polynomial time, as for paths like in our case, or for spanning trees.

Definition 5 (matching, matched path) Let X be a set, Σ an alphabet, and σ : X → 2Σ a labeling function
assigning sets of labels to elements of X. Then, a matching of σ is a total function f : X → Σ such that for
all x, y ∈ X, f (x) ∈ σ(x) and f (y) , f (x) if y , x.

Let G = (V, E) be a directed graph, Σ an alphabet, and σ : E → 2Σ a labeling function for edges of G.
Then, a matched path of length k in G is a sequence e1, e2, . . . , ek such that

• for all i, 1 ≤ i < k, ei ∈ E and there exist u, v,w ∈ V such that ei = (u, v) and ei+1 = (v,w), and

• the restriction of σ to { ei : 1 ≤ i ≤ k } has a matching.

We call matched path (MP) the following computational problem: given the explicit representation of a
directed graph G with corresponding labeling function σ and an integer k, does there exist a matched path
of length k in G? Variants of this problem can be obtained by asking for a matching that contains a certain
set of labels, or a matched path between a particular pair of vertices. These variants have an interesting
interpretation in terms of sequencing with resources and multi-dimensional constraints on the utilization of
these resources: every resource can be used in certain states corresponding to vertices of a directed graph,
and their use causes transitions between states. The goal then is to find a sequence that uses a specific set or
a certain number of resources, or one that reaches a certain state.

In the context of this paper, we are particularly interested in instances of MP corresponding to instances
of ME. We will see later on that the graphs of such instances are layered grid graphs (see, e.g., Allender
et al., 2006), and that the labeling function satisfies a certain convexity property. But let us look at the
general problem for a bit longer. Greenlaw et al. (1995) consider the related labeled graph accessibility
problem, which, given a directed graph G with a single label attached to each edge, asks whether there exists
a path such that the concatenation of the labels along the path is a member of a context free language L
given as part of the input. This problem is P-complete in general and LOGCFL-complete if G is acyclic.
A matching, however, corresponds to a partial permutation of the members of the alphabet, and Ellul et al.
(2004) have shown that the number of nonterminal symbols of any context-free grammar in Chomsky normal
form for the permutation language over Σ grows faster than any polynomial in the size of Σ. It should thus
not come as a surprise if the problem becomes harder when we ask for a matching. Indeed, MP bears some
resemblance to the NP-complete problem forbidden pairs of finding a path in a directed or undirected graph
if certain pairs of nodes or edges may not be used together (Gabow et al., 1976). Instead of trying to reduce
forbidden pairs to MP, however, we show NP-hardness of a restricted version of MP using a slightly more
complicated construction. We will then be able to build on this construction in Section 6.

In the following we restrict our attention to the case where G is a layered grid graph.

Definition 6 (layered grid graph) A directed graph G = (V, E) is an m × n grid graph if V = [m]0 × [n]0.
An edge (u, v) ∈ E is called south edge if for some i, j, u = (i, j) and v = (i + 1, j), and east edge if for some
i, j, u = (i, j) and v = (i, j + 1). A grid graph is called layered if it contains only south and east edges.

Theorem 3 MP is NP-complete. Hardness holds even if G is a layered grid graph, and if for every e ∈ E,
|σ(e)| = 1, and for every λ ∈ Σ, |{ e ∈ E : λ ∈ σ(e) }| ≤ 2.

Let us now return to matrix elimination. In light of Theorem 3, an efficient algorithm for ME would have
to exploit additional structure of MP instances induced by instances of ME. It turns out that this structure is
indeed quite restricted in that edges carrying a particular label satisfy a “directed” convexity condition: if a
particular label λ appears on two edges e = (u, v) and e′ = (u′, v′), then λ must appear on all south edges or

7



Draft – July 4, 2008

(0, 0) (0, 4)

(1, 3)

(2, 2)

(3, 1)

(4, 0)

{b, d} {a, b, d} {a, b, d} {a}

{c} {c} {c} ∅

{b, d} {b, d} {b,d}

{a, c} {c} {c}

∅ ∅

{a} ∅

∅

{a}

Figure 2: Labeled graph for the matrix elimination instance of Figure 1. A matched path and its matching
are shown in bold.

on all east edges that lie on a path from u to v′, but not both. In particular, if there is such a path, it cannot
be that one of e and e′ is a south edge and the other is an east edge. This fact is illustrated in Figure 2,
which shows the labeled graph for the ME instance of Figure 1, as well as a matched path corresponding to
an elimination sequence of maximum length.

Let us formally define the above property, along with a second property which requires the set of edges
carrying a particular label to form a weakly connected subgraph of G. We henceforth concentrate on com-
plete layered grid graphs, i.e., ones that contain all south and all east edges.

Definition 7 (directed convexity, connectedness) Let G = (V, E) be a complete layered grid graph. A
labeling function σ : E → 2Σ for G is called directed convex if for every label λ ∈ Σ and for every
set of three edges e1, e2, e3, ei = (ui, vi), such that u2 is reachable from u1, u3 is reachable from u2, and
λ ∈ σ(e1) ∩ σ(e3), it holds that e1 and e3 have the same direction and λ ∈ σ(e2) if and only if e2 has the
same direction as well. A labeling function σ is called connected if for every λ ∈ Σ and every pair of edges
e1, e2 ∈ E such that λ ∈ σ(e1) ∩ σ(e2) there exists (u, v) ∈ E such that λ ∈ σ(u, v) and both e1 and e2 are
reachable from u.

It is not too hard to see that instances corresponding to ME have a directed convex labeling function.
Connectedness is related to a restricted version of ME which we term matrix elimination with given direc-
tions (MED): given a matrix X, a labeling function σ, and a total function d : [n] → {0, 1}, does there exist
an elimination sequence (c, r) with directions given by d, i.e., one such that for all i, j satisfying d(i) = j
there is some ` ∈ N for which ci = i and ri = j.

Lemma 3 ME is polynomial time many-one reducible to MP restricted to layered grid graphs and directed
convex labeling functions. MED is polynomial time many-one equivalent to MP restricted to layered grid
graphs and directed convex and connected labeling functions.

Label a in the instance of Figure 2 serves as an example that the labeling function of an instance of MP
corresponding to one of ME does not have to be connected, and it even appears on both east edges and south
edges. On the other hand, MP can be solved in polynomial time if restricted to instances that do satisfy
connectedness in addition to directed convexity. This also means that we can decide in polynomial time
whether there exists an elimination sequence with a specific direction of elimination for every column of a
matrix.

8



Draft – July 4, 2008

Theorem 4 Let G be a layered grid graph, σ a directed convex and connected labeling function for G. Then
MP for G, σ and k = |Σ| is in P.

Clearly, matrix elimination when all columns are active from the beginning is a special case of this
theorem. With some additional work, we can derive a better upper bound.

Corollary 1 Let X ∈ Nm×n be a matrix every column of which is active in [1,m]. Then ME for X is in L.

The complexity of ME remains open, and additional insights will be necessary to solve this question.
The proof of Theorem 4 hinges on connectedness of the labeling function, and the case m ≤ n will probably
add additional complications. On the other hand, directed convexity of the labeling function corresponding
to an ME instance means that we cannot use a construction similar to the one used in the proof of Theorem 3
to show NP-hardness of MP.

Open Problem 1 Let G be a layered grid-graph, σ a directed convex labeling function for G. Can MP
for G and σ be decided in polynomial time? Is the case k = |Σ| easier than the general case?

6 Self-Anonymous Games With a Constant Number of Actions

It is natural to ask what happens for games with more than two actions, and whether there still exists a nice
interpretation in terms of row and column eliminations in a matrix or matrix-like structure. It turns out there
is such an interpretation, but its formulation is rather complicated. Consider a self-anonymous game with n
players and k actions for each player. As before, the payoff of a particular player i only depends on the
number of players, including himself, that play each of the different actions. For a particular player we thus
have payoff values for each tuple ( j1, j2, . . . , jk) with

∑k
`=1 j` = n. These can be represented as entries in a

discrete simplex of dimension k − 1. When writing down the payoffs of all players, one obtains a structure
X = (xi, j1··· jk )i∈N,

∑k
`=1 j`=n where xi, j1 j2··· jk ∈ R denotes the payoff of player i ∈ N if for each `, j` players play

action a`. This structure has the aforementioned simplices as columns and resembles a triangular prism for
the case k = 3.

Restricting our attention to dominance by pure strategies, action a` ∈ A weakly dominates action am ∈ A
for player i ∈ N if i can never decrease his payoff by playing a` instead of am, no matter which actions
the other players play, and if the payoff strictly increases for at least one combination of actions played by
the other players. This corresponds to the values in the ith column of X being increasing from am to a`,
i.e., weakly increasing with a strict increase at some position ( j1, j2, . . . , jk). If m players have eliminated
action a`, tuples with j` > n − m are no longer reachable, corresponding to a cut along the `th 0-face
of the simplex. Eliminations of a particular action have the same effect on the payoff simplex of every
single player and thus correspond to cuts along the respective edge of the prism in the case k = 3. Given
a vector d = (di)1≤i≤k, 1 ≤ di ≤ n, we will write X(d) to denote the structure obtained by performing, for
each i, di eliminations of action ai from X, i.e., X(d) = (xi, j1 j2··· jk ) ji≤n−di .

We are now ready to give a new formulation of solvability of a self-anonymous game using iterated
dominance by pure strategies.

Fact 1 Let Γ = (N, (Ai)i∈N , (pi)i∈N) be a self-anonymous game, and let X be defined by xi, j1 j2··· jk =

pi( j1, j2, . . . , jk) for all i ∈ N and j1, j2, . . . , jk ∈ N0 such that
∑k
`=1 j` = n. Then, Γ is solvable using

iterated dominance by pure strategies if there exists a pair (c, r) of sequences c ∈ N(k−1)n and r ∈ A(k−1)n

such that

(i) |{ 1 ≤ i ≤ (k − 1)n : ci = j }| = k − 1 for all j ∈ N,

9



Draft – July 4, 2008

0
2

1 0 1
3

001
0 0

1
1

0
2

1 0 1
3

001
0 0

1

0
2

1 0
001

0 0
1

3 1
01

0 0
1

3
2

Figure 3: Payoffs of a particular player in a self-anonymous game with n = 3 and k = 3. Initially all
actions are pairwise undominated. If one of the other players eliminates action 1, action 3 weakly dominates
action 1. Action 1 then becomes undominated if some player deletes action 3, and dominated by action 2 if
one more player deletes action 3, and some player deletes action 2.

(ii) ci = c j and ri = r j implies i = j for all 1 ≤ i, j ≤ (k − 1)n, and

(iii) for each i, 1 ≤ i ≤ (k − 1)n, there exists some r∗ ∈ A such that, for all j < i, c j , ci or r j , r∗, and ci

is increasing from ri to r∗ in X(r1, r2, . . . , ri−1).

That is, a game is solvable if there exists a sequence of (k − 1)n eliminations of an action by a player such
that (i) every player deletes exactly k − 1 times, (ii) no player deletes the same action twice, and (iii) every
action is deleted using some other action that has not itself been deleted.

The left hand side of Figure 3 shows the payoffs of a particular player in a self-anonymous game with n =

3 and k = 3. Compared to matrix elimination as introduced in Definition 4 and illustrated in Figure 1, we
notice an interesting shift. Curiously, this shift has nothing to do with the added possibility of dominance
by mixed strategies in games with more than two actions. Rather, a particular action a ∈ A may now be
eliminated by either one of several other actions in A \ {a}, and the situations where a a can be eliminated
no longer form a convex set. Recalling the proof of Theorem 3, our strategy becomes clear: try to construct
a layered grid graph with labels for which the existence of a matched path is NP-hard to decide, and which
is induced by a self-anonymous game with three actions for each player. It turns out that this is indeed
possible.

Theorem 5 IDS and IDE are NP-complete. Hardness holds even for self-anonymous games with three
actions and only two different payoffs.

Acknowledgements

This material is based upon work supported by the Deutsche Forschungsgemeinschaft under grants
BR 2312/3-1 and BR 2312/3-2. We thank Hermann Gruber, Paul Harrenstein, Tim Roughgarden, and
Michael Tautschnig for helpful discussions, and apologize to Edith Hemaspaandra for spoiling the sunset at
White Sands.

References

E. Allender, D. A. Mix Barrington, T. Chakraborty, S. Datta, and S. Roy. Grid graph reachability problems.
In Proceedings of the 21st Annual IEEE Conference on Computational Complexity (CCC), pages 299–
313, 2006.

K. R. Apt. Uniform proofs of order independence for various strategy elimination procedures. Contributions
to Theoretical Economics, 4(1), 2004.

10



Draft – July 4, 2008

F. Brandt, F. Fischer, and Y. Shoham. On strictly competitive multi-player games. In Y. Gil and R. Mooney,
editors, Proceedings of the 21st National Conference on Artificial Intelligence (AAAI), pages 605–612.
AAAI Press, 2006.

F. Brandt, F. Fischer, and M. Holzer. Symmetries and the complexity of pure Nash equilibrium. In
W. Thomas and P. Weil, editors, Proceedings of the 24th International Symposium on Theoretical As-
pects of Computer Science (STACS), volume 4393 of Lecture Notes in Computer Science (LNCS), pages
212–223. Springer-Verlag, 2007.

V. Conitzer and T. Sandholm. Complexity of (iterated) dominance. In Proceedings of the 6th ACM Confer-
ence on Electronic Commerce (ACM-EC), pages 88–97. ACM Press, 2005.

C. Daskalakis and C. H. Papadimitriou. Computing equilibria in anonymous games. In Proceedings of the
48th Symposium on Foundations of Computer Science (FOCS), pages 83–93. IEEE Computer Society
Press, 2007.

K. Ellul, B. Krawetz, J. Shallit, and M.-W. Wang. Regular expressions: new results and open problems.
Journal of Automata, Languages and Combinatorics, 9(2–3):233–256, 2004.

H. N. Gabow, S. N. Maheshwari, and L.J. Osterweil. On two problems in the generation of program test
paths. IEEE Transactions on Software Engineering, 2(3):227–231, 1976.

I. Gilboa, E. Kalai, and E. Zemel. The complexity of eliminating dominated strategies. Mathematics of
Operations Research, 18(3):553–565, 1993.

F. Glover. Maximum matching in convex bipartite graphs. Naval Research Logistics Quarterly, 14:313–316,
1967.

R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation. Oxford University Press,
1995.

D. E. Knuth, C. H. Papadimitriou, and J. N. Tsitsiklis. A note on strategy elimination in bimatrix games.
Operations Research Letters, 7:103–107, 1988.

H. Moulin. Dominance solvable voting schemes. Econometrica, 47:1337–1351, 1979.

R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1991.

C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

C. H. Papadimitriou and T. Roughgarden. Computing equilibria in multi-player games. In Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 82–91. SIAM, 2005.

I. Parberry. On the computational complexity of optimal sorting network verification. In Proceedings of the
Conference on Parallel Architectures and Languages Europe (PARLE), volume 505 of Lecture Notes in
Computer Science (LNCS), pages 252–269. Springer-Verlag, 1991.

11



Draft – July 4, 2008

A Proof of Theorem 1

Proof: Recall that circuit satisfiability (CSAT), i.e., deciding whether a Boolean circuit has a satisfying
assignment, is NP-complete (see, e.g., Papadimitriou, 1994). We provide a reduction from CSAT to IDS
and IDE for self-symmetric games. Hardness for the other types of symmetries follows by inclusion. For
a particular circuit C with inputs M = {1, 2, . . . ,m}, we define a game Γ with n ≥ m players and actions
A = { a0

j , a
1
j : j ∈ M } ∪ {a0, a1}. An action profile s of Γ where #(a0

j , s) + #(a1
j , s) = 1 for all j ∈ M, i.e.,

one where exactly one action of each pair a0
j , a1

j is played, directly corresponds to an assignment c of C,
the jth bit c j of this assignment being 1 if and only if a1

i is played. Observe that in this case the auxiliary
actions a0 and a1 have to be played by exactly n − m players. We can thus also identify action profiles
of Γ that correspond to a satisfying assignment of C. Now define the (common) payoff function p by letting
p(s) = 1 if #(a0, s)+#(a1, s) > n−m, or if s corresponds to a satisfying assignment of C and #(a1, s) = n−m.
Otherwise, let p(s) = 0. Since the payoff function is the same for all players, and the payoff only depends
on the number of players playing each of the different actions, Γ is self-symmetric. We will further argue
that for any A′ ⊆ A with a1 ∈ A′, a1 dominates every action a ∈ A′ \ {a0, a1} in the reduction of Γ to action
set A′, and a1 dominates a0 in such a game if and only if C has a satisfying assignment. These properties
clearly imply that a0 is eliminable for any player, and Γ is solvable via iterated dominance with action a1

remaining for each player, if and only if C has a satisfying assignment. Since there are only two different
payoffs, we can restrict our attention to dominance by pure strategies (see, e.g., Lemma 1 of Conitzer and
Sandholm, 2005).

To see the former property, consider an action profile s corresponding to a satisfying assignment of C,
and a player i such that si ∈ {a0, a1}. Then, 1 = p(s−i, a1) > p(s−i, a) = 0 for any a < {a0, a1}. On the
other hand, consider an action profile s not corresponding to a satisfying assignment, and some player i.
Then, for any a < {a0, a1}, 1 = p(s−i, a1) > p(s−i, a) = 0 if #(a0, s−i) + #(a1, s−i) = n − m, and p(s−i, a1) =

p(s−i, a) otherwise. For the latter property, first consider an action profile s not corresponding to a satisfying
assignment of C, and some player i such that si ∈ {a0, a1}. Then, p(s−i, a1) = p(s−i, a0). On the other
hand, consider an action profile s corresponding to a satisfying assignment, and some player i such that
#(a0, s−i) + #(a1, s−i) = n − m − 1. If #(a1, s−i) < n − m − 1, then p(s−i, a0) = p(s−i, a1) = 0. If #(a1, s−i) =

n − m − 1, then 1 = p(s−i, a1) > p(s−i, a0) = 0.
The transformation from C to Γ essentially works by writing down a Boolean circuit that computes p.

Observing that this can be done in time polynomial in the size of C if n ≤ 2|A| completes the proof. �

B Proof of Theorem 2

Proof: Since all players have identical payoff functions, a state of iterated dominance elimination can be
represented as a vector that counts, for each set C ⊆ A, the number of players that have eliminated exactly
the actions in C. This vector has constant dimension if the number of actions is constant. The value of
each entry is bounded by n, so the number of different vectors is polynomial in n and thus in the size of the
game. The elimination process can then be described as a graph that has the above vectors as vertices and
a directed edge between two such vectors if the second one can be obtained from the first by adding 1 to
some component, and if the action corresponding to this component can indeed be eliminated in the state
described by the first vector. For dominance by mixed strategies, this neighborhood relation can be computed
in polynomial time via linear programming. This reduces the computational problems related to iterated
dominance to reachability problems in a directed graph, which in turn can be decided in nondeterministic
logarithmic space and thus in polynomial time. For IDS, we need to find a directed path from (the vertex
corresponding to) the zero vector to some vector with sum n(k − 1) or to some vector describing a particular
state of elimination, respectively. For IDE, we need to find a path where the respective action is deleted

12



Draft – July 4, 2008

while traversing the final edge. �

C Proof of Lemma 1

Proof: Brandt et al. (2007) observe that an anonymous game with two actions can be transformed into
a self-anonymous game while preserving pure Nash equilibria. The argument can easily be extended to
(iterated) dominance when there are only two different payoffs, so it suffices to prove the equivalences for
self-anonymous games. Consider a self-anonymous game Γ = (N, (Ai)i∈N , (pi)i∈N) such that for all i ∈ N,
Ai = {0, 1}, and assume w.l.o.g. that for all i ∈ N and all s ∈ {0, 1}N , pi(s) ∈ N. Since in games with
two actions it suffices to consider dominance by pure strategies, we can otherwise construct a game with
payoffs from the natural numbers that is equivalent w.r.t. iterated dominance. Now write down the payoffs
of Γ in an (|N | + 1) × |N | matrix X such that the jth column contains the payoffs of player j ∈ N for the
different numbers of players playing action 1, i.e., xi j = p j(s) where #(1, s) = i. Then, the jth column
of X is increasing in an interval [k0, k1] if and only if action 1 dominates action 0 for player j given that at
least k0 − 1 and at most k1 − 1 other players play action 1. Analogously, the jth column is decreasing in such
an interval if action 0 dominates action 1 under the same conditions. If player j eliminates action 0 or 1,
respectively, this decreases the number of players that can still play the respective action, corresponding
to the deletion of the top or bottom row of X, respectively. Furthermore, since every player has only two
actions, the corresponding column of the matrix can be ignored as soon as one of them has been deleted.
Observing that the above does not impose any restrictions on the resulting matrix apart from its dimensions,
equivalence of the corresponding problems follows. �

D Proof of Lemma 2

Proof: We provide reductions between both CE and ME and the problem of matrix elimination up to an
interval (IE): given a matrix X and two numbers k0 and k1, does there exist an elimination sequence (c, r)
of X such that #(0, r) = k0 and #(1, r) = k1?

To reduce ME to IE, observe that X is a “yes” instance of ME if and only if X and some interval of length
max(1,m−n) form a “yes” instance of IE. Analogously, to reduce CE to IE, X and (i, d) for some i ∈ [n] and
d ∈ {0, 1} form a “yes” instance of CE if there is an interval over the rows of X in which column i is active
in the direction corresponding to d and which together with X forms a “yes” instance of IE.

For a reduction of IE to either ME or CE, let X ∈ Nm×n and consider the (m + 2n) × (3n + m − (i + j))
matrix Y shown in Figure 4. We claim that a column with index greater than n, and the entire matrix, can be
eliminated if and only if X has an elimination sequence (c, r) satisfying #(0, r) = i and #(0, r) = j.

For the direction from left to right, assume that (c, r) is an elimination sequence for X as above and
define (c′, r′) by

c′k =

ck if 1 ≤ k ≤ i + j,
n + k − (i + j) if i + j < k ≤ m + 2n, and

r′k =


rk if 1 ≤ k ≤ i + j,
1 if i + j < k ≤ n + d

m+(i+ j)
2 e,

0 if n + d
m+(i+ j)

2 e < k ≤ m + 2n.

It is easily verified that (c′, r′) is an elimination sequence of length m + 2n for Y , i.e., one that eliminates Y
entirely.

For the direction from left to right, consider an elimination sequence (c′, r′) of length m + 2n for Y .
Define ` to be the smallest index k for which c′k > n, and let I = [#(0, r...`−1) + 1,m − #(1, r...`−1)]. Clearly,

13



Draft – July 4, 2008

n +
⌊

m−(i+ j)
2

⌋
n +
⌈

m−(i+ j)
2

⌉
x11 · · · x1n 0 · · · 0 1 · · · 1
...

. . .
...

...
...

...
...

xi1 · · · xin 0 · · · 0 1 · · · 1

n
...

... 1 · · · 1 0 · · · 0
xi1 · · · xin ...

...
...

... n +
⌈

m−(i+ j)
2

⌉
xi+1,1 · · · xi+1,n

...
...

1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1

xm− j−1,1 · · · xm− j−1,n ...
...

...
... n +

⌊
m−(i+ j)

2

⌋
n

xm− j,1 · · · xm− j,n
...

... 0 · · · 0 1 · · · 1
xm− j,1 · · · xm− j,n 1 · · · 1 0 · · · 0
...

. . .
...

...
...

...
...

xm1 · · · xmn 1 · · · 1 0 · · · 0

Figure 4: Matrix Y used in the proof of Lemma 2

` > i + m − j. Now define a sequence c that contains the first i elements c′k of c′ for which r′k = 0, and the
first j elements c′k for which r′k = 1, in the same order in which they appear in c′. Define r to be sequence
of corresponding elements of r′. Then, (c, r) is an elimination sequence for Y , because the set of active
columns is the same for I and [i,m − j], and also for all intervals in between. Furthermore, c only contains
columns with index at most n. Thus (c, r) is also an elimination sequence for X, and the number of rows
eliminated from the top and bottom is exactly as required. �

E Proof of Theorem 3

Proof: Membership in NP is immediate. We can simply guess a sequence of edges of the required length as
well as an assignment of labels to these edges, and verify in polynomial time that we have in fact obtained
a path and a matching on this path.

For hardness, we provide a reduction from the NP-complete problem balanced one-in-three
3SAT (B3SAT) (Parberry, 1991) to MP with the above restrictions. A B3SAT instance over a set U of
variables is given by a set C ⊆ U3 of clauses of length three such that every variable occurs in exactly three
clauses, i.e., |{ (x1, x2, x3) ∈ C : xi = x }| = 3 for all x ∈ U. An instance is said to be satisfiable if there exists
an assignment to the variables such that exactly one element of each clause is true, i.e., a set S ⊆ V such
that |{ i : xi ∈ S }| = 1 for all (x1, x2, x3) ∈ C. It is easily verified that |U | = |C| for every instance of B3SAT,
and |U | = 3|S | for every assignment S satisfying C (in particular, satisfiable instances must have |U | divisi-
ble by three). Given a particular B3SAT instance C, we construct an MP instance consisting of a complete
layered grid graph G = (V, E) and a labeling function σ : E → 2Σ such that a path between two designated
nodes s and t of G has a matching if and only if C is satisfiable. For the moment, we will put aside the
restrictions that all sets of labels are singletons and every label occurs on at most two different edges. This
allows us to prove hardness for a labeled graph with special structure, which will then also be used in the
proof of Theorem 5. At the end of the current proof, we will see that the construction can easily be modified
to meet the above requirements for σ.

Now let m = |U |, and define G as a complete 6m× 5m layered grid graph. Figure 5 illustrates the overall
structure of the labeling function σ. From s to t, G is composed of gadgets for each of the variables of C,

14



Draft – July 4, 2008

s = s1

t1
s2

s3

sm

sm+1

tm+1
sm+2

sm+3

s2m

s2m+1
Σ− . . . t

Σ−

. . .

. . .

variable gadgets

clause gadgets

Figure 5: Overall structure of the layered grid graph G used in the proof of Theorem 3

gadgets for the clauses, and a final path of 2m east edges. We write si and ti, 1 ≤ i ≤ 2m, for the initial and
final node of the ith of these gadgets. Before we take a closer look at both types of gadgets, let us define the
set Σ of labels available for labeling edges of G. For every variable xi of C, 1 ≤ i ≤ m, we have six labels λi j,
1 ≤ j ≤ 6, appearing on east edges only. Labels λv

i j, j ∈ {1, 2}, and λc
i j, j ∈ {1, 2, 3}, on the other hand, are

exclusive to south edges. The labeling function σ is such that labels on east edges appear on every east edge
in the respective rows of the grid, and labels on south edges appear on every south edge in the respective
columns. Furthermore, for each label, there are at most two sets of subsequent rows or columns where this
label appears. Intuitively, the gadget for variable xi lies at the intersection of columns carrying labels λv

i j and
rows carrying labels λi j, while the gadget for clause ci lies at the intersection of columns carrying labels λi j

and rows carrying labels for the variables that appear in ci.
Figures 6 and 7 illustrate the gadgets for variables and clauses of C. The labeling function is defined

. . .
si

...
...

· · ·

ti
· · ·

si+1

...

· · ·

Σi Σi Σi Σi Σi

Σ−i Σ−i Σ−i Σ−i Σ−i

Σv
i−1 Σv

i

Σv
i−1 Σv

i

Σv
i

Figure 6: Gadget for variable xi used in the proof of Theorem 3

15



Draft – July 4, 2008

. . .
sm+i

...
...

· · ·

· · ·· · ·

...

· · ·
tm+i

· · ·

sm+i+1

{λ jo ji} {λ jo ji} {λ jo ji}

{λkoki} {λkoki} {λkoki}

{λ`o`i} {λ`o`i} {λ`o`i}

Σc
i−1 Σc

i

Σc
i−1 Σc

i

Σc
i−1 Σc

i

Σc
i

Figure 7: Gadget for clause ci = (x j ∨ xk ∨ x`) used in the proof of Theorem 3. o ji denotes the number of
times variable x j occurs in clauses up to and including ci.

using the following subsets of Σ:

Σi = {λi1, λi2, λi3}

Σ−i = {λi4, λi5, λi6}

Σ− =
⋃

1≤i≤m Σ−i
Σv

0 = {λv
11}

Σv
i = {λv

i,1, λ
v
i,2, λ

v
i+1,1} for 1 ≤ i ≤ m − 1

Σv
m = Σc

0 = {λv
m1, λ

v
m2, λ

c
11, λ

c
12}

Σc
i = {λc

i1, λ
c
i2, λ

c
i3, λ

c
i+1,1, λ

c
i+1,2} for 1 ≤ i ≤ m − 1

Σc
m = {λc

m1, λ
c
m2, λ

c
m3}

Labels in Σi and Σ−i correspond to a positive and negative assignment of the ith variable, respectively. Sets Σv
i

and Σc
i contain auxiliary labels for the ith variable gadget and the ith clause gadget. Note that while labels in

sets Σ−i are marked as “negative,” assigning them to edges in the variable gadget actually sets variable xi to
true, because the selection of labels from the corresponding set Σi will have to take place in the respective
clause gadgets. Returning to Figure 5, the final path of east edges from s2m+1 to t has length 2m, and each
of the edges carries all “negative” variable labels λi j for 1 ≤ i ≤ m and j ∈ {4, 5, 6}. It is readily appreciated
that G and σ can be constructed from C in polynomial time.

Two properties of G and σ will be useful in the following. First, every path from s to t traverses
exactly 6m east edges and 5m south edges, which equals the overall number of labels for both directions.
Secondly, a matched path from s to t must traverse every edge (ti, si+1) for 1 ≤ 1 ≤ 2m. To see the latter,
assume for contradiction that there is an edge (v, v′) , (ti, si+1) on the path such that ti is reachable from v
but not from v′. If v is to the west from ti, i.e., (v, v′) is a south edge, then the number of south edges on the
path up to v′ exceeds the number of labels available for these. If v is to the north from ti, i.e., (v, v′) is an east
edge, then the number of labels for south edges that do not appear on any edge reachable from v′ exceeds
the number of south edges on the path to v′. In both cases, the number of edges differs from the number of
labels available for these edges, and the path cannot have a matching.

Now assume that there exists a satisfying assignment for C. We construct a path from s to t via all si

and ti, 1 ≤ 1 ≤ 2m, as well as a matching for this path of size |Σ|. For vertices si and ti, 1 ≤ i ≤ m, i.e.,
the gadget for variable xi, we select the path labeled with elements of Σi if xi = true, and the path labeled

16



Draft – July 4, 2008

s2m+i
· · ·

...

...
...

· · ·

... s2m+i+1

{λ14} {λ15} {λ16}

{λ24} {λ25} {λ26}

{λm4} {λm5} {λm6}

{λe
1i} {λe

1i}

{λe
mi} {λe

mi}

Figure 8: Gadget for exhausting the remaining labels, used in the Proof of Theorem 3

with elements of Σ−i otherwise. For nodes si and ti, m < i ≤ 2m, i.e., the gadget for clause ci, we select the
(unique) path labeled with λ jk for some k such that x j = true. In both cases, we arbitrarily assign one of the
available labels to each edge. By this, “positive” labels λ ∈ Σi corresponding to variable xi are assigned to
edges in clause and variable gadgets, respectively, depending on whether or not xi = true. Every “positive”
label is used exactly once on the path from s to t2m, and none of the “negative” labels is used more than
once. Since a satisfying assignment must set exactly m/3 variables to true, and since, by construction of G,
2m of the “negative” labels are not assigned to any edge on a labeled path from from s to t2m, arbitrarily
assigning these labels to the edges on the path from t2m to t yields a matching for the path from s to t.

Conversely assume that there is a matched path from s to t. As observed above, this path must traverse si

and ti for all 1 ≤ i ≤ 2m. Furthermore, by construction of G, the “positive” labels for a particular variable xi

either all have to be assigned to edges in the gadget xi, or to edges in the gadgets of the clauses where xi

appears, but not both. It is then easily verified that setting a variable to true if and only if the corresponding
“positive” labels are assigned to edges in clause gadgets yields a satisfying assignment. Thus, some path
from s to t in G has a matching if and only if C is satisfiable.

It remains to be shown that the above construction can be simplified such that every edge can be labeled
with exactly one label and every label appears on at most two different edges. For this, we first remove all
edges that cannot be part of a path from s that has a matching, i.e., those that are not part of any gadget.
Then, for every set of labels defined above, the number of edges labeled with this set within a particular
gadget equals the cardinality of the set, and we can assign a different singleton to each of these edges. The
path from s2m+1 to t requires some additional attention. We know that, at the time we have found a path
from s to s2m+1 that does not use any of the labels more than once, exactly 2m labels in Σ− have not yet
been assigned to an edge, but we do not know which. To ensure that the remaining labels can be chosen in
an arbitrary order, we replace the path starting at s2m+1 by 2m/3 additional gadgets of the form shown in
Figure 8, which use 2m2/3 additional labels λe

ji for 1 ≤ j ≤ m and 1 ≤ i ≤ 2m/3. It is easily verified that the
modified labeling function satisfies the desired constraints. �

F Proof of Lemma 3

Proof: First consider the reduction from ME to MP. For a matrix X ∈ Nm×n, define a layered grid graph
G = (V, E) with V = [m]0 × [n]0 and a labeling function σ : E 7→ 2[n] such that for all λ ∈ [n], λ ∈ σ(e) if for
some i, j ∈ N, e = ((i, j), (i + 1, j)) and column ` of X is increasing in [i + 1,m − j], or e = ((i, j), (i, j + 1))
and column ` of X is decreasing in [i + 1,m − j]. Now consider k ∈ N, c ∈ [n]k, and r ∈ {0, 1}k. Let

17



Draft – July 4, 2008

p = e1, e2, . . . , ek be a path in G such that e1 = ((0, 0), v) for some v ∈ V , and ei is a south edge if and only if
ri = 0. Further define a function f : E → [n] by letting f (ei) = ci for all i ≤ k. It is not too hard to see that
(c, r) is an elimination sequence of X if and only if f is a matching for the restriction of σ to the edges on p.

For directed convexity of σ, consider e1, e2, e3 ∈ E, ei = (ui, vi), such that u2 is reachable from u1 and u3
is reachable from u2. For ` = 1, 2, 3, define an interval I` = [i + 1,m − j] for i, j ∈ N such that e` = ((i, j), v)
for some v ∈ V . Further consider λ ∈ σ(e1) ∩ σ(e3). By definition of σ, column λ of X must be active in
both I1 and I3. Since I3 ⊆ I1, λ must either be increasing in both of them, or decreasing in both of them.
Furthermore, since I3 ⊆ I2 and I2 ⊆ I1, column λ must also be increasing or decreasing in I2, respectively.

For MED, consider a total function d : [n] → {0, 1} and define σ′ : E 7→ 2[n] such that for all e ∈ E and
λ ∈ [n], λ ∈ σ′(e) if λ ∈ σ(e) and if either e is a south edge and f (λ) = 0 or e is an east edge and f (λ) = 1. It
is not hard to see that σ′ is directed convex and connected. On the other hand consider a layered grid graph
G = (V, E) and a directed convex and connected labeling function σ. Then, for every λ ∈ Σ, there exists a
unique pair of vertices u, v ∈ V such that λ ∈ σ(e) for exactly those south edges or exactly those east edges e
that are reachable from u but not from v. It is now possible to define a matrix X with a column for λ that
is active exactly in every interval I such that I ⊆ [i, j] and I ∩ [i′, j′] , ∅, and increasing if f (λ) = 0 and
decreasing if f (λ) = 1. By the same reasoning as above, elimination sequences of X correspond to matched
paths of G and σ with initial vertex (0, 0). �

G Proof of Theorem 4

Proof: It suffices to show how to decide whether there exists a matched path from s = (0, 0) to a particular
vertex t = (ks, ke) such that ks + ke = k. Different values for t can then be checked sequentially.

Given a path p from some vertex v1 ∈ V to t, we define two labeling functions σp
s : [ks] → Σ and

σ
p
e : [ke] → Σ, one for south edges and one for east edges of paths from s to t. We will argue that a pair of

matchings for σp
s and σp

e can easily be combined into a matching for p, while nonexistence of a matching
for either of the two implies that a large set of paths in G cannot be matched paths. The latter will ultimately
provide us with a succinct certificate that a particular pair of a graph G and a labeling function σ does not
have a matched path of length k.

More formally, consider a complete layered grid graph G = (V, E) and a labeling function σ : E → 2Σ.
For a path p = e`, e`+1, . . . , ek, define σp

s and σp
e such that for every λ ∈ Σ,

λ ∈ σ
p
s (i) if there exists a path e′1, e

′
2, . . . , e

′
k with e′i = ei for all i ≥ `,

and j ∈ [k], i′ ∈ [ke] such that

e j = ((i − 1, i′), (i, i′)) and λ ∈ σ(e j), and

λ ∈ σ
p
e (i) if there exists a path e′1, e

′
2, . . . , e

′
k with e′i = ei for all i ≥ `,

and j ∈ [k], i′ ∈ [ks] such that

e j = ((i′, i − 1), (i′, i)) and λ ∈ σ(e j).

In other words, σp
s and σp

e provide an “optimistic” version of the matching problems obtained by restrict-
ing σ to a path in G that contains p as a sub-path, by allowing a certain label to be matched to the ith south
edge or east edge of these paths, respectively, if it appears on the ith edge in the respective direction of some
such path. It follows from directed convexity and connectedness of σ that for every path p, σp

s and σp
e are

convex functions and { a ∈ σp
s (i) : i ∈ [ks] } ∩ { a ∈ σ

p
e (i) : i ∈ [ke] } = ∅. We can further assume w.l.o.g. that

for every p, σp
s and σp

e have images of size ks and ke, respectively.
Now let p be a path from s to t. By definition, there is a one-to-one correspondence between σp

s and the
restriction of σ to south edges of p, and also between σp

e and the restriction of σ to east edges of p. Any

18



Draft – July 4, 2008

pair of matchings for σp
s and σp

e thus directly corresponds to a matching for the restriction of σ to p, and
existence of the former implies that p is a matched path.

On the other hand, consider a path p = e`, e`+1, . . . , ek and an edge e ∈ E such that e = (u, v) and
e` = (v,w) for some u, v,w ∈ V . Denote p′ = e, e`, e`+1, . . . , en, and assume that both σp

s and σp
e have a

matching while σp′
s or σp′

e does not.
First consider the case where e is an east edge, and where the function that does not have a matching

is σp′
e . Let i, j ∈ N such that u = (i, j). By definition, σp

e and σ
p′
e only differ w.r.t. labels λ such that

λ ∈ σ
p
e ( j′) if and only if j′ < j. Since σp′

e is a convex function that does not have a matching, and since the
image of σp′

e has size ke, there has to be some interval in [ke] the size of which is strictly larger, and some
interval the size of which is strictly smaller than the number of labels σp′

e assigns exclusively to elements
of this interval. Furthermore, every matching f of σp

e must satisfy f ( j) < σ(e), since a matching with
f ( j) ∈ σ(e) would also be a matching for σp′

e . This means that there actually must exist an interval I of
the second type such that I ⊆ [1, j − 1]. Now consider any path p′′ from a vertex u′ south of u to t, i.e., a
vertex u′ = (i′, j) such that i′ > i. Clearly, the number of labels appearing exclusively in I cannot be smaller
for σp′′

e than it is for σp′
e . This means that σp′′

e does not have a matching, and thus that no matched path of G
and σ can traverse u′.

Now assume that the function that does not have a matching is σp′
s . This again means that there has to

be an interval such that the number of different labels assigned by σp′
s to elements of this interval is strictly

smaller than the length of this interval. Since σp
s has a matching, since the restrictions of σp

s and σp′
s to

[i, ks] are identical, and by convexity of σp′
s , there has to exist an interval I with this property such that

I ⊆ [0, i − 1]. Now consider any path p′′ from a vertex u′ west of u to t, i.e., a vertex u′ = (i, j′) such that
j′ < j. By definition, for any λ ∈ Σ, λ ∈ σp′′

e only if λ ∈ σp′
e , such that the number of different labels

assigned by σp′′
s to elements of I is strictly smaller than |I|. Thus σp′′

s does not have a matching, and thus no
matched path of G and σ can traverse u′.

If e is a south edge, then by symmetrical arguments either no matched path of G and σ can traverse any
vertex north of u, or no such path can traverse any vertex east of u.

Now consider an algorithm which starts at t and tries to iteratively construct a path from s to t by
traversing edges of G backwards. Given a path p` of length ` from a vertex v` to t, the algorithm selects p`+1
to be a path of length ` + 1 containing p` as a sub-path such that both σs p`+1 and σs p`+1 have a matching.
If the algorithm runs for k steps, we obtain a path pk from s to t with this property, i.e., a matched path.
Assume on the other hand that for some ` no path satisfying the above requirements exists, and denote by P
the set of paths obtainable by adding a predecessor of v` to p` (this set contains one or two paths depending
on whether v` has one or two predecessors). Then, for every p ∈ P, one of σp

s and σ
p
e does not have a

matching, and from the above reasoning we obtain a set of vertices such that no matched path can traverse
any of these vertices. It is easily verified that the union of these sets for the different elements of P always
forms a cut that separates s from t, implying that a matched path from s to t cannot exist. �

H Proof of Corollary 1

Proof: Consider the graph G and the labeling function σ corresponding to X. For any path p in G with final
vertex t, consider the functions σp

s and σp
e defined in the proof of Theorem 4. Since every column of X is

active in [1,m], σp
s and σp

e are convex. Moreover, for every label λ ∈ Σ, λ ∈ σp
s (1) or λ ∈ σp

e (1). It is not too
hard to see that for a path p = vk, vk+1, . . . , vn with vn = t, σp

s and σp
e have a matching if and only if there

exists a path p′ from vk+1 = (i, j) to t such that σp′
s and σp′

e have matchings fs and fe, and if the number of
labels both in σp

s (i− 1) \ (∪k≥i fs(k)) and in σp
s (i− 1) \ (∪k≥ j fe(k)) are strictly positive. We can thus construct

a path by moving backwards from t, and storing only a pointer to current source of the path and the numbers

19



Draft – July 4, 2008

2 (3)

1 (2)

3 (1)

k1

k2

0
1 0

1

1
0 0

1

· · · 10 · · ·
· · · 01 · · ·

· · ·

· · ·

· · · 0 · · ·

· · · 0 · · ·

· · · 0 · · ·

Figure 9: Payoff structure of a particular player of the self-anonymous game Γ used in the proof of Theo-
rem 5. There are two types of players, eliminating action 2 and 1, respectively, actions of the second type
are shown in parentheses. The player may eliminate action 2 (1, respectively) by action 3 after exactly k1
players have eliminated action 1 (2), and by action 1 (2) after exactly k2 players have eliminated action 1
(2).

of labels that are currently active but have not been assigned to edges between the current source and t. This
can clearly be done using only logarithmic space. �

I Proof of Theorem 5

Proof: Membership in NP is immediate. We can simply guess a sequence of eliminations and verify that all
of them are valid and that they eventually leave only a single action for each player.

For hardness of IDS, recall the construction used in the proof of Theorem 3. Given a B3SAT instance C,
we have constructed an MP instance consisting of a layered grid graph G = (V, E) and a labeling function σ :
E → 2Σ such that a path between two designated nodes s and t has a matching if and only if C is satisfiable.
We will now show that G and σ are induced by iterated dominance in a self-anonymous game Γ with k = 3
when only actions 1 and 2 of each player are considered. Observing that, given a matched path from s to t,
all players in Γ can also eliminate action 3 at some vertex on the path without affecting the restriction of the
labeling function to the remainder of the path effectively reduces B3SAT to IDS.

Given a particular grid graph G, a set Σ of labels, and a labeling function σ as defined in the proof of
Theorem 3, we construct a game Γ with players N = Σ and actions A = {1, 2, 3}. Action 1 is associated
with east edges of G, action 2 is associated with south edges. Now consider a particular label i ∈ Σ. By
construction of G, there exist two numbers k1 and k2 such that i appears exclusively on east edges (south
edges, respectively) that can be reached from s by traversing exactly k1 or k2 south edges (east edges). In
game Γ, this is modeled by a player that can eliminate action 1 (action 2) after exactly k1 or k2 players have
eliminated action 2 (action 1). Since we only use payoffs 0 and 1, it follows from Lemma 1 of Conitzer and
Sandholm (2005) that an action is dominated by a mixed strategy if and only if it is dominated by a pure
strategy. We can thus concentrate exclusively on dominance by pure strategies.

The payoff structure for players of Γ is shown in Figure 9. Clearly, Γ can be constructed from G in
polynomial time. In addition to the aforementioned properties regarding the elimination of action 1 or 2,
it is easily verified that every player can also eliminate action 3 after k2 eliminations of action 2 or 1, and

20



Draft – July 4, 2008

that this has no effect whatsoever on the ability of other players to eliminate their actions. In other words, Γ

actually induces a three-dimensional grid graph, where each layer in the third dimension is identical to G,
and transitions between different layers may take place at vertices where some player has arrived at k2. This
means, however, that a matched path from s to t corresponds to a sequence of eliminations of actions 1 and 2
in Γ, which can in turn be transformed into a sequence of eliminations that solves Γ by iterated dominance
by letting each player eliminate action 3 at a certain well-defined point. On the other hand, the possible
future transitions within a particular layer of the three-dimension grid graph do not depend on the layer, i.e.,
a player may not gain the ability to eliminate actions 1 or 2 by first eliminating action 3. Hence, if there is
no matched path from s to t, then some player of Γ will not be able to eliminate either action 1 or action 2,
meaning that Γ is not solvable by iterated dominance.

Hardness of IDE can be obtained by adding an additional player that can only eliminate once the lowest
level of the grid graph has been reached. �

21


