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Abstract

Tournament solutions constitute an important class of social
choice functions that only depend on the pairwise majority
comparisons between alternatives. Recent analytical results
have shown that several concepts with appealing axiomatic
properties such as the Banks set or the minimal covering
set tend to not discriminate at all when the tournaments are
chosen from the uniform distribution. This is in sharp con-
trast to empirical studies which have found that real-world
preference profiles often exhibit Condorcet winners, i.e., al-
ternatives that all tournament solutions select as the unique
winner. In this work, we aim to fill the gap between these
extremes by examining the distribution of the number of al-
ternatives returned by common tournament solutions for em-
pirical data as well as data generated according to stochastic
preference models such as impartial culture, impartial anony-
mous culture, Mallows mixtures, spatial models, and Pdlya-
Eggenberger urn models.

Introduction

A key problem in social choice theory is to identify func-
tions that map the preference relations of multiple agents
over some abstract set of alternatives to a socially accept-
able alternative. Whenever the social choice function is re-
quired to be impartial towards alternatives and voters, it may
be possible that several alternatives qualify equally well to
be chosen. Depending on the rationalization of the social
choice function, this might be a rare exception or a common
phenomenon. Since alternatives are generally assumed to be
mutually exclusive, it is typically understood that ties will
eventually be broken by some procedure that is independent
of the agents’ preferences. This can for example be achieved
by using a lottery (thus achieving ex ante fairness), letting
a chairman (with known or unknown preferences) pick his
most-preferred of the remaining alternatives, or simply as-
suming that a single alternative will be chosen according
to a procedure that is completely unknown to the agents
(see, e.g., Girdenfors, 1979; Brandt and Brill, 2011; Brandt,
2011a). The uncertainty the agents face when it comes to the
final selection process can be used as a powerful tool to sat-
isfy certain formal criteria (such as impartiality, consistency,
or strategyproofness) that would otherwise be impossible to
attain. On the other hand, the uncertainty can also be viewed
as a burden because a social choice function that leaves too

much ambiguity may be unacceptable to society. In general,
it seems desirable to narrow down the choice as much as pos-
sible based on the preferences of the voters alone. The goal
of this paper is to study the discriminative power of various
social choice functions—i.e., how many tied alternatives are
returned—when preferences are drawn from common distri-
butions that have been proposed in the literature.

An important class of social choice functions only de-
pends on the pairwise majority relation between alternatives.
When the pairwise majority relation is asymmetric, as is the
case when there is an odd number of agents with linear pref-
erences, these functions are known as tournament solutions.
The tradeoff between discriminative power and axiomatic
foundations is especially evident for tournament solutions
as many of them can be axiomatically characterized as the
most discriminating functions that satisfy certain desirable
properties.! Tournament solutions are known to return rather
large choice sets and are therefore particularly well-suited
for an analysis of their discriminative power. We are consid-
ering all common tournament solutions in this paper: the top
cycle T'C, the uncovered set UC, the Banks set BA, the iter-
ated uncovered set UC'*°, the minimal covering set M C|, the
tournament equilibrium set TE (), the bipartisan set BP, the
Slater set SL, the Copeland set CO, and the Markov set MA.
All tournament solutions return a Condorcet winner—i.e.,
an alternative that is preferred to every other alternative by
some majority of voters—whenever one exists. Moreover,
all tournament solutions except CO, SL, and MA return a
single alternative if and only if there is Condorcet winner.

The set-theoretic relationships between tournament so-
lutions are well-studied (Laslier, 1997). For example, it is
known that BA is contained in UC which in turn is con-
tained in 7'C. Recently, Brandt et al. (2013c) gave a num-
ber of instructive examples showing that these inclusions
are strict even when the number of alternatives is relatively
small.

Analytical results about the discriminative power of tour-
nament solutions for realistic distributions of preferences are
very difficult to obtain. To the best of our knowledge, all
existing papers explicitly or implicitly consider a uniform

"For example, T'C is the most discriminating tournament solu-
tion satisfying expansion-consistency. Similar characterizations are
known for UC', BA, MC, and BP (see, e.g., Brandt et al., 2013b,
Chapter 6, Section 2.2.2)
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distribution over all tournaments of a fixed size. Under this
assumption, it was shown by Fey (2008) that BA almost al-
ways selects all alternatives as the number of alternatives
goes to infinity. By the above-mentioned inclusion relation-
ship this implies the same statement for UC' and T'C'. Later,
an analogous result was shown for MC by Scott and Fey
(2012). More precise results for BP have been given by
Fisher and Reeves (1995) who identified the whole distri-
bution of | BP| for any fixed number of alternatives m. They
found that the probability that BP returns exactly k alter-
natives is 2~ (™~1 ("'} if k is odd and zero otherwise. This
directly implies that on average, BP returns half of the al-
ternatives for odd |T'|. In fact, for large tournaments, BP al-
most always chooses close to half of the alternatives (Scott
and Fey, 2012).

These analytical results stand in sharp contrast to empiri-
cal observations that Condorcet winners exist in many real-
world situations (see, e.g., Feld and Grofman, 1992), im-
plying that tournament solutions very frequently return sin-
gletons. Simulations with stochastic preference models have
been used for the analysis of several problems in (compu-
tational) social choice. For example, Laslier (2010) gener-
ated voting instances to derive estimates for the frequency
of Condorcet winners and to compare the results of differ-
ent voting rules such as plurality, Borda, approval voting,
and Copeland’s rule to each other. In his work, he has used
a Rousseauist culture, capturing the idea of a pre-existing
truth, as well as spatial and redistributive cultures. Earlier,
McCabe-Dansted and Slinko (2006) have used computa-
tional experiments to obtain a hierarchical clustering of vot-
ing rules. To this end, they considered the number of times
two voting rules coincide on a sample set as a measure for
their similarity. They used the same setting as Shah (2003)
with 5 alternatives and 85 voters and employed the Pdlya-
Eggenberger urn model by Berg (1985) to generate pref-
erences. In comparison, we consider tournaments of larger
sizes because several tournament solutions are known to al-
ways coincide when there are only few alternatives (Brandt
et al., 2013c¢).

The remainder of this paper is structured as follows. First,
we introduce terminology for preferences and tournament
solutions and briefly define the tournament solutions consid-
ered in this paper. Next, we define and discuss the stochastic
preference models employed in our analysis. In the section
on experimental results, we describe our methodology, visu-
ally present the data obtained, and discuss some conclusions.

Methodology
Preference Profiles and Tournament Solutions

Let A be a set of alternatives with |[A] = m and N =
{1,...,n} a set of voters. The preferences of voter i € N
are represented by a complete and antisymmetric preference
relation R; C A x A. The set of all preference relations will
be denoted by R. The interpretation of (a,b) € R;, usually
denoted by a R; b, is that voter ¢ values alternative ¢ at least
as much as alternative b. When individual preferences are
transitive, we also speak of rankings. A preference profile
R = (Ry,..., R,) is an n-tuple containing a preference re-

lation R; for each agent s € N. The majority relation > of
a given preference profile is defined as

a-pb < [{ilaR; b} >|{i|bR;a}l

A tournament T is a pair (A, >), where > is an asym-
metric and complete (and thus irreflexive) binary relation
on A. Whenever the number of voters n is odd, (4, >r)
constitutes a tournament. If there is an alternative a such
thata =g bforallb € A\ {b}, ais a Condorcet winner ac-
cording to R. A tournament solution is a function that maps
a tournament to a nonempty subset of its alternatives, the
choice set, and uniquely chooses a Condorcet winner when-
ever one exists. The simplest tournament solution is COND
which chooses the set of all alternatives whenever there is
no Condorcet winner. The other tournament solutions con-
sidered in this paper are

e the Copeland set (CO), consisting of all alternatives with
maximum outdegree,

e the top cycle (T'C), consisting of the unique smallest set
of alternatives such that every element of the set domi-
nates all alternatives not in the set,

e the uncovered set (UC), consisting of all alternatives that
reach all other alternatives in at most two steps,

e the iterated uncovered sets (UC), the result of itera-
tively computing the uncovered set of the subtournament
obtained from the restriction to the uncovered set,

e the bipartisan set (BP), consisting of all alternatives that
are in the support of the unique Nash equilibrium of the
corresponding tournament game,

e the Markov set (MA), consisting of the alternatives with
maximum probability in the unique stationary distribu-
tion of the tournament when it is interpreted as a Markov
chain,

e the Banks set (BA), consisting of all alternatives that are
maximal in an inclusion-maximal transitive subtourna-
ment,

o the Siater set (SL), consisting of those alternatives who
are maximal in a linear order, that shares as many edges
as possible with the tournament,

o the minimal covering set (MC), consisting of the unique
inclusion-minimal set of alternatives that is UC'-stable,
and

e the tournament equilibrium set (TEQ), consisting of the
union of inclusion-minimal sets of alternatives, that are
TEQ-retentive.

For definitions and discussions on most of these concept,
we refer to the excellent overview by Laslier (1997). Stabil-
ity and retentiveness which are properties of tournament so-
lutions used to define MC and TE(Q are discussed in detail
by Brandt (2011b) and Brandt et al. (2013a), respectively.
Computational issues concerning tournament solutions are
discussed by Brandt (2009) and Hudry (2009).

The set-theoretic relationships of these concepts are de-
picted in Figure 1. BA and TEQ are the only tournament
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Figure 1: Set-theoretic relationships between tournament so-
lutions. If the ellipses of two tournament solutions S and S’
intersect, then S(T") N S"(T) # O for all tournaments 7.
If the ellipses for S an S’ are disjoint, however, this signi-
fies that S(T) N S’(T) = O for some tournament 7". The
exact location of BP in this diagram is unknown but it is
contained in MC' and intersects with TE(Q in all known in-
stances (Laslier, 1997). TE(Q is contained in BA, but the
inclusion in MC' is uncertain.

solutions that are capable of discriminating in regular tour-
naments, i.e., tournaments in which all alternatives have the
same degree.

It is important to realize that virtually all desirable proper-
ties of tournament solutions are properties of the choice set
rather than its individual elements. For example, T'C' sat-
isfies a certain notion of group-strategyproofness (Brandt,
2011a). Even though a single alternative will eventually be
picked from T'C', CO—which is always contained in 7C'—
does not satisfy group-strategyproofness.

Empirical Data

In the preference library PREFLIB (Mattei and Walsh, 2013),
scholars have contributed data sets from real world scenar-
ios ranging from preferences over movies or sushi via For-
mula 1 championship results to real election data. At the
time of writing, PREFLIB contained 354 tournaments in-
duced from pairwise majority comparisons. Out of these, all
except 9 exhibit a Condorcet winner. The remaining tour-
naments are still very structured as the uncovered set never
contains more than 4 alternatives (even in the largest of the
remaining tournaments with 242 alternatives). This is in line
with earlier observations that real-world majority relations
tend to be close to linear orders and often have Condorcet
winners (Regenwetter et al., 2006).

Stochastic Models

As the available empirical data does not allow to draw con-
clusions about the differences in discriminative power of
tournament solutions, we now consider stochastic models to
generate tournaments of a given size m (usually by sam-
pling preference profiles and considering the induced ma-

jority tournament).? In this section, we will briefly introduce
the considered models and describe how to sample from
them whenever this is not obvious.

The uniform random tournament model was used in the
previous analysis of the discriminative power of tournament
solutions (Fisher and Reeves, 1995; Fey, 2008; Scott and
Fey, 2012). It assigns the same probability to each labeled
tournament of size m, i.e.,

1
2(%)
In all of the remaining models, we sample preference pro-

files and work with the tournament induced by the majority
relation. The term culture has been coined for probabilis-
tic preference models where the draws for each voter are
independent from each other. Cultures are defined by the
probabilities they put on each possible preference ranking.
The most widely-studied model of this kind is the impartial
culture model (IC), where every possible ranking of the al-
ternatives has the same probability of # IC is a member of
the family of dual cultures, defined by the property that each
ranking has the same probability as its inverse. Dual cultures
have been criticized for being too unrealistic (Regenwetter
et al., 2006). Nevertheless, they are relevant for their suscep-
tibility to analytical methods that helped to improve the un-
derstanding of voting phenomena (see, e.g., (DeMeyer and
Plott, 1970)). If we add anonymity by having indistinguish-
able voters, the set of profiles is partitioned into equivalence
classes. In the impartial anonymous culture (IAC), each of
these equivalence classes is chosen with equal probability.
Note that this is not a culture in the sense mentioned above.

A very different kind of model is the spatial model. Here,
alternatives and voters are uniformly at random placed in
a multi-dimensional space and the voters’ preferences are
determined by the (Euclidian) distanced to the alternatives.
The spatial model has played an important role in politi-
cal and social choice theory where the dimensions are in-
terpreted as different aspects or properties of the alterna-
tives (see, e.g., Ordeshook, 1993; Austen-Smith and Banks,
2000).

There are several models who assume a pre-existing truth
in the form of reference rankings such that each agent re-
ports a noisy estimate of said truth as his preferences. For
these models, Laslier has introduced the term Rousseauist
cultures (Laslier, 2010). Such models are usually parame-
terized by a homogeneity parameter that scales the noisiness
of individual perceptions. In its arguably simplest form, ev-
ery agent provides possibly intransitive preferences R where
each pairwise preference a R b is ’correct’, i.e., coincides
with the reference ranking R, with a probability p where
0.5 < p < 1. We will call this the Condorcet noise model.

Pr(T) for each T with |T| = m.

2This guided our choice of models for this paper. There are sev-
eral stochastic models on rankings such as Thurstonian models,
other Babington Smith models, or multi-stage ranking models that
we do not consider in this work (Critchlow et al., 1991; Marden,
1995). These models are often very versatile but depend strongly
on the choice of a rather large number of parameters. Also, sam-
pling from a general Babington smith model is a very tedious task.
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This is the only model we consider in which individual pref-
erences can be intransitive. An interesting aspect of this
model is that all pairwise majority comparisons are inde-
pendent of each other and can be computed by

n

Pr(a>=pblaRob)= > <Z>pv(1 —p)".

v=5+1

For p = 0.5, the Condorcet noise model with any number of
voters coincides with the model of uniform random tourna-
ments.

In Mallows-¢ model (Mallows, 1957), the distance to a
reference ranking is measured by means of the Kendall-
tau distance which counts the number of pairwise disagree-
ments. Let Ry be the reference ranking. Then, the Kendell-
tau distance of a preference ranking R to Ry is 7(R, Ry) =
(') = |[RN Ro|. According to the model, this induces the
probability of a voter having R as his preferences to be
Pr(R) = ¢7(F10) /C where C' is a normalization constant
and ¢ € (0,1] is a dispersion parameter. Small values for
¢ put most of the probability on rankings very close to Ry
whereas for ¢ = 1 the model coincides with IC.

Obviously, one can define a number of such distance-
based models. Besides the Kendell-tau distance, Spearman-
rho distance has been considered (resulting in Mallows-6
model), as well as the distance measures named after Cay-
ley, Hammond, and Ulam. See (Critchlow et al., 1991) for a
discussion.

A property that makes distance-based models less appeal-
ing for this particular study is their bias towards transitive
majority relations which makes the issue of choosing triv-
ial. In fact, Mallows-¢ even satisfies strong unimodality as
defined in Critchlow et al. (1991) since a single preference
ranking has maximum probability and ranking probabilities
are non-increasing as we move along a path of rankings,
where in each step two adjacent alternatives are swapped
causing an increase in the Kendell-tau distance to the modal
ranking.

To overcome this unimodality of the preference distribu-
tion, mixtures of models have been considered. A mixture
model consists of several ordinary models with a probability
distribution over them. While this idea could theoretically
be applied to any set of models that may just differ in their
parameterization or even belong to different model families,
it has been considered the most with respect to the Mallows-
¢ model. For simplicity and to reduce the number of free
parameters, we consider uniform mixtures over k Mallows-
¢ with a shared parameter ¢ and refer to this as Mallows
k-mixtures. Sampling from Mallows-¢ (or Mallows mix-
tures) is conveniently possible by a repeated insertion model
(Doignon et al., 2004; Lu and Boutilier, 2011).

In the Pélya-Eggenberger urn model, each possible pref-
erence ranking is thought to be represented by a ball in an
urn from which individual preferences are drawn. After each
draw, the chosen ball is put back and @ € Ny new balls of
the same kind are added to the urn (Berg, 1985). This models
the effect of an interdependence of multiple voters’ prefer-
ences as the next voter chooses from a modified distribution.
The urn model subsumes both IC (o« = 0) and IAC (o = 1).

Experimental Results and Discussion

In our experimental setup, we generated tournament in-
stances according to the aforementioned models and com-
puted the different choice sets for them. For the sampling
step, we built on the implementations of Mallows-¢ and an
urn model from Mattei and Walsh (2013) to generate pref-
erence profiles of which we considered the majority rela-
tion. The computation of the various tournament solutions
was done via counting (CQO), matrix multiplication (UC),
UC™), depth-first-search (7'C'), linear programming (BP,
MC), eigenvalue decomposition (MA), branch-and-bound
(SL), or tailored algorithms (BA, TEQ). Computing BA,
TEQ, and SL is NP-hard wheres the remaining tournament
solutions can be computed efficiently.

First, we considered the frequency of majority relations
with a Condorcet winner of each stochastic model. In case of
the Condorcet noise model, they can be computed directly:
letppr = Pr(a=r b|a Ry b). Then,

Pr(>pg has Cond. winner) = ZpM =N — )
i=1

For the other models, we resorted to computational experi-
ments. Some of these results are shown in Figure 2. The dis-
tributions of TAC, Mallows-¢, and urn models with a fixed «
are not displayed but are very similar to IC. For all models,
we see that increasing the number of alternatives generally
makes Condorcet winners less likely. Note, however, that in
case of the Mallows-4-mixture with ¢ = 0.9, there is a non-
monotonic region for n > 25 voters where Condorcet win-
ners become more frequent again when the number of alter-
natives is sufficiently large. A similar phenomenon is visible
in Figure 3 for the Mallows-4-mixture with ¢ = 0.95. We
currently have no conclusive explanation of this effect.

For our choice of parameters, we briefly mention the ef-
fects of the other parameters. In all Rousseauist cultures,
increasing the number of voters increases the likeliness of
Condorcet winners. The same holds for parameter changes
that increase homogeneity such as increasing p in the Con-
dorcet noise model, decreasing ¢ in Mallows-¢ model, or
increasing « in the urn model. For the spatial model, we
have not found the dimension to have a large impact on the
results as long as it is at least 2.

Secondly, we examined the ability of the various solutions
to rule out alternatives. Our informal measure for discrimi-
native power of a tournament solution on a specific model
is the distance of its average choice set size to the average
size of COND which, by definition, is the least discrimi-
native tournament solution. In our comparisons, we provide
COND not only as a baseline but also as an indicator for
the frequency of tournaments with a Condorcet winner. We
examined the average choice set sizes of the aforementioned
tournament solutions for a fixed number of voters n = 51.
The results are shown in Figure 3.

Due to the large number of Condorcet winners in these
samples, the standard deviations of the measured choice set
sizes are usually about as large as the reported values them-
selves. In cases of very high or very low average choice set
sizes as in the spatial or in the uniform random tournament
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Figure 2: Frequencies of tournaments with a Condorcet winner as a heat map for four stochastic models. The number of voters
ranges from 3 to 51 on the horizontal axis, the number of alternatives from 3 to 50 on the vertical axis. Displayed are the
proportions of tournaments with a Condorcet winner. The color green corresponds to a high frequency of such tournaments, the
color red indicates that few tournaments sampled from this model exhibit a Condorcet winner. For the first three models, the
values are taken over 100 samples, whereas the probabilities for the Condorcet noise model were computed directly.

model, the standard deviation is, of course, low. A notable
exception from this behavior is BP in case of the uniform
random tournament model and the similar Condorcet noise
model with p = 0.55. There, BP on average chooses less
than half of the alternatives with low standard deviation.
The following conclusions can be drawn from our results.

e T(C is almost as undiscriminating as COND.

o All other tournament solutions are much more discrimi-
nating than the analytical results for uniform random tour-
naments suggest. In fact, for all reasonable parameteriza-
tions of the considered models with transitive individual
preferences and at least 10 alternatives (including impar-
tial culture) all tournament solutions except 7'C' discarded
at least 75% of the alternatives on average.

e All tournament solutions except 7'C' behave similarly in
terms of discriminative power. One may conclude that the
decision which one to use in practical applications should
not be based on discriminative power, but rather on ax-
iomatic properties.

Using a more fine-grained analysis, tournament solutions
can be divided into five clusters based on their discrim-
inative power. The first cluster merely consists of 7'C.
The second cluster contains UC and BA. UC*°, MC,
and TE(Q are contained in the third cluster. BP forms a
cluster of its own. Finally, tournament solutions based on
scoring (SL, CO, and MA) are much more discriminat-
ing than all other tournament solutions and form the fifth
cluster. Out of these, MA stands out as the most selective
one. It is almost always unique.

UC® (and thereby also M (') discriminates more than
BA. This observation could not be deduced from the set-
theoretic relationships between tournament solutions.

BP is not only remarkably discriminating in uniform ran-
dom tournaments (which already follows from the ana-
lytical results), but even more discriminating in the Con-
dorcet noise model with p = 0.55. Within the group of
tournament solutions with appealing characterizations, it
discriminates the most (and is efficiently computable).
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Figure 3: Comparison of average absolute choice set sizes for various stochastic preference models. The number of alternatives
is on the horizontal axis, the number of voters is n = 51. Averages are taken over 100 runs. The Slater set (SL) is omitted
whenever its computation was infeasible.
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