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We consider social welfare functions that satisfy Arrow’s classic axioms of
independence of irrelevant alternatives and Pareto optimality when the out-
come space is the convex hull of some finite set of alternatives. Individual
and collective preferences are assumed to be continuous and convex, which
guarantees the existence of maximal elements and the consistency of choice
functions that return these elements, even without insisting on transitivity.
We provide characterizations of both the domains of preferences and the so-
cial welfare functions that allow for anonymous Arrovian aggregation. The
domains admit arbitrary preferences over alternatives, which completely de-
termine an agent’s preferences over all mixed outcomes. On these domains,
Arrow’s impossibility turns into a complete characterization of a unique social
welfare function, which can be readily applied in settings involving divisible
resources such as probability, time, or money.

1. Introduction

A central concept in welfare economics are social welfare functions (SWFs) in the tradi-
tion of Arrow, i.e., functions that map a collection of individual preference relations over
some set of alternatives to a social preference relation over the alternatives. Arrow’s
seminal theorem states that every SWF that satisfies Pareto optimality and indepen-
dence of irrelevant alternatives is dictatorial (Arrow, 1951). This sweeping impossibility
significantly strengthened an earlier observation by Condorcet (1785) and sent shock-
waves throughout welfare economics, political philosophy, economic theory, and even
seemingly unrelated disciplines such as philosophy of science and engineering design
(see, e.g., Maskin and Sen, 2014; Sen, 2017; Penn, 2019). A large body of subsequent
work has studied whether more positive results can be obtained by modifying implicit
assumptions on the domain of admissible preferences, both individually and collectively.
Two main approaches can be distinguished.
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The first approach, pioneered by Sen (1969), is based on the observation that “Arrow’s
requirement that social preferences be transitive is probably the least defensible of the
conditions that lead to his dictatorship result” (Blair and Pollak, 1982). Consequently,
the idea is to weaken the assumption of transitivity of collective preferences to quasi-
transitivity, acyclicity, path independence, or similar conditions. Although this does
allow for non-dictatorial aggregation functions that meet Arrow’s criteria, these functions
turned out to be highly objectionable, usually on grounds of involving weak kinds of
dictatorships or violating other conditions deemed to be indispensable for reasonable
preference aggregation (for an overview of the extensive literature, see Kelly, 1978; Sen,
1977, 1986; Schwartz, 1986; Campbell and Kelly, 2002). Particularly noteworthy are
results about acyclic collective preference relations (e.g., Mas-Colell and Sonnenschein,
1972; Brown, 1975; Blau and Deb, 1977; Blair and Pollak, 1982; Blair and Pollack,
1983; Banks, 1995) because acyclicity is necessary and sufficient for the existence of
maximal elements when there is a finite number of alternatives. Sen (1995) concludes
that “the arbitrariness of power of which Arrow’s case of dictatorship is an extreme
example, lingers in one form or another even when transitivity is dropped, so long as
some regularity is demanded (such as the absence of cycles).”

Another stream of research has analyzed the implications of imposing additional struc-
ture on individual preferences. This has resulted in a number of positive results for
restricted domains, such as dichotomous or single-peaked preferences, which allow for
attractive SWFs (e.g., Black, 1948; Arrow, 1951; Inada, 1969; Sen and Pattanaik, 1969;
Ehlers and Storcken, 2008). Many domains of economic interest are concerned with
infinite sets of outcomes, which satisfy structural restrictions such as compactness and
convexity. Preferences over these outcomes are typically assumed to satisfy some form
of continuity and convexity, i.e., they are robust with respect to minimal changes in
outcomes and with respect to convex combinations of outcomes. Various results have
shown that Arrow’s impossibility remains intact under these assumptions (e.g., Kalai
et al., 1979; Border, 1983; Bordes and Le Breton, 1989, 1990a,b; Campbell, 1989; Re-
dekop, 1995). Le Breton and Weymark (2011) provide an overview and conclude that
“economic domain restrictions do not provide a satisfactory way of avoiding Arrovian
social choice impossibilities, except when the set of alternatives is one-dimensional and
preferences are single-peaked.”
The point of departure for the present approach is the observation that all these

impossibilities involve some form of transitivity (e.g., acyclicity), even though no such
assumption is necessary to guarantee the existence of maximal elements in domains of
continuous and convex preferences. Sonnenschein (1971) has shown that every con-
tinuous and convex preference relation admits a maximal element in every non-empty,
compact, and convex set of outcomes. Moreover, returning these maximal elements
satisfies standard properties of choice consistency introduced by Sen (1969, 1971). Con-
tinuous and convex preference relations can thus be interpreted as rationalizing relations
for the choice behavior of rational agents and there is little need to require transitivity.1

1Another frequently cited reason to justify transitivity is the money pump, where an agent with cyclic
preferences over three outcomes is deceived into paying unlimited amounts of money in an infinite
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A number of authors have concluded that transitivity can be unnecessarily demanding
(see, e.g., May, 1954; Fishburn, 1970; Bar-Hillel and Margalit, 1988; Fishburn, 1991;
Anand, 1993, 2009; Hara et al., 2019). For example, Anand (2009) stated that “once
considered a cornerstone of rational choice theory, the status of transitivity has been
dramatically reevaluated by economists and philosophers in recent years.”

Summary of Results

We show that Arrow’s impossibility theorem ceases to hold for convex outcome sets
when dispensing with transitivity, and, moreover, Arrow’s axioms characterize a unique
anonymous SWF that we refer to as pairwise utilitarianism. The SWF is utilitarian
because collective preferences are obtained by adding the canonical skew-symmetric bi-
linear (SSB) utility functions that assign −1, 0, or +1 to each pair of alternatives based
on the agent’s ordinal preferences. The SWF is pairwise because it merely takes into
account the numbers of agents who prefer one alternative to another and also satisfies
Condorcet’s pairwise majority criterion.
More precisely, we consider a convex set of outcomes consisting of all probability mea-

sures on some finite abstract set of alternatives, which we refer to as pure outcomes.
These outcome sets, for example, arise when allocating a divisible resource (such as
probability, time, or money) to alternatives. The canonical example is the standard
unstructured social choice setting that also allows for lotteries between alternatives. We
assume that individual and collective preference relations over these outcomes satisfy
continuity, convexity, and a symmetry condition. To motivate these assumptions, we
prove that continuity and convexity are necessary and sufficient for consistent choice be-
havior, mirroring a classic characterization by Sen (1971) in the finite non-convex choice
setting (Proposition 2 in Section 4). We then show that there is a unique inclusion-
maximal Cartesian domain of preference profiles that allows for anonymous Arrovian
aggregation and satisfies minimal richness conditions (Theorem 1 in Section 7). This
domain allows for arbitrary preferences over pure outcomes, which in turn completely de-
termine an agent’s preferences over all remaining outcomes. When interpreting outcomes
as lotteries, this preference extension has a particularly simple and intuitive explanation:
one lottery is preferred to another if and only if the former is more likely to return a more
preferred alternative. Incidentally, this preference extension, which constitutes a central
special case of SSB utility functions as introduced by Fishburn (1982), is supported by
recent experimental evidence (see Section 7). Note, however, that the underlying SSB
utility functions require that the preference intensities between all pairs of pure out-
comes are equal in magnitude and therefore entail a strong form of risk-neutrality.2 We

series of cyclical exchanges. As Fishburn (1991) notes, however, the money pump “applies transitive
thinking [in the form of money] to an intransitive world [given the agent’s preferences].” Another
issue with the money pump in our framework is that it cleverly avoids convexity of the feasible set by
splitting it up into three subsets whose union is not convex. If the agent were confronted with a choice
from the convex hull of the three original outcomes, he could simply pick his (unique) most-preferred
mixed outcome and would not be tempted to exchange it when offered any other outcome in the
future.

2For the sake of simplicity, we use the term intensities when referring to the magnitudes of utility
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also provide an alternative characterization of SSB utility functions using topological
continuity and convexity notions (Proposition 3 in Section 5).
Our main theorem shows that the only Arrovian SWFs on this domain are affine utili-

tarian with respect to the underlying SSB utility functions (Theorem 2 in Section 6). As
a consequence, there is a unique anonymous Arrovian SWF, which compares outcomes
by the sign of the bilinear form given by the pairwise majority margins. The resulting
collective preference relation over pure outcomes coincides with majority rule and the
corresponding choice function is therefore consistent with Condorcet’s principle of se-
lecting a pure outcome that is majority-preferred to every other pure outcome whenever
this is possible.3 This relation naturally extends to mixed outcomes such that every
compact and convex set of outcomes admits a collectively maximal outcome. In the con-
text of lotteries, the collective preference relation admits a very intuitive interpretation:
in order to compare two lotteries p and q, randomly sample a pure outcome a from p, a
pure outcome b from q, and an agent i according to the uniform distribution over agents.
Then, p is collectively preferred to q if and only if the probability that agent i prefers a
to b is greater than the probability that he prefers b to a.
We also show that, when restricting attention to von Neumann-Morgenstern prefer-

ences over outcomes, anonymous Arrovian aggregation is only possible for dichotomous
preferences and the only Arrovian SWF corresponds to the well-known approval voting
rule (Theorems 3 and 4 in Appendix D). Thus, one interpretation of our results is that
they generalize both the domain of dichotomous preferences and approval voting.

Illustrative Example

The setting in which our assumptions are most natural is that of preference aggregation
when the outcome set consists of all lotteries over a finite set of alternatives. By contrast,
this subsection discusses the application of our results to a budget allocation setting from
public finance. Even though the assumption of convex preferences is restrictive in this
context, we think that the example nicely illustrates the premises and consequences as
well as the limitations of our results.
Imagine that a representative body, consisting of 100 delegates, aims at reaching a

joint decision on how to divide a nation’s tax budget between four departments: edu-
cation, transportation, health, and military. The delegates belong to different parties
(A, B, C, and D) and each party already put forward a favored budget proposal (see
Table 1).4 We assume for simplicity that there are four groups of delegates with identical
preferences, which could—for example—correspond to the four parties, but emphasize
that no such assumption is required for our results. In fact, no restrictions whatsoever
are imposed on the delegates’ preferences over proposals. As a consequence, Arrow’s

values even though there is no justification for this interpretation (see Footnote 21).
3It is therefore in line with Dasgupta and Maskin (2008) who, also based on Arrow’s axioms, have
forcefully argued in favor of majority rule in domains where Condorcet winners are guaranteed to
exist. Our arguments extend to unrestricted preferences over pure outcomes.

4One issue ignored here is how to arrive at the set of budget proposals. In particular, it is required
that the proposals are affinely independent.
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A B C D
Pairwise

Utilitarianism

Education 40% 30% 20% 10% 25.0%
Transportation 30% 10% 30% 30% 26.7%
Health 20% 40% 30% 20% 30.0%
Military 10% 20% 20% 40% 18.3%

25 20 45 10

A B C D
B A A B
C C D C
D D B A

Table 1: Public finance example. Four budget proposals (A, B, C, and D), the prefer-
ences of 100 delegates over these proposals, and the rounded budget allocation
returned by pairwise utilitarianism.

theorem implies that every non-dictatorial Pareto optimal SWF violates independence
of irrelevant alternatives (IIA), i.e., collective preferences over pairs of proposals may de-
pend on individual preferences over other, unrelated, proposals. Moreover, in the given
example, the pairwise majority relation is cyclic and every proposal is unstable in the
sense that it can be overthrown by a majority of the delegates.
In the described setting, it seems fairly natural to extend the space of possible out-

comes by allowing to compromise between the different proposals such that the set of
outcomes is now the convex hull of A, B, C, and D. A fifty-fifty mixture of proposals
A and B, for instance, will be written as 1/2A+ 1/2B and assigns 35% of the budget to
education, 20% to transportation, 30% to health, and 15% to military. When assuming
that the delegates’ preferences over this enlarged, infinite, set of outcomes satisfy con-
tinuity and convexity and an innocuous symmetry condition, such preferences can be
represented by bilinear utility functions. These assumptions do not allow for decreas-
ing marginal returns for increasingly large investments as well as complementarities and
substitutabilities among departments, since our notion of convexity requires upper and
lower contour sets to be convex.
One may now wonder whether there exist Arrovian SWFs for this modified setting.

Our first theorem shows that, since we insist on allowing arbitrary preferences over
proposals, anonymous Arrovian aggregation is only possible when preferences over pro-
posals are extended to preferences over mixtures of proposals by sampling proposals
from each mixture and preferring the mixture which wins more pairwise comparisons.
According to this preference extension, a delegate who prefers proposals A to B to C to
D is, for example, assumed to prefer 2/3A + 1/3C to proposal B and to be indifferent
between proposal C and 1/2A+ 1/2D. Even though preferences over proposals are tran-
sitive, some preferences over mixed outcomes will be cyclic. This effect is known as the
Steinhaus-Trybula paradox (see Figure 3 on Page 17).
Our second theorem shows that there is a unique anonymous Arrovian SWF on this

preference domain, which we refer to as pairwise utilitarianism. This SWF is based on
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the bilinear form given by the matrix of pairwise majority margins

φ =

A B C D


0 40 −10 80 A
−40 0 10 −10 B
10 −10 0 80 C
−80 10 −80 0 D

.

Here, φ(A,B) = 40 because the number of delegates who prefer A to B minus the number
of delegates who prefer B to A is (25 + 45)− (20 + 10) = 40. Collective preferences are
obtained by checking the sign of the corresponding value of φ: proposal A is preferred
to proposal B because φ(A,B) = 40 > 0, B is preferred to C because φ(B,C) = 10 > 0,
C is preferred to A because φ(C,A) = 10 > 0. Bilinearity implies that, for example,
1/2A + 1/2C is preferred to B because φ(1/2A + 1/2C,B) = 15 > 0. It follows from the
Minimax Theorem that every convex and closed set contains at least one most-preferred
outcome. In our example, the unique most-preferred outcome is a convex combination
of the first three proposals

p = 1/6A+ 1/6B + 2/3C.

This corresponds to the budget allocation given in the pairwise utilitarianism column of
Table 1. The choice function that returns maximal pairwise utilitarian outcomes satisfies
contraction consistency. Hence, the optimal allocation is not affected if proposal D is
retracted. Moreover, the choice function satisfies expansion consistency, i.e., if allocation
p is not only chosen in the example described above, but also in an alternative choice
setting in which proposal D is replaced with another proposal E, then p would also be
chosen if all five proposals (and their convex combinations) were feasible.
The pairwise utilitarian SWF satisfies Pareto optimality. For example, proposal C

Pareto dominates 1/2A+ 1/2D because the agents represented in columns 1, 2, and 4 are
indifferent between both outcomes while those represented in column 3 strictly prefer
the former to the latter, and so the former is socially preferred to the latter. The SWF
also satisfies IIA in the sense that collective preferences between outcomes in the convex
closure of some subset of proposals only depend on the individual preferences between
these outcomes. For example, all preferences between outcomes in the convex closure of
two proposals only depend on the pairwise majority relation between these proposals.
Moreover, the collective preferences between all outcomes in the convex closure of any
triple of proposals are independent of individual preferences over outcomes that involve
the fourth proposal. Of course, more significant than the observation that pairwise
utilitarianism satisfies Pareto optimality and IIA is the fact that it is the only such
SWF.5

5The public finance example also allows us to illustrate two further desirable properties of the maximal
pairwise utilitarian choice function. It is population-consistent in the sense that merging two bodies of
delegates, each of which came to the same conclusion, will not affect the outcome and it is composition-
consistent, which—among other things—implies that the choice function cannot be manipulated by
introducing additional proposals, which are similar to existing ones (see Brandl et al., 2016).
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2. Related Work

A special case of our setting, which has been well-studied, concerns individual preferences
over lotteries that satisfy the von Neumann-Morgenstern (vNM) axioms, i.e., preferences
that can be represented by assigning cardinal utilities to alternatives such that lotteries
are compared based on their expected utility (von Neumann and Morgenstern, 1947).
Samuelson (1967) conjectured that Arrow’s impossibility still holds under these assump-
tions and Kalai and Schmeidler (1977b) showed that this is indeed the case when there
are at least four alternatives. Hylland (1980) later pointed out that a continuity as-
sumption made by Kalai and Schmeidler is not required. There are other versions of
Arrow’s impossibility for vNM preferences, which differ in modeling assumptions and
whether SWFs aggregate cardinal utilities or the preference relations represented by
these utilities. We give a detailed comparison of these results in Appendix A.
Our results apply to Arrovian aggregation of preferences over lotteries under much

loosened assumptions about preferences over lotteries. In particular, the axioms we
presume entail that preferences over lotteries can be represented by skew-symmetric
bilinear (SSB) utility functions, which assign a utility value to each ordered pair of
lotteries. The first lottery is preferred to the second if the SSB utility for this pair is
positive. SSB utility theory is a generalization of linear expected utility theory that does
not require the controversial independence axiom and transitivity (see, e.g., Fishburn,
1982, 1984b, 1988). Independence prescribes that a lottery p is preferred to lottery q if
and only if a coin toss between p and a third lottery r is preferred to a coin toss between
q and r (with the same coin used in both cases). There is experimental evidence that
human decision makers systematically violate the independence axiom. Allais’s Paradox
is the most famous example (Allais, 1953). Machina (1983, 1989) and McClennen (1988)
provide detailed reviews of such violations, including those reported by Kahneman and
Tversky (1979). Fishburn and Wakker (1995) give an interesting historical perspective
on the independence axiom.
Our characterization of Arrovian SWFs is related to Harsanyi’s Social Aggregation

Theorem (Harsanyi, 1955), which shows that, for von Neumann-Morgenstern prefer-
ences over lotteries, affine utilitarianism already follows from Pareto indifference (see
Fleurbaey et al., 2008, for an excellent exposition and various extensions of this theo-
rem). Harsanyi’s theorem is a statement about Bergson-Samuelson social welfare func-
tions, i.e., a single preference profile is considered in isolation. As a consequence, the
weights associated with the agents’ utility functions may depend on their preferences.
This can be prevented by adding axioms that connect the collective preferences across
different profiles. The SWF that derives collective preferences by adding up utility rep-
resentations normalized to the unit interval is known as relative utilitarianism (Dhillon,
1998; Dhillon and Mertens, 1999; Börgers and Choo, 2017a,b). It was characterized by
Dhillon and Mertens (1999) using a weakening of IIA and further axioms (see Foot-
note 15). Fishburn and Gehrlein (1987) and Turunen-Red and Weymark (1999) have
shown that aggregating SSB utility functions is fundamentally different from aggregating
von Neumann-Morgenstern utility functions in that Harsanyi’s Pareto indifference ax-
iom (and strengthenings thereof) do not imply affine utilitarianism. As we show in this
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paper, considering Arrow’s multi-profile framework and assuming IIA can rectify this.
Mongin (1994, Proposition 1) gives a similar characterization of affine utilitarianism for
social welfare functionals (SWFLs), which operate on profiles of utility functions. In the
framework of SWFLs without invariance under positive affine transformations of utility
functions, the force of IIA is significantly weaker (see also Appendix A).
The probabilistic voting rule that returns the maximal elements of the unique anony-

mous Arrovian SWF is known as maximal lotteries (Kreweras, 1965; Fishburn, 1984a)
and was recently axiomatized using two consistency conditions (Brandl et al., 2016).
Independently, maximal lotteries have also been studied in the context of randomized
matching and assignment (see, e.g., Kavitha et al., 2011; Aziz et al., 2013).
When the set of outcomes cannot be assumed to be convex (for example, because it

is finite), a common approach to address the intransitivity of collective preferences is to
define alternative notions of maximality, rationalizability, or welfare, leading to concepts
such as transitive closure maximality or the uncovered set (see, e.g., Laslier, 1997; Brandt
and Harrenstein, 2011; Nishimura, 2018; Brandt et al., 2018). Interestingly, the support
of maximal lotteries, known as the bipartisan set or the essential set (Laffond et al., 1993;
Laslier, 2000), also appears in this literature, even though this approach is fundamentally
different from the one pursued in this paper.

3. Preliminaries

Let U be a non-empty and finite universal set of alternatives. By ∆ we denote the set
of all probability measures on U . We assume that ∆ has the topology induced by the
Euclidian metric on RU . For X ⊆ U , let ∆X be the set of probability measures in ∆ with
support in X, i.e., ∆X = {p ∈ ∆: p(X) = 1}. We will refer to elements of ∆ as outcomes
and one-point measures in ∆ as pure outcomes. The convex hull of a set of outcomes
X ∈ ∆ will be denoted by conv(X). For p, q, r ∈ ∆, we write conv(p, q, r) instead of
the more clumsy conv({p, q, r}). For p, q ∈ ∆ and λ ∈ [0, 1], we write [p, q] = conv(p, q),
[p, q) = [p, q] \ {q}, (p, q] = [p, q] \ {p}, (p, q) = [p, q)∩ (p, q], and pλq = λp+ (1− λ)q for
short.
The preferences of an agent are represented by an asymmetric binary relation � over

∆ called his preference relation. For two outcomes p, q ∈ ∆, we write p ∼ q when neither
p � q nor q � p, and p % q if p � q or p ∼ q. For p ∈ ∆, let U(p) = {q ∈ ∆: q � p}
and L(p) = {q ∈ ∆: p � q} be the strict upper and strict lower contour sets of p with
respect to �; I(p) = {q ∈ ∆: p ∼ q} denotes the indifference set of p. For X ⊆ ∆,
�|X = {(p, q) ∈ � : p, q ∈ X} is the restriction of the preference relation� to outcomes in
X. Moreover, if π is a permutation onX ⊆ U , then π(p) and �π denote the permutations
of p and � by π, respectively, i.e., π(p)(π(x)) = p(x) for all x ∈ X and π(p) �π π(q) if
and only if p � q for all outcomes p, q ∈ ∆. We will consider preference relations that are
continuous, i.e., small perturbations to outcomes retain a strict preference, and convex,
i.e., taking convex combinations of outcomes preserves preferences. This amounts to the
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following restrictions on contour sets for any p ∈ ∆.

U(p) and L(p) are open. (Continuity)
U(p), L(p), U(p) ∪ I(p), and L(p) ∪ I(p) are convex. (Convexity)

4. Rational and Consistent Choice

The existence of maximal elements is usually quoted as the main reason for insisting
on transitivity of preference relations. Sonnenschein (1971) has shown that continuity
and convexity are already sufficient for the existence of maximal elements in non-empty,
compact, and convex sets, even when preferences are intransitive (see also Bergstrom,
1992; Llinares, 1998). We will refer to any such subset of outcomes X ⊆ ∆ as feasible
and denote the set of all feasible sets by F(∆). Moreover, define max�(X) = {x ∈
X : x % y for all y ∈ X} for any preference relation � and feasible set X.

Proposition 1. (Sonnenschein, 1971) If � is a continuous and convex preference rela-
tion, then max�(X) 6= ∅ for every feasible set X.6

In a model that assumes the feasibility of all finite non-empty subsets of outcomes, Sen
(1971) has shown that two intuitive choice consistency conditions, known as Sen’s α (or
contraction) and Sen’s γ (or expansion), are equivalent to choosing maximal elements of
an underlying preference relation (see also Sen, 1977). Moreover, when the total number
of outcomes is finite, such a rationalizing preference relation has to be acyclic because
acyclicity is necessary and sufficient for the existence of maximal elements. With convex
feasible sets such as the ones we are considering, this is no longer the case, and other
properties (such as continuity and convexity) can take over the role of acyclicity. In
the following, we show that Sen’s theorem can be salvaged in our setting when defining
choice functions and choice consistency conditions appropriately.7

A choice function is a function that maps any feasible set to a feasible subset. Formally,
we define choice functions as (upper hemi-)continuous functions S : F(∆)→ F(∆) such
that for all X ∈ F(∆), S(X) ⊆ X, and for all p, q ∈ ∆, S([p, q]) ∈ {{p}, {q}, [p, q])}. The
latter assumption requires that choice functions choose either one of the end points or the
entire set from each interval. Hence, the choice from an interval reveals the preference
between its end points. Without this assumption, there is no one-to-one correspondence
between choice functions and preference relations and our characterization does not hold.
Contraction consistency requires that if an outcome is chosen from some set, it is also
chosen from any subset containing it. A choice function S satisfies contraction if for all
X,Y ∈ F(∆) with X ∩ Y 6= ∅,

S(X) ∩ Y ⊆ S(X ∩ Y ). (Contraction)
6Sonnenschein only requires that upper contour sets are convex and lower contour sets are open.
7Inspired by the classic contributions of Samuelson (1938), Richter (1966), and Afriat (1967), there
has been renewed interest in the rationalizability of choice functions in economic domains such as
consumer demand (see, e.g., Reny, 2015; Chambers and Echenique, 2016; Nishimura et al., 2017).
We are, however, not aware of a contraction-expansion-based characterization of rationalizable choice
from convex feasible sets.
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Expansion consistency demands that an outcome that is chosen from two sets X and Y
should also be chosen from their unionX∪Y . Since we only consider convex feasible sets,
we strengthen this condition by taking the convex hull conv(X ∪Y ) in the consequence.
So S satisfies expansion if for all X,Y ∈ F(∆),

S(X) ∩ S(Y ) ⊆ S(conv(X ∪ Y )). (Expansion)

Following Schwartz (1976), the conjunction of contraction and expansion can be nicely
written as a single condition, where for all X,Y ∈ F(∆) with X ∩ Y 6= ∅,

S(X) ∩ S(Y ) = S(conv(X ∪ Y )) ∩X ∩ Y . (Consistency)

The inclusion from left to right is expansion whereas the inclusion from right to left is
equivalent to contraction (see also Brandt and Harrenstein, 2011). A choice function
that satisfies contraction and expansion will be called consistent.

A choice function S is rationalizable if there exists a preference relation � such that for
every X ∈ F(∆), S(X) = max�X. Let us now consider rationalizability in the context
of continuous and convex preference relations. Any choice function that returns maximal
elements of some continuous and convex relation satisfies contraction and expansion.8

As we prove in Appendix E, the converse holds as well, i.e., if we insist on consistent
choice, we may restrict our attention to continuous and convex preference relations.

Proposition 2. A choice function is rationalizable via a continuous and convex relation
if and only if it is consistent.

Hence, rational and consistent choice is not only possible without making transitivity
(or acyclicity) assumptions, but even Sen’s fundamental equivalence between rationality
and consistency can be maintained. It follows from Richter’s (1966) theorem that any
consistent choice function is rationalized by its revealed preference relation as introduced
by Houthakker (1950). This relation moreover satisfies continuity and convexity.

5. Skew-Symmetric Bilinear Utility Functions

Convexity of preferences implies that indifference sets are convex. When we additionally
assume Fishburn’s (1982) symmetry axiom, then the indifference sets in the convex hull
of every triple of outcomes are straight lines that are either parallel or intersect in one
point, which may be outside of their convex hull. For all p, q, r ∈ ∆ and λ ∈ (0, 1),9

if q ∼ 1/2 p+ 1/2 r and pλr ∼ 1/2 p+ 1/2 q then rλp ∼ 1/2 r + 1/2 q. (Symmetry)
8There are also stronger versions of expansion, which, together with contraction, are equivalent to the

weak axiom of revealed preference or Arrow’s choice axiom (Samuelson, 1938; Arrow, 1959). These
conditions imply rationalizability via a transitive relation and are therefore not generally satisfied
when choosing maximal elements of continuous and convex relations.

9Fishburn’s original definition of symmetry requires p, q, and r to be linearly ordered (cf. Appendix F)
and is thus weaker than symmetry as defined here. Since our notion of convexity is weaker than Fish-
burn’s (1982) dominance axiom, this stronger formulation of symmetry is required for Proposition 3.
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Fishburn (1984b) justifies this axiom by stating that “the degree to which p is preferred
to q is equal in absolute magnitude but opposite in sign to the degree to which q is
preferred p.” He continues by writing that he is “a bit uncertain as to whether this
should be regarded more as a convention than a testable hypothesis – much like the
asymmetry axiom [. . . ], which can almost be thought of as a definitional characteristic
of strict preference.” Without symmetry, continuity and convexity still allow for rather
unintuitive preference relations. For example, let U = {a, b} and consider the preference
relation � on ∆ with p � q if and only if p(a) > 2/3 and q(a) < 1/3, which does not even
satisfy transitivity in a one-dimensional outcome space.
Let R denote the set of all continuous, convex, and symmetric preference relations

over ∆. Despite the richness of R, preference relations therein admit a particularly
nice representation. A preference relation can be represented by a skew-symmetric and
bilinear (SSB) utility function φ : ∆×∆→ R if for all p, q ∈ ∆,

p � q if and only if φ(p, q) > 0.

Skew-symmetry requires that φ(p, q) = −φ(q, p) for all p, q ∈ ∆ and bilinearity that φ is
linear in both arguments. SSB utility was introduced by Fishburn (1982), who also gave
a complete characterization of preference relations representable by SSB functions.10

We prove the following alternative characterization in Appendix F by reducing it to
Fishburn’s characterization.11

Proposition 3. A preference relation � can be represented by an SSB function if and
only if it satisfies continuity, convexity, and symmetry.

SSB functions are unique up to scalar multiplications. We therefore write φ ≡ φ̂
if and only if there is α > 0 such that φ = αφ̂, i.e., if φ and φ̂ represent the same
preferences. We will also write � ≡ φ if � is represented by the SSB function φ. Every
preference relation � ∈ R other than complete indifference can be associated with a
unique normalized SSB function on ∆ × ∆ whose largest positive value is equal to 1.
Let Φ denote the set of all SSB functions that are normalized in this way.12 Since all
outcomes have finite support, we can write φ(p, q) as a convex combination of the values
of φ for pure outcomes (Fishburn, 1984b). For this purpose, we identify every alternative
a ∈ U with the pure outcome that assigns probability 1 to a. Then, for all p, q ∈ ∆,

φ(p, q) =
∑
a,b∈U

p(a)q(b)φ(a, b).

10Fishburn’s characterization uses continuity and symmetry conditions that are weaker than ours while
our convexity notion is weaker than his dominance axiom (see Appendix F for more details). Our
axioms are arguably more intuitive and match the axioms used in Proposition 2.

11Pistek (2018) derives another characterization of SSB functions for more general sets of outcomes
using the same continuity and symmetry, but a different convexity axiom that is neither implied by
nor implies ours.

12For vNM utility functions, this results in normalization to the unit interval as for relative utilitarianism
(Dhillon and Mertens, 1999; Börgers and Choo, 2017b).
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We will often represent SSB functions restricted to ∆X for X ⊆ U as skew-symmetric
matrices in RX×X . For a permutation π on X, we write φπ = φ ◦ (π−1 × π−1) for the
permutation of φ by π. Thus, φπ ≡ �π if and only if φ ≡ �.
When requiring transitivity on top of continuity, convexity, and symmetry, the four

axioms characterize preference relations that can be represented by weighted linear (WL)
utility functions as introduced by Chew (1983).13 We will denote this set of preference
relations by RWL ⊂ R. When additionally requiring independence, then φ is separable,
i.e., φ(p, q) = u(p)−u(q), where u is a linear von Neumann-Morgenstern utility function
representing �. The corresponding set of preference relations will be denoted byRvNM ⊂
RWL. For independently distributed outcomes (as considered in this paper), SSB utility
theory coincides with regret theory as introduced by Loomes and Sugden (1982) (see
also Loomes and Sugden, 1987; Blavatskyy, 2006).
Through the representation of� ∈ R as a skew-symmetric matrix, it becomes apparent

that the Minimax Theorem implies the existence of maximal elements of � on ∆X . This
was noted by Fishburn (1984b, Theorem 4) and already follows from Proposition 1.

6. Social Welfare Functions

In the remainder of this paper we deal with the problem of aggregating the preferences of
multiple agents into a collective preference relation. The set of agents is N = {1, . . . , n}
for some n ≥ 2. The preference relations of agents belong to some domain D ⊆ R. A
function R ∈ DN from the set of agents to the domain is a preference profile. We will
write preference profiles as tuples (�1, . . . ,�n) with indices in N . Given a preference
profile R, let Npq = {i ∈ N : p �i q} be the set of agents who strictly prefer p over q.
Also, let Ipq = N \ (Npq ∪Nqp) be the set of agents who are indifferent between p and q.
A social welfare function (SWF) f : DN → R maps a preference profile to a collective
preference relation. We will sometimes refer to the restricted class of SWFs with range
RvNM .
Arrow (1951) initiated the study of SWFs that satisfy two desirable properties: Pareto

optimality and IIA. Pareto optimality prescribes that if all agents prefer one outcome
over another, then so should they collectively. Formally, an SWF f satisfies Pareto
optimality if for all p, q ∈ ∆, R ∈ DN , and f(R) = �,

p %i q for all i ∈ N implies p % q, and
if additionally p �i q for some i ∈ N then p � q.

(Pareto Optimality)

The indifference part of Pareto optimality, which merely requires that p ∼i q for all
i ∈ N implies p ∼ q, is usually referred to as Pareto indifference.

13A WL function is characterized by a linear utility function and a linear and positive weight function.
An outcome p is preferred to another outcome q if the expected utility of p divided by its weight is
larger than the same quantity for q. Thus, WL functions are more general than linear utility functions,
as every linear utility function is equivalent to a WL function with constant weight function. See
also Fishburn (1983).
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Independence of irrelevant alternatives demands that collective preferences over some
feasible set of outcomes should only depend on the individual preferences over this set,
and not on the preferences over outcomes outside this set. In our framework, we will
assume that feasible sets are based on the availability of alternatives and are therefore
of the form ∆X for X ⊆ U .14 Formally, we say that an SWF f satisfies independence of
irrelevant alternatives (IIA) if for all R, R̂ ∈ DN and X ⊆ U ,

R|∆X
= R̂|∆X

implies f(R)|∆X
= f(R̂)|∆X

. (IIA)

Any SWF that satisfies Pareto optimality and IIA will be called an Arrovian SWF.
Arrow has shown that, when no structure—such as convexity—is imposed on preference
relations and feasible sets, every Arrovian SWF is dictatorial, i.e., there is i ∈ N such
that for all p, q ∈ ∆, R ∈ DN , and f(R) = �, p �i q implies p � q. Dictatorships are ex-
amples of SWFs that are extremely biased towards one agent. In many applications, any
differentiation between agents is unacceptable and all agents should be treated equally.
This property is known as anonymity. We denote by ΠN the set of all permutations
on N . For π ∈ ΠN and a preference profile R ∈ DN , R ◦ π is the preference profile
where agents are renamed according to π. Then, an SWF f satisfies anonymity if for all
R ∈ DN and π ∈ ΠN ,

f(R) = f(R ◦ π). (Anonymity)

Anonymity is obviously a stronger requirement than non-dictatorship.
Two straightforward aggregation rules that satisfy Pareto optimality, IIA, and

anonymity are majority rule (p � q if and only if |Npq| > |Nqp|) and Pareto rule (p � q if
and only if Npq 6= ∅ and Nqp = ∅). However, neither rule constitutes a well-defined SWF
because they do not map to R. While majority rule may not even produce maximal
elements (Zeckhauser, 1969), Pareto rule violates continuity and convexity.
We define a natural subclass of SWFs by computing the weighted sum of the normal-

ized individual utility representations. An SWF f is called affine utilitarian if and only
if there are weights w1, . . . , wn ∈ R such that for all R ∈ DN and (φi)i∈N ∈ ΦN with
(φi)i∈N ≡ R,

f(R) ≡
∑
i∈N

wiφi. (Affine Utilitarianism)

Affine utilitarian SWFs satisfy Pareto indifference. This still allows for constant SWFs
(by setting all weights to 0) or dictatorial SWFs (by setting all weights but one to
0). When requiring that all weights are positive, these SWFs are ruled out and all
resulting SWFs satisfy Pareto optimality. The unique anonymous and Pareto optimal
affine utilitarian SWF is defined by setting all weights to 1 and will simply be referred to
as the utilitarian SWF. On the domain of vNM preferences, the utilitarian SWF coincides
14Strengthening IIA by allowing all convex subsets of ∆ to be feasible completely ignores the structure

of ∆ as the convex hull of U and is too demanding when paired with our other axioms. Since pairwise
utilitarianism violates this strong notion of IIA, Theorem 2 would turn into an impossibility. Our
notion of IIA where only faces of ∆ are feasible was also used in the impossibility theorem by Kalai
and Schmeidler (1977b) and, in an even weaker form, in the characterization of relative utilitarianism
by Dhillon and Mertens (1999); see Footnote 15.
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with relative utilitarianism as introduced by Dhillon and Mertens (1999). The utilitarian
SWF violates IIA on domain RvNM . For example, for two agents and three alternatives,
consider a preference profile where the first agent assigns normalized utilities 1, 0, and
0 to the alternatives and the second agent assigns 1/3, 1, and 0. Then, when deriving
the collective preferences by employing utilitarianism, the first alternative is preferred to
the second alternative. If instead the utility of the first agent for the second alternative
was 1/2, the latter would be collectively preferred to the first alternative, even though
the individual preferences over those two alternatives have not changed. Consequently,
the utilitarian SWF also violates IIA on the full domain R.15

7. Characterization of the Domain

For SWFs with range RvNM , anonymous Arrovian aggregation on the full domain R is
impossible because it is already impossible in the subdomain of vNM preferences (see
Appendix A). On the other hand, interesting possibilities emerge in restricted domains
such as in that of dichotomous vNM preferences Rdich where each agent can only assign
two different vNM utility values, say, 0 and 1 (Inada, 1969). In Theorem 3 (Appendix D),
we show that anonymous Arrovian aggregation of vNM preferences is only possible in
subdomains of Rdich . In such domains, every affine utilitarian SWF satisfies IIA since
for every X ⊆ U , the individual preferences over all outcomes in ∆X only depend on
which alternatives in X receive utility 1. When all individual weights are positive,
these SWFs furthermore satisfy Pareto optimality and thus constitute a natural class of
Arrovian SWFs. The utilitarian SWF corresponds to approval voting and ranks pure
outcomes by the number of approvals they receive from the agents (see, e.g., Brams
and Fishburn, 2007; Laslier and Sanver, 2010). This ranking is identical to majority
rule, which happens to be transitive for dichotomous preferences, and is extended to
all outcomes by comparing expected utilities. In the case of lotteries, two outcomes
are simply compared by the probabilities that a randomly selected agent approves the
alternative selected by the lottery. In Theorem 4 (Appendix D), we prove that this SWF
is in fact the only anonymous Arrovian SWF with range RvNM when D ⊆ Rdich and
|U| ≥ 4.16

The goal of this section is more ambitious: we seek to characterize the unique inclusion-
maximal domain D ⊆ R for which anonymous Arrovian SWFs exist. To this end, we
need to assume that D satisfies four richness conditions. First, we require that it is
neutral in the sense that it is not biased towards certain alternatives. It is assumed that

� ∈ D if and only if �π ∈ D for all π ∈ ΠU and � ∈ D. (R1)
15Dhillon and Mertens introduced a weakening of IIA called independence of redundant alternatives,

which only considers feasible sets for which every infeasible outcome is unanimously indifferent to
some feasible outcome, and show that the utilitarian SWF satisfies this condition on domain RvNM .
This is, however, no longer the case on the full domain R.

16Maniquet and Mongin (2015) show a similar statement in the classic non-convex social choice setting.
Since they only consider pure outcomes, their notions of Pareto optimality and IIA are weaker than
ours. However, the consequence of their statement is also weaker because it only implies that pure
outcomes are ranked according to their approval scores.
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R

vNM
WL

PC

dich.

Figure 1: Venn diagram showing the inclusion relationships between preference domains.
The intersection of RvNM and RPC (pairwise comparison) contains exactly
Rdich . The intersection of RWL (weighted linear utility) and RPC contains
exactly the domain of PC preferences based on trichotomous weak orders (see
Figure 2 for an example). An example of a preference relation in RPC \RWL is
given in Figure 3. Theorem 1 shows that RPC is the unique inclusion-maximal
rich domain for which anonymous Arrovian aggregation is possible within R.
This, for example, implies impossibilities for RWL and RvNM .

Second, we require that it is possible to be completely indifferent, i.e.,

∅ ∈ D. (R2)

Third, it should also be possible for agents to declare completely opposed preferences.
For � ∈ D, �−1 is the inverse of �, i.e., p �−1 q if and only if q � p for all p, q ∈ ∆.
Then,

� ∈ D implies �−1 ∈ D for all � ∈ R. (R3)

Note that this condition is not implied by the previous neutrality condition because it
allows the inversion of preferences over all outcomes, not only pure ones. Finally, we
demand that for every preference relation in D and every set of up to four pure outcomes,
there is a relation in D with the same preferences over pure outcomes such that all these
outcomes are preferred to a fifth pure outcome. Note that � and �̂ in the definition
below only need to coincide on the pure outcomes in X. Formally,

for all �̂ ∈ D and X ⊆ U , |X| ≤ 4, there is � ∈ D and a ∈ U such that �|X = �̂|X and
x � a for all x ∈ X.

(R4)

A domain D ⊆ R that satisfies R1, R2, R3, and R4 will be called rich. Note that any
rich domain allows for arbitrary transitive preferences over up to five pure outcomes.
The following rich domain will turn out to be important for our characterization. We

say that φ ∈ Φ is based on pairwise comparisons if φ(a, b) ∈ {−1, 0, 1} for all a, b ∈ U and
denote the set of SSB functions that are based on pairwise comparisons by ΦPC ⊂ Φ and
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ab
c

 ≡ φ =

a b c( )0 1 1 a
−1 0 1 b
−1 −1 0 c

a

b

c

Figure 2: Illustration of preferences based on pairwise comparisons for three alterna-
tives when preferences over pure outcomes are given by the transitive relation
a � b � c. The left-hand side shows the SSB function and the right-hand side
the Marschak-Machina probability triangle. The arrows represent normal vec-
tors to the indifference curves (pointing towards the lower contour set). Each
indifference curve separates the corresponding upper and lower contour set.

the corresponding set of preference relations by RPC = {� ∈ R : � ≡ φ for some φ ∈
ΦPC }. RPC contains Rdich (see Figure 1). Other rich domains include R, RWL, RvNM ,
and the subset of RPC in which all preferences over pure outcomes are transitive.
Anonymous Arrovian aggregation is only possible on rich subdomains of RPC .

Theorem 1. Let f be an anonymous Arrovian SWF on some rich domain D with
|U| ≥ 4. Then, D ⊆ RPC .

The proof of Theorem 1 is given in Appendix B.
PC preferences are quite natural and can be seen as the canonical SSB representation

consistent with a given ordinal preference relation over alternatives. For a preference
relation � ∈ RPC and two outcomes p, q ∈ ∆ we have that

p � q if and only if
∑

a,b : a�b
p(a) · q(b) >

∑
a,b : a�b

q(a) · p(b).

If p and q are interpreted as independent lotteries, p is preferred to q if and only if p
is more likely to return a more preferred alternative than q. Alternatively, the terms in
the inequality above can be associated with ex ante regret (the probability of ex post
regret). Then, p is preferred to q if its choice results in lower ex ante regret. Since PC
preferences are completely determined by preferences over pure outcomes and transitive
preferences over pure outcomes can be conveniently represented by weak rankings, we
will compactly represent PC preferences over some set of alternatives by putting the
weak ranking of these alternatives in brackets (see Figures 2 and 3 for examples).
PC preferences have previously been considered in decision theory (Blyth, 1972;

Packard, 1982; Blavatskyy, 2006). Packard (1982) calls them the rule of expected domi-
nance and Blavatskyy (2006) refers to them as a preference for the most probable winner.
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a
b
c
d

 ≡ φ =

a b c d


0 1 1 1 a
−1 0 1 1 b
−1 −1 0 1 c
−1 −1 −1 0 d

a b c d

p 0 0 1 0
q 2/5 0 0 3/5

r 0 3/5 0 2/5

Figure 3: Illustration of preferences based on pairwise comparisons for four alternatives
when preferences over pure outcomes are given by the transitive relation a �
b � c � d. The left-hand side shows the SSB function. The preferences
between the three outcomes p, q, and r, defined in the table on the right-hand
side, are cyclic: φ(p, q) = 3/5 − 2/5 = 1/5 > 0, φ(q, r) = 2/5 − (3/5)2 = 1/25 > 0,
and φ(r, p) = 3/5− 2/5 = 1/5 > 0. Hence, p � q � r � p.

Aziz et al. (2015, 2018) and Brandl et al. (2019) have studied Pareto efficiency, strate-
gyproofness, and related properties with respect to these preferences. Blavatskyy (2006)
gives an axiomatic characterization of PC preferences using the SSB axioms (continuity,
convexity, and symmetry), and an additional axiom called fanning-in, which essentially
prescribes that indifference curves are not parallel, but fanning in at a certain rate (see
Figure 2). As a corollary of Theorem 1, fanning-in is implied by Fishburn’s SSB axioms
and Arrow’s axioms. Blavatskyy cites extensive experimental evidence for the fanning-in
of indifference curves.
Figure 2 illustrates PC preferences for three transitively ordered pure outcomes.17

When there are at least four alternatives, PC preferences can be cyclic even when pref-
erences over pure outcomes are transitive. This phenomenon, known as the Steinhaus-
Trybula paradox, is illustrated in Figure 3 (see, e.g., Steinhaus and Trybula, 1959; Blyth,
1972; Packard, 1982; Rubinstein and Segal, 2012; Butler and Pogrebna, 2018). Butler
and Pogrebna (2018) have conducted an extensive experimental study of the Steinhaus-
Trybula paradox and found significant evidence for PC preferences.

8. Characterization of the Social Welfare Function

Theorem 1 has established that anonymous Arrovian aggregation is only possible if
individual preferences are based on pairwise comparisons, i.e., D ⊆ RPC . This raises
the question which SWFs (if any) are Arrovian on D.
It turns out that for any � ∈ D, � ≡ φ ∈ Φ, and X ⊆ U , �|∆X

uniquely determines
φ|X (not only up to a positive scalar). Hence, affine utilitarian SWFs satisfy IIA. Since
any affine utilitarian SWF with positive weights furthermore satisfies Pareto optimality,
these SWFs are Arrovian. Our next theorem shows that these are in fact the only Arro-
vian SWFs. More precisely, we show that SWFs on domain D satisfy Pareto indifference
and IIA if and only if they are affine utilitarian. Affine utilitarian SWFs may assign

17For three alternatives, PC preferences as depicted in Figure 2 can be represented by a WL function
with utility function u(a) = u(b) = 1 and u(c) = 0 and weight function w(a) = 0 and w(b) = w(c) = 1.
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φ =

a b c( )0 1 −1 a
−1 0 1 b
1 −1 0 c

a

b

c

•

Figure 4: Illustration of collective preferences returned by the unique anonymous Arro-
vian SWF in the case of Condorcet’s paradox. The left-hand side shows the
collective SSB function and the right-hand side the Marschak-Machina proba-
bility triangle. The arrows represent normal vectors to the indifference curves
(pointing towards the lower contour set). Each indifference curve separates
the corresponding upper and lower contour set. The unique maximal outcome
is 1/3 a+ 1/3 b+ 1/3 c.

negative or null weights to agents. As mentioned in Section 6, this, for example, allows
for dictatorial SWFs where the collective preferences are identical to the preference re-
lation of one pre-determined agent. However, when assuming full Pareto optimality, the
weights assigned to these SSB functions have to be positive, which rules out dictatorial
SWFs.

Theorem 2. Let f be an Arrovian SWF on some rich domain D ⊆ RPC with |U| ≥ 5.
Then, f is affine utilitarian with positive weights.

We give the proof of Theorem 2 in Appendix C.
On subdomains of RPC , affine utilitarianism with positive weights admits an intuitive

probabilistic interpretation: in order to compare two lotteries p and q, randomly sample
a pure outcome a from p, a pure outcome b from q, and an agent i with probabilities
proportional to the agents’ weights. Then, p is collectively preferred to q if and only if
the probability that agent i prefers a to b is greater than the probability that he prefers
b to a.
Theorem 2 can be seen as a multi-profile version of Harsanyi’s Social Aggregation

Theorem (see Section 2) for SSB preferences, where IIA allows us to connect weights
across different profiles. When furthermore assuming anonymity, the weights of all SSB
functions have to be identical and we obtain the following complete characterization.

Corollary 1. Let |U| ≥ 5 and D be a rich domain. An anonymous SWF is Arrovian if
and only if it is the utilitarian SWF and D ⊆ RPC .

We refer to the utilitarian SWF on PC preferences as pairwise utilitarianism. Pairwise
utilitarianism is computationally tractable: two outcomes can be compared by straight-
forward matrix-vector multiplications while a maximal outcome can be found using linear
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programming. For illustrative purposes, consider the classic Condorcet preference profile

R = (

ab
c

 ,
bc
a

 ,
ca
b

) ≡ (

 0 1 1
−1 0 1
−1 −1 0

 ,

0 −1 −1
1 0 1
1 −1 0

 ,

 0 1 −1
−1 0 −1
1 1 0

) = (φ1, φ2, φ3).

Note that the pairwise majority relation is cyclic, since there are majorities for a over b,
b over c, and c over a. The unique anonymous Arrovian SWF f aggregates preferences
by adding the individual utility representations, i.e.,

f(R) ≡
∑
i∈N

φi =

 0 1 −1
−1 0 1
1 −1 0

 .

Figure 4 shows the collective preference relation represented by this matrix. The unique
maximal outcome is 1/3 a+ 1/3 b+ 1/3 c.18

9. Discussion

Our results challenge the traditional—transitive—way of thinking about individual and
collective preferences, which has been largely influenced by the pervasiveness of scores
and grades. While our theorems do hold for transitive individual preferences over pure
outcomes, the preference domain we characterize does admit preference cycles over mixed
outcomes. Pareto optimality then immediately implies the same for collective prefer-
ences. Even though the collective preference relation we characterize does not provide a
ranking of all possible outcomes, it nevertheless allows for the comparison of arbitrary
pairs of outcomes and identifies maximal (and minimal) elements in each feasible set of
outcomes.19

Some readers may be concerned by, say, deriving the decisions of a government from an
intransitive collective preference relation. We believe that this concern is largely based
on the common fallacy of equating transitivity with rationality. Transitivity certainly
appears to be a desirable property of preference relations. However, in notoriously
difficult settings such as social choice, it can be unnecessarily restrictive: unnecessary
because basic principles of rational choice (such as Propositions 1 and 2) hold without
making this assumption and restrictive because collective choice is at variance with an
elementary independence notion when insisting on transitivity. Arrow’s theorem has
shown that every non-dictatorial and Pareto optimal social choice function (i) cannot

18This outcome represents a somewhat unusual unique maximal element because it is not strictly pre-
ferred to any of the other outcomes. This is due to the contrived nature of the example and only
happens if the support of a maximal outcome contains all alternatives. Also, in this example, collec-
tive preferences happen to be PC preferences, which clearly is not the case in general.

19Bernheim and Rangel (2009) have recently also put forward a relaxed—intransitive—notion of welfare
and defended it as “a viable welfare criterion” because it guarantees the existence of maximal elements
for finite sets. In fact, Bernheim and Rangel write that “to conduct useful welfare analysis, one does
not require transitivity” (see also Bernheim, 2009).
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be rationalized by a transitive collective preference relation or (ii) violates independence
of irrelevant alternatives.20

Consider, for example, Borda’s voting rule which assigns equidistant scores to alterna-
tives based on the agents’ individual rankings and returns the alternatives with maximal
accumulated score. Sen (1977, pp. 78f) provides an illuminating discussion of two dif-
ferent interpretations of Borda’s rule for variable feasible sets that highlight the tension
between (transitive) rationalizability and IIA. In a choice-theoretic context, IIA demands
that the choice set only depends on preferences over elements contained in the feasible
set, and rationalizability requires that all choices can be rationalized by a single collective
preference relation ranging over all alternatives in the universe. Now, the broad Borda
rule first assigns Borda scores to all alternatives in the universe and then returns the
alternatives with maximal scores within the feasible set. By contrast, the narrow Borda
rule directly assigns Borda scores to alternatives in the feasible set and then returns
those with maximal score. The broad Borda rule can be rationalized by a transitive
collective preference relation (the ranking of all alternatives by their Borda score), but
violates IIA while the narrow Borda rule satisfies IIA, but cannot be rationalized by any
binary preference relation (it violates contraction consistency). Arrow’s theorem shows
that this tradeoff concerns all non-dictatorial and Pareto optimal social choice functions.
Moreover, Sen observed that transitive rationalizability can be replaced with contraction
consistency in Arrow’s theorem and many related results. While voters could justifiably
complain that, under the broad Borda rule, the social choice from feasible set {a, b, c}
depends on their preferences over other unrelated alternatives, say, d or e (a violation
of IIA), they could be similarly concerned about the narrow Borda rule, under which it
is possible that alternative {a} is chosen from {a, b, c} but not from {a, b}. Both phe-
nomena are troubling: the lack of IIA because seemingly irrelevant information is taken
into account for the social choice, and the lack of contraction because introducing or
removing, say, clearly inferior alternatives can influence the social choice.
Within the setting of convex outcome sets as described in our paper, affine utilitarian

social choice functions on the domain of PC preferences simultaneously satisfy IIA and
rationalizability by a binary preference relation (and thus contraction) as well as Pareto
optimality. If one takes offense at intransitivities, these functions can also be inter-
preted as mappings from individual choice functions (which may already be aggregates
of individual opinions) to a collective choice function.
A compelling opinion on transitivity, which matches the narrative of our paper, is

expressed in the following quote by decision theorist Peter C. Fishburn:

Transitivity is obviously a great practical convenience and a nice thing to have
for mathematical purposes, but long ago this author ceased to understand
why it should be a cornerstone of normative decision theory. [. . . ] The
presence of intransitive preferences complicates matters [. . . ] however, it is
not cause enough to reject intransitivity. An analogous rejection of non-

20Another implicit assumption of Arrow’s model is that individual preferences are ordinal, that is, they
do not contain cardinal information that can be meaningfully compared across agents. We discuss
alternative models in Appendix A.

20



Euclidean geometry in physics would have kept the familiar and simpler
Newtonian mechanics in place, but that was not to be. Indeed, intransitivity
challenges us to consider more flexible models that retain as much simplicity
and elegance as circumstances allow. It challenges old ways of analyzing
decisions and suggests new possibilities. (Fishburn, 1991, pp. 115–117)

Theorem 2, the main result of this paper, can be viewed as an intermediary between
Harsanyi’s Social Aggregation Theorem and Arrow’s Impossibility Theorem: it uses
Arrow’s axioms to derive Harsanyi’s utilitarian consequence. Clearly, the form of utili-
tarianism characterized in Theorem 2 is rather restrictive as, due to Theorem 1, it does
not allow for intensities of individual preferences.21 In fact, it is no more “utilitarian”
than approval voting or Borda’s rule, which are also based on the summation of scores
in purely ordinal contexts. In contrast to Borda’s rule, however, pairwise utilitarianism
respects majority rule on pure outcomes and thereby reconciles Borda’s and Condorcet’s
seemingly conflicting views on preference aggregation (see, e.g., Black, 1958; Young,
1988, 1995). While Theorem 1 shows that Arrow’s axioms rule out intensities of indi-
vidual preferences over pure outcomes, Theorem 2 implies that intensities of collective
preferences are in fact required.
We would like to conclude with a remarkable quote from Kenneth J. Arrow’s influential

monograph, which draws the reader’s attention precisely to the avenue pursued in this
paper.

It seems that the essential point is, and this is of general bearing, that,
if conceptually we imagine a choice being made between two alternatives,
we cannot exclude any probability distribution over those two choices as a
possible alternative. The precise shape of a formulation of rationality which
takes the last point into account or the consequences of such a reformulation
on the theory of choice in general or the theory of social choice in particular
cannot be foreseen; but it is at least a possibility, to which attention should
be drawn, that the paradox to be discussed below might be resolved by
such a broader concept of rationality [. . . ] Many writers have felt that the
assumption of rationality, in the sense of a one-dimensional ordering of all
possible alternatives, is absolutely necessary for economic theorizing [. . . ]
There seems to be no logical necessity for this viewpoint; we could just as
well build up our economic theory on other assumptions as to the structure
of choice functions if the facts seemed to call for it. (Arrow, 1951,
pp. 20–21)

21One may even question whether this form of preference aggregation really qualifies as utilitarianism.
However, in a similar vein, one could also question whether Harsanyi’s Social Aggregation Theorem
or Dhillon and Mertens’ relative utilitarianism are concerned with cardinal utilitarianism because
vNM utilities are merely a compact representation of ordinal preferences over lotteries (see, e.g.,
Weymark, 1991; Fleurbaey et al., 2008; Fleurbaey and Mongin, 2016; Mongin and Pivato, 2016, for
a discussion of this issue in the context of the so-called Harsanyi-Sen debate). Von Neumann and
Morgenstern (1947, p. 16) themselves warn against cardinal interpretations of their utility theory
(see also “Fallacy 3” by Luce and Raiffa (1957, p. 32), Schoemaker (1982), and Fishburn (1989)).
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10. Remarks

This section contains five technical remarks concerning Theorems 1 and 2 and a remark
concerning Koray’s notion of self-selectivity.

Remark 1 (Transitivity). When requiring transitivity of individual preferences over
all outcomes, we immediately obtain an impossibility because |U| ≥ 4 and R4 imply
that we have to admit a strict ranking of four pure outcomes. According to Theorem 1,
these preferences are extended to all outcomes using the PC extension. The example
in Figure 3 shows that these preferences violate transitivity. Hence, we also have the
impossibility of anonymous Arrovian aggregation of WL preferences (and thereby of
vNM preferences), even when collective preferences need not be transitive.22

Remark 2 (Anonymity). Theorem 1 does not hold without assuming anonymity. Let
U = {a, b, c, d}, N = {1, 2, 3},

φ =


0 1 1 1 + ε
−1 0 1 1
−1 −1 0 1

−(1 + ε) −1 −1 0


for some ε ∈ (0, 1/4), and D ≡ ΦPC ∪{φπ : π ∈ ΠU}. D satisfies our richness assumptions
and the SWF f : D → R, f(R) ≡ 2φ1 + 3φ2 + 4φ3 satisfies Pareto optimality and IIA,
but violates anonymity. Note that f is not dictatorial. Hence, Theorem 1 does not hold
when weakening anonymity to non-dictatorship.

Remark 3 (Tightness of Bounds). Theorem 1 does not hold if |U| < 4, which is
the same bound as for the result by Kalai and Schmeidler (1977a). This stems from
the fact that for |U| = 3, IIA only has consequences for feasible sets of the form ∆{a,b}
for a, b ∈ U . For every possible preference between a and b, there is exactly one SSB
preference relation on ∆{a,b} consistent with it. Hence, IIA only has consequences for
the collective preferences over pure outcomes. However, even for three alternatives, the
domains of preferences satisfying R1, R2, and R3 that allow for anonymous Arrovian
aggregation are severely restricted. In particular, Lemmas 2 to 4 and the cases (i)
and (iv) of Lemma 5 still hold. Any such domain contains exactly one SSB function φ
for every strict order over U , which takes the form

φ =

 0 1 λ
−1 0 1
−λ −1 0


for some λ ∈ R>0 that is fixed across all strict orders. For 1 < λ < 1+1/n, the utilitarian
SWF is an Arrovian SWF on the corresponding domain.
22When collective preferences have to be transitive as well, this impossibility directly follows from

Arrow’s theorem by only considering pure outcomes. Requiring Pareto optimality and IIA to hold
only for pure outcomes makes these axioms weaker; non-dictatorship (no agent can dictate strict
preferences over pure outcomes) is implied by anonymity.
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Theorem 2 does not hold if |U| < 5. Let U = {a, b, c, d}, D = RPC ,

φ̂ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , and R̂ = (


a
b
c
d

 ,

a
b
c
d

 ,

c
d
a
b

 ,

d
c
a
b

 , . . . )
such that every preference relation in D \ {∅} appears exactly once in (R̂i)i∈N\{1,2,3,4}.
Then, Pareto optimality has no implications for R̂. Let f : DN → R be the utilitar-
ian SWF except that f(R̂) ≡ φ̂. f satisfies Pareto optimality and IIA. The proof of
Theorem 2 fails at Lemma 8.

Remark 4 (SWFs with Range D). When defining SWFs by requiring that collective
preferences have to belong to the same domain as individual preferences, one obtains an
impossibility. Theorem 1 only becomes weaker if we restrict the range of SWFs. Hence,
both individual and collective preferences have to belong to RPC and Theorem 2 implies
that any Arrovian SWF is affine utilitarian with positive weights. However when letting

φ1 =

 0 1 1
−1 0 0
−1 0 0

 and φ2 =

 0 0 1
0 0 1
−1 −1 0

 ,

then φ1, φ2 ∈ ΦPC while there are no w1, w2 ∈ R>0 such that w1φ1 + w2φ2 ∈ ΦPC .
Since φ1 and φ2 represent dichotomous preference relations, Theorem 4 also turns into
an impossibility.

Remark 5 (More General Preference Relations). Our results could be strength-
ened by making even fewer assumptions about individual and collective preferences.
Whether symmetry is required for Theorems 1 and 2 is open. A more drastic gener-
alization would only require the existence of maximal elements in all feasible sets with
respect to the collective preference relation. Such a generalization of Theorem 1 does
not hold. Consider the domain of individual preferences containing all transitive and
complete relations. The Pareto rule (see Section 6) is anonymous and Arrovian and
always returns a relation that permits maximal elements. Hence, Theorem 2 does not
hold either. For the full domain of individual preferences that admit maximal elements
in all feasible sets, Pareto optimality alone can result in collective preferences that do
not admit a maximal element.

Remark 6 (Self-Selectivity). Koray (2000) introduced self-selectivity as a property
of social choice functions on a finite set of alternatives. A social choice function is
self-selective if for any preference profile and any finite set of social choice functions con-
taining it, it selects itself when agents’ preferences over social choice functions are derived
from their preferences over the outcomes returned by the social choice functions. By a
reduction to Arrow’s impossibility, Koray (2000, Theorem 2) showed that only dictator-
ships are unanimous, neutral, and self-selective on the domain of transitive preferences
over alternatives. It can be shown that, when appropriately adapting the definition of
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self-selectivity to convex outcome sets, the maximal pairwise utilitarian choice function
is self-selective on the domain of PC preferences. This is a consequence of the fact that
maximal pairwise utilitarian choice satisfies contraction consistency.
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APPENDIX

A. Arrovian Impossibilities for vNM Preferences

As mentioned in Section 2, there are a number of Arrovian impossibilities when prefer-
ences over lotteries satisfy the von Neumann-Morgenstern (vNM) axioms and thus can
be represented by assigning cardinal utilities to alternatives such that lotteries are com-
pared based on the expected utility they produce. We believe that a detailed comparison
of these results, which have appeared in different branches of social choice theory and
welfare economics, is in order.
The literature on economic domains uses a framework very similar to the one studied

in this paper (see Le Breton and Weymark, 2011). A key question is whether Arrow’s
impossibility remains intact if the domain of admissible preference profiles is subject
to certain structural restrictions. Many results in this area rely on the so-called local
approach due to Kalai et al. (1979), who proposed a simple domain condition that is
sufficient for Arrow’s impossibility. Le Breton (1986) has shown that this condition is
satisfied by the domain of vNM preferences (see also Le Breton and Weymark (2011,
p. 214)). The corresponding IIA condition is defined for arbitrary pairs of lotteries,
or—equivalently—arbitrary feasible sets of size 2 (which implies IIA for arbitrary finite
feasible sets of lotteries). In view of the structure of the set of lotteries, weaker IIA
conditions (for example, restricted to convex feasible sets) seem natural.
Sen (1970) has initiated the study of so-called social welfare functionals (SWFLs),

which map a profile of cardinal utilities to a transitive and complete collective preference
relation (see also d’Aspremont and Gevers, 2002). The definitions of Pareto optimality
and IIA can be straightforwardly extended to SWFLs. Note, however, that IIA takes into
account the absolute values of utilities (rather than only ordinal comparisons between
these values). This allows for Pareto optimal SWFLs that satisfy IIA, for example by
adding individual utilities (utilitarianism).
vNM utilities are invariant under positive affine transformations. To account for this,

Sen (1970) introduced the axiom of cardinality and non-comparability, which prescribes
that collective preferences returned by the SWFL are invariant under positive affine
transformations of the individual utility functions. However, this assumption effectively
turns the problem into a problem of ordinal preference aggregation because the utility
values assigned to two different alternatives in two different utility profiles can be made
identical across profiles by applying a positive affine transformation. Hence, IIA implies
an ordinal version of IIA which only takes into account the ordinal comparisons between
utility values and Arrow’s original theorem holds (Sen, 1970, Theorem 8*2).
There are two ways to interpret Sen’s result. First, one can view the set of alternatives

as the set of degenerate lotteries. This leads to weak notions of Pareto optimality and
IIA because they are only concerned with degenerate lotteries. Non-dictatorship, on
the other hand, becomes much stronger because a dictator can only enforce his (strict)
preferences over degenerate lotteries, rather than all lotteries. Alternatively, one can
define the set of alternatives as the set of all lotteries. This gives rise to stronger notions
of Pareto optimality and IIA based on pairs of lotteries, rather than pairs of degenerate
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lotteries. In this model, non-dictatorship is defined by disallowing agents who can enforce
their (strict) preferences over lotteries. Like Arrow’s theorem, Sen’s result assumes an
unrestricted domain of preferences (or ordinal utilities, respectively). Expected utility
functions over a set of lotteries, however, are subject to certain structural constraints
(described by the vNM axioms independence and continuity). This gap is filled by
Mongin (1994, Proposition 3), who has shown that Sen’s result still holds when the set
of alternatives is a convex subset of some vector space with mixture-preserving (i.e.,
affine) utility functions, which includes the domain of lotteries over some finite set of
alternatives as a special case.23 The Pareto condition used by Mongin is identical to the
one used in his paper and therefore slightly stronger than the one used by Arrow, Sen,
and Le Breton.
A very strong impossibility for vNM preferences was given by Kalai and Schmeidler

(1977b) (and later improved by Hylland (1980)). Kalai and Schmeidler consider “cardi-
nal” preference relations represented by equivalence classes of utility functions that can
be transformed into each other using positive affine transformations and cardinal so-
cial welfare functions, which map a profile of cardinal preference relations to a collective
cardinal preference relation. The set of alternatives is defined as the set of degenerate lot-
teries like in the first interpretation of Sen’s result. Preferences over lotteries are implicit
in each equivalence class of utility functions. When interpreted in our ordinal frame-
work, they prove an Arrovian impossibility when individual and collective preferences
over lotteries are subject to the vNM axioms and there are at least four alternatives. In
contrast to the results by Le Breton, Sen, and Mongin, IIA is only required for feasible
sets given by the convex combination of degenerate lotteries and non-dictatorship only
rules out projections. The theorem thus uses weaker notions of Pareto optimality, IIA,
and non-dictatorship at the expense of also requiring the vNM axioms for the collective
preference relation. When replacing non-dictatorship with anonymity, our Theorem 1
implies a similar impossibility, even without requiring collective preferences to be tran-
sitive (see Remark 1). We use Kalai and Schmeidler’s weak IIA notion, but Mongin’s
strong notion of Pareto optimality.

B. Characterization of the Domain

We start by showing that every continuous relation satisfies a weaker notion of continuity
known as Archimedean continuity. We will also use this statement in Appendices E and
F. A preference relation � satisfies Archimedean continuity if for all p, q, r ∈ ∆,

p � q � r implies pλr ∼ q for some λ ∈ (0, 1). (Archimedean continuity)

It is well known that continuity implies Archimedean continuity (see, e.g., Karni, 2007);
we give a proof for completeness.

Lemma 1. If a preference relation � satisfies continuity, then it satisfies Archimedean
continuity.
23The vector space is required to be at least of dimension 2, which corresponds to the set of lotteries

over at least three degenerate lotteries.
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Proof. Let � be a preference relation satisfying continuity, p, q, r ∈ ∆ such that p � q �
r, and λ∗ = supλ∈[0,1]{q � pλr}. Since q � r, λ∗ is well defined. Continuity of � implies
that L(q) and U(q) are open and hence, L(q) ∩ [p, r] and U(q) ∩ [p, r] are open in [p, r].
If q � pλ∗r, then L(q) ∩ [p, r] is not open in [p, r], since pλr % q for all λ > λ∗, which is
a contradiction. If pλ∗r � q, then U(q) ∩ [p, r] is not open in [p, r], since, by definition
of λ∗, every open neighborhood of pλ∗r in [p, r] contains pλr for some λ < λ∗ such that
q � pλr. This is again a contradiction. Hence, q ∼ pλ∗r.

Two vNM preference relations with the same symmetric part have to be equal up to
orientation, since any two linear functions representing them have to have the same null
space. Fishburn and Gehrlein (1987, Theorem 2) have shown that this statement extends
to SSB preference relations, which will be useful in subsequent proofs.24 Note that the
statement only requires set inclusion between the symmetric parts and not equality.

Lemma 2 (Fishburn and Gehrlein, 1987). Let �, �̂ ∈ R such that ∼ ⊆ ∼̂. Then,
�̂ ∈ {�,�−1, ∅}.

The next lemma is reminiscent of what is known as the field expansion lemma in
traditional proofs of Arrow’s theorem (see, e.g., Sen, 1986).25 Let f : DN → R be an
SWF, G,H ⊆ N , and a, b ∈ U . We say that (G,H) is decisive for a against b if for all
R ∈ DN , Nab = G, Iab = H, and Nba = N \ (G∪H) implies a � b. Decisiveness induces
a binary relation DG,H on U , where a DG,H b if (G,H) is decisive for a against b.

Lemma 3. Let f be an Arrovian SWF on some rich domain D with |U| ≥ 3, G,H ⊆ N ,
and a, b ∈ U . Then, a DG,H b implies that DG,H = U × U .

Proof. First we show that a DG,H x and b DG,H x for all x ∈ U \ {a, b}. To this end, let
x ∈ U \ {a, b} and �x ∈ D be a preference relation such that a �x b �x x and a �x x,
which exists by richness assumption R4 (cf. Section 6). Consider the preference profile

R = (�x, . . . ,�x︸ ︷︷ ︸
G

, ∅, . . . , ∅︸ ︷︷ ︸
H

,�−1
x , . . . ,�−1

x ),

which exists by R2 and R3. Since �x ∩�−1
x = ∅, it follows from Pareto indifference and

Lemma 2 that � = f(R) ∈ {�x,�−1
x , ∅}. Since a DG,H b, � = �x remains as the only

possibility. Hence, a � x and b � x. By IIA, it follows that a DG,H x and b DG,H x.
Repeated application of the second statement implies thatDG,H is a complete relation.

To show that DG,H is symmetric, let x, y, z ∈ U such that x DG,H y. The first part of the
statement implies that x DG,H z. Two applications of the second part of the statement
yield z DG,H y and y DG,H x. Hence, DG,H = U × U .

Now we show that anonymous Arrovian aggregation is only possible on rich domains
in which preferences over outcomes are completely determined by preferences over pure
outcomes.
24Brandl (2018, Lemma 8.8) shows that Lemma 2 even holds when � and �̂ only satisfy Archimedean

continuity and Fishburn’s (1982) dominance axiom.
25In contrast to Lemma 3, the consequence of the original field expansion lemma uses a stronger notion

of decisiveness.
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Lemma 4. Let f be an anonymous Arrovian SWF on some rich domain D with |U| ≥ 3.
Then, �|A = �̂|A implies �|∆A

= �̂|∆A
for all �, �̂ ∈ D and A ⊆ U .

Proof. Let �0, �̂0 ∈ D and A ⊆ U such that �0|A = �̂0|A. Consider the preference
profile

R = (�0, �̂−1
0 , ∅, . . . , ∅),

which exists by R2 and R3. Assume that there are a, b ∈ A such that a �0 b and
define R̄ = R(12) to be identical to R except that the preferences of Agents 1 and 2
are exchanged. Anonymity of f implies that �̄ = f(R̄) = f(R) = �. Assume for
contradiction that a � b. Then, by IIA, ({1}, N \ {1, 2}) is decisive for a against b.
Lemma 3 implies that ({1}, N \ {1, 2}) is also decisive for b against a. Hence, b �̄ a,
which contradicts �̄ = �. As a consequence, we get that a ∼ b for all a, b ∈ A such that
a �̂0 b. For a, b ∈ A such that a ∼0 b and a ∼̂0 b, Pareto indifference implies that a ∼ b.
It follows that a ∼ b for all a, b ∈ A.
Since by convexity of �, indifference sets are convex, we get that �|∆A

= ∅. If
�0|∆A

6= �̂0|∆A
, there are p, q ∈ ∆A such that p �0 q and not p �̂0 q, i.e., p %̂

−1

0 q.
The strict part of Pareto optimality of f implies that p � q. This contradicts �|∆A

= ∅.
Hence, �0|∆A

= �̂0|∆A
.

Lemma 4 is the only part of the proof of Theorem 1 that requires anonymity. A much
weaker condition would also suffice: there has to be R ∈ DN , x, y ∈ U , i ∈ N , and
f(R) = � such that x �i y and x ∼ y.
Next, we show that intensities of preferences between pure outcomes have to be iden-

tical.

Lemma 5. Let f be an anonymous Arrovian SWF on some rich domain D with |U| ≥ 4.
Then, for all �0 ∈ D and a, b, c ∈ U with a �0 b,

(i) b �0 c implies φ0(a, b) = φ0(b, c),

(ii) a �0 c implies φ0(a, b) = φ0(a, c),

(iii) c �0 b implies φ0(a, b) = φ0(c, b), and

(iv) c �0 a implies φ0(a, b) = φ0(c, a).

Proof. Ad (i): Since, by Lemma 1, �0 satisfies Archimedean continuity, it follows that
b ∼0 aλc for some λ ∈ (0, 1). Observe that �(ac)

0 |{a,b,c} = �−1
0 |{a,b,c}, where (ac) denotes

the permutation that swaps a and c and leaves all other alternatives fixed. Lemma 4
implies that �(ac)

0 |∆{a,b,c} = �−1
0 |∆{a,b,c} . Hence, we have b ∼0 cλa. Convexity of �0

then implies that I(b) is convex and hence, b ∼0 1/2 a + 1/2 c. This is equivalent to
φ0(a, b) = φ0(b, c).
Ad (ii): We distinguish two cases.
Case 1 (b ∼0 c): Consider the preference profile

R = (�0, (�(bc)
0 )−1, ∅, . . . , ∅),
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which exists by R1, R2, and R3.
Let � = f(R). As in the proof of Lemma 4, we get that �|∆{a,b,c} = ∅. Without loss

of generality, assume that φ0(a, b) = 1 and φ0(a, c) = λ for some λ ∈ (0, 1]. Let p =
1/2 a+1/2 c and q = 1/2 a+1/2 b and denote by φ1 and φ2 the SSB functions representing the
preference relations�0 and (�(bc)

0 )−1, respectively. Then, φ1(p, q) = φ2(p, q) = 1/4 (1−λ).
If λ < 1, the strict part of Pareto optimality of f implies that p � q. This contradicts
�|{a,b,c} = ∅. Hence, λ = 1.
Case 2 (b �0 c): Assume without loss of generality that φ0(a, b) = 1. By (i), we get

φ0(a, b) = φ0(b, c) = 1. By R4, there is �̂0 ∈ D with a �̂0 b �̂0 c, a �̂0 c, and c �̂0 x
for some x ∈ U . Lemma 4 implies that φ0|{a,b,c} ≡ φ̂0|{a,b,c}. Assume without loss of
generality that φ̂0(a, b) = φ̂0(b, c) = 1. Then it suffices to show that φ̂0(a, c) = 1. By (i),
we get that φ̂0(a, c) = φ̂0(c, x) and φ̂0(b, c) = φ̂0(c, x) = 1. Hence, φ̂0(a, c) = 1.
Ad (iii): The proof is analogous to the proof of (ii).
Ad (iv): The proof is analogous to the proof of (i).

Theorem 1. Let f be an anonymous Arrovian SWF on some rich domain D with
|U| ≥ 4. Then, D ⊆ RPC .

Proof. Let �0 ∈ D and a, b, c, d ∈ U such that a �0 b and c �0 d. We have to show
that φ0(a, b) = φ0(c, d). First assume there are x ∈ {a, b} and y ∈ {c, d} such that
x �0 y or y �0 x. Then, Lemma 5 implies that φ0(a, b) = φ0(x, y) = φ0(c, d) or
φ0(a, b) = φ0(y, x) = φ0(c, d), respectively. Otherwise, x ∼0 y for all x ∈ {a, b} and
y ∈ {c, d}. This implies that �0|{a,b,c,d} = �0

(ac)(bd)|{a,b,c,d}. From Lemma 4 it follows
that�0|∆{a,b,c,d} = �0

(ac)(bd)|∆{a,b,c,d} . Hence, φ0|{a,b,c,d} = φ
(ac)(bd)
0 |{a,b,c,d} and φ0(a, b) =

φ0(c, d).

C. Characterization of the Social Welfare Function

Except for Theorem 2, all results in this section only require Pareto indifference rather
than Pareto optimality.
The following lemmas show that for all preference profiles R from the domain of PC

preferences, all alternatives a and b, and all φ representing f(R), φ(a, b) only depends on
the set of agents who prefer a to b. We first prove that, if an alternative is strictly Pareto
dominated, then the intensities of collective preferences between each of the dominating
alternatives and the dominated alternative are identical.

Lemma 6. Let f be an SWF satisfying Pareto indifference and IIA on some rich domain
D ⊆ RPC with |U| ≥ 4. Let a, b, c ∈ U and R ∈ DN such that Nac = Nbc = N . Then,
φ(a, c) = φ(b, c) where φ ≡ f(R).

Proof. The idea of the proof is to introduce a fourth alternative, which serves as a
calibration device for the intensity of pairwise comparisons, and to eventually disregard
this alternative using IIA. To this end, let x ∈ U and consider a preference profile
R̂ ∈ DN such that R|{a,b,c} = R̂|{a,b,c} and N̂ax = N̂bx = N̂cx = N which exists by
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R4. Let φ̂ ≡ f(R̂). The Pareto indifference relation with respect to R̂|{a,c,x} is identical
to ∼1|{a,c,x}. The analogous statement holds for the Pareto indifference relation with
respect to R̂|{b,c,x}. Hence, Pareto indifference, Lemma 2, and IIA imply that there are
α, β ∈ R such that

φ̂|{a,c,x} = α

 0 1 1
−1 0 1
−1 −1 0

 and φ̂|{b,c,x} = β

 0 1 1
−1 0 1
−1 −1 0

 .

As a consequence, α = β and φ̂(a, c) = φ̂(b, c). Since R|{a,b,c} = R̂|{a,b,c}, D ⊆ RPC and
IIA imply that φ|{a,b,c} ≡ φ̂|{a,b,c}. Hence, φ(a, c) = φ(b, c).26

Lemma 7 shows that for a fixed preference profile, φ(a, b) only depends on Nab and
Iab (and not on the names of the alternatives).

Lemma 7. Let f be an SWF satisfying Pareto indifference and IIA on some rich domain
D ⊆ RPC with |U| ≥ 5, a, b, c, d ∈ U , and R ∈ DN such that Nab = Ncd and Nba = Ndc.
Then, φ(a, b) = φ(c, d) where φ ≡ f(R).

Proof. We first prove the case when a, b, c, d are pairwise distinct. Let e ∈ U and consider
a preference profile R̂ ∈ DN such that R̂|{a,b,c,d} = R|{a,b,c,d} and N̂ae = N̂be = N̂ce =

N̂de = N . Such a profile exists by R4. Now consider a preference profile R̊ ∈ DN such
that

R̊|{a,b,c,d,e} =



a
b
c
d
e

 , . . .
︸ ︷︷ ︸

Nab

,


d
c
b
a
e

 , . . .
︸ ︷︷ ︸

Nba

,

[
a, b, c, d

e

]
, . . .

 ,

which exists by R4. Note that R̂|{a,b,e} = R̊|{a,b,e} and R̂|{c,d,e} = R̊|{c,d,e} because
Nab = Ncd and Nba = Ndc by assumption. Now, let φ̂ ≡ f(R̂) and φ̊ ≡ f(R̊). Since
R̂|{a,b,e} = R̊|{a,b,e}, we have φ̂|{a,b,e} ≡ φ̊|{a,b,e} by IIA. Moreover, R̂|{c,d,e} = R̊|{c,d,e}
and IIA yield φ̂|{c,d,e} ≡ φ̊|{c,d,e}. Lemma 6 implies that φ̊(a, e) = φ̊(b, e) = φ̊(c, e) =

φ̊(d, e) = λ for some λ ∈ R. Thus, for some µ, σ ∈ R, φ̊ takes the form

φ̊|{a,b,c,d,e} =


0 µ λ
−µ 0 λ

0 σ λ
−σ 0 λ

−λ −λ −λ −λ 0

 .

Note that R̊|{a,b,c,d} only consists of one fixed preference relation, its inverse, and com-
plete indifference. Hence, Pareto indifference and Lemma 2 imply that φ̊|{a,b,c,d} =

26Pareto optimality also implies that φ(a, c), φ(b, c) > 0.
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αφ̊i|{a,b,c,d} for some α ∈ R, i ∈ N , and φ̊i ≡ R̊i. Thus D ⊆ RPC implies µ = σ.
Since φ|{a,b,c,d} = φ̂|{a,b,c,d}, φ̂|{a,b,e} ≡ φ̊|{a,b,e}, and φ̂|{c,d,e} ≡ φ̊|{c,d,e}, it follows that
φ(a, b) = φ(c, d).
The cases when a = c and b = c follow from repeated application of the above case.

All other cases are symmetric to one of the covered cases.

Next, we show that the ratio of the preference intensities between two pairs of pure
outcomes only depends on the individual preferences within each pair and not on pref-
erences between both pairs or other pure outcomes.

Lemma 8. Let f be an SWF satisfying Pareto indifference and IIA on some rich domain
D ⊆ RPC with |U| ≥ 5, a, b, c, d ∈ U , R, R̂ ∈ DN , φ ≡ f(R), and φ̂ ≡ f(R̂). If
R|{a,b} = R̂|{a,b} and R|{c,d} = R̂|{c,d}, then φ(a, b) = αφ̂(a, b) and φ(c, d) = αφ̂(c, d) for
some α > 0.

Proof. Let e ∈ U \ {a, b, c, d} and R′, R̂′ ∈ DN such that R′|{a,b,c,d} = R|{a,b,c,d},
R̂′|{a,b,c,d} = R̂|{a,b,c,d}, and N ′ae = N ′be = N ′ce = N ′de = N̂ ′ae = N̂ ′be = N̂ ′ce = N̂ ′de = N .
The profiles R′, R̂′ exist by R4. We denote the corresponding collective SSB functions
by φ′ ≡ f(R′) and φ̂′ ≡ f(R̂′). Since f satisfies IIA, we have that φ|{a,b,c,d} ≡ φ′|{a,b,c,d}
and φ̂|{a,b,c,d} ≡ φ̂′|{a,b,c,d}. Lemma 6 implies that without loss of generality, φ′ and φ̂′

take the following form for some λ, µ, µ̂, σ, σ̂ ∈ R. Note that we can choose suitable
representatives such that φ′(a, e) = φ̂′(a, e) = λ.

φ′|{a,b,c,d,e} =


0 µ λ
−µ 0 λ

0 σ λ
−σ 0 λ

−λ −λ −λ −λ 0

 φ̂′|{a,b,c,d,e} =


0 µ̂ λ
−µ̂ 0 λ

0 σ̂ λ
−σ̂ 0 λ

−λ −λ −λ −λ 0


Observe that R′|{a,b,e} = R̂′|{a,b,e} and R′|{c,d,e} = R̂′|{c,d,e} by construction. Since f
satisfies IIA, we get that φ′|{a,b,e} = φ̂′|{a,b,e} and φ′|{c,d,e} = φ̂′|{c,d,e}. In particular, this
means that µ = µ̂ and σ = σ̂. Since φ|{a,b,c,d} ≡ φ′|{a,b,c,d} and φ̂|{a,b,c,d} ≡ φ̂′|{a,b,c,d},
there is α > 0 as required.

Formally, Lemma 8 shows that φ(a, b) only depends on Nab and Iab and not on a, b,
or R. Hence, there is a function g : 2N × 2N → R such that g(Nab, Iab) = φ(a, b) for all
a, b ∈ U and R ∈ DN with φ ≡ f(R). We now leverage Pareto indifference to show that
f is affine utilitarian.

Lemma 9. Let f be an SWF satisfying Pareto indifference and IIA on some rich domain
D ⊆ RPC with |U| ≥ 5. Then, f is affine utilitarian.

Proof. Let R ∈ DN and (φi)i∈N ∈ ΦN such that (φi)i∈N ≡ R. For all G ⊆ N , let wG =
1/2 (g(N, ∅)+g(G, ∅)). For convenience, we write wi for w{i}. Since φ(x, y) = g(Nxy, Ixy)
for all x, y ∈ U , it suffices to show that

g(Nxy, Ixy) =
∑
i∈N

wiφi(x, y) =
∑
i∈Nxy

wi −
∑
i∈Nyx

wi, (1)
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for all x, y ∈ U . To this end, we will first show that wG + wĜ = wG∪Ĝ for all G, Ĝ ⊆ N
with G ∩ Ĝ = ∅. Let G, Ĝ as above, a, b, c, x, y ∈ U , and consider a preference profile
R ∈ DN such that

R|{a,b,c,x,y} =



x
a
b
c
y

 , . . .
︸ ︷︷ ︸

G

,


b
y
c
x
a

 , . . .
︸ ︷︷ ︸

Ĝ

,


c
x
a
y
b

 , . . .
 ,

which exists by R4. Let φ ≡ f(R). We have that, for p = 1/2x + 1/2 y and q =
1/3 a+ 1/3 b+ 1/3 c, φi(p, q) = 0 for all i ∈ N . Pareto indifference implies that φ(p, q) = 0.
Let µ = g(G, ∅), µ̂ = g(Ĝ, ∅), and σ = g(G ∪ Ĝ, ∅). By definition of w,

wG + wĜ = wG∪Ĝ

is equivalent to

(g(N, ∅) + g(G, ∅)) + (g(N, ∅) + g(Ĝ, ∅)) = g(N, ∅) + g(G ∪ Ĝ, ∅).

Hence, we have to show that µ+ µ̂+ g(N, ∅) = σ. By definition of g, we get that φ takes
the following form.

φ|{a,b,c,x,y} =


0 −g(N, ∅) −µ̂

0 µ̂ σ
0 −µ −µ̂

g(N, ∅) −µ̂ µ 0
µ̂ −σ µ̂ 0


From φ(p, q) = 0, it follows that 1/6 (µ + µ̂ + g(N, ∅) − σ) = 0. This proves the desired
relationship.
Now we can rewrite (1) as g(Nxy, Ixy) = w(Nxy)−w(Nyx), which, by definition of w,

is equivalent to
2g(Nxy, Ixy) = g(Nxy, ∅)− g(Nyx, ∅). (2)

To prove (2), consider a preference profile R̂ ∈ DN such that

R̂|{a,b,x,y} =

  a
x, y
b

 , . . .
︸ ︷︷ ︸

G

,

 x
a
b, y

 , . . .
︸ ︷︷ ︸

Ĝ

,

 b
x, y
a

 , . . .
 ,

which exists by R2, R3, and R4. Let φ̂ ≡ f(R̂). Observe that, for p = 1/3x + 2/3 y and
q = 1/2 a+ 1/2 b, p ∼̂i q for all i ∈ N . Pareto indifference implies that φ̂(p, q) = 0. With
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the same definitions as before and ε = g(G, Ĝ), φ̂ takes the following form.

φ̂|{a,b,x,y} ≡


0 µ σ

0 −σ −ε
−µ σ 0
−σ ε 0


From φ̂(p, q) = 0, we get that 1/6 (−µ + σ − 2σ + 2ε) = 0. Hence, 2ε = µ + σ. This is
equivalent to

2g(G, Ĝ) = g(G, ∅) + g(G ∪ Ĝ, ∅) = g(G, ∅)− g(N \ (G ∪ Ĝ), ∅),

where the last equality follows from skew-symmetry of φ̂ and the definition of g. This
proves (2).

Finally, the strict part of Pareto optimality implies that individual weights have to be
positive.

Theorem 2. Let f be an Arrovian SWF on some rich domain D ⊆ RPC with |U| ≥ 5.
Then, f is affine utilitarian with positive weights.

Proof. From Lemma 9 we know that there are w1, . . . , wn ∈ R such that for all R ∈ DN
and φ1, . . . , φn ∈ ΦPC with (φi)i∈N ≡ R, f(R) ≡

∑
i∈N wiφi. Assume for contradiction

that wi ≤ 0 for some i ∈ N . Let G be the set of agents such that wi ≤ 0 and consider a
preference profile R ∈ DN with a, b ∈ U such that

R|{a,b} =

( [
a
b

]
, . . .︸ ︷︷ ︸
G

,
[
a, b
]
, . . .

)
,

which exists by R2 and R4. Let φ ≡ f(R). Then, we have that φi(a, b) = 1 for all
i ∈ G and φi(a, b) = 0 for all i ∈ N \G. Pareto optimality of f implies that φ(a, b) > 0.
However, we have

φ(a, b) = α

∑
i∈G

wi φi(a, b)︸ ︷︷ ︸
=1

+
∑

i∈N\G

wi φi(a, b)︸ ︷︷ ︸
=0

 = α
∑
i∈G

wi ≤ 0

for some α > 0. This is a contradiction.

D. Characterizations for vNM preferences

In this section, we consider Arrovian SWFs with domain and range RvNM instead of
R. For this case, we characterize both the largest domain of individual preferences
that allows for anonymous Arrovian aggregation and the class of Arrovian SWFs on this
domain, and thereby provide analogous statements to Theorems 1 and 2 when restricting
R to RvNM .
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A subdomain of vNM preferences is the domain of dichotomous preferences Rdich =
RvNM ∩RPC , where every agent can assign one of only two different vNM utility values,
say 0 and 1, to every pure outcome. Theorem 3 shows that this domain is the largest
domain satisfying R1, R2, and R3 on which anonymous Arrovian SWFs exist.

Theorem 3. Let f be an anonymous Arrovian SWF with range RvNM on some domain
D ⊆ RvNM satisfying R1, R2, and R3. Then, D ⊆ Rdich .

Proof. If |U| ≤ 2, then RvNM = Rdich , which immediately implies the statement of the
theorem. So consider the case that |U| ≥ 3 and assume for contradiction that D 6⊆ Rdich ,
i.e., there is �0 ∈ D such that a �0 b �0 c for some a, b, c ∈ U . Observe that Lemma 3
holds for D, since D satisfies R1, R2, and R3 and contains a preference relation with
three indifference classes on pure outcomes, e.g., �0. Hence, for all G,H ⊆ N and
x, y ∈ U , if (G,H) is decisive for x against y, then (G,H) is decisive for all pairs of
alternatives, i.e., x DG,H y implies DG,H = U × U .

Now let x, y ∈ U and �x0 ,�
y
0 ∈ D such that x �x0 y and y �y0 x, which exist by �0 ∈ D

and R1, and consider the preference profiles

R = (�x0 ,�
y
0, ∅, . . . , ∅) and R̄ = (�y0,�

x
0 , ∅, . . . , ∅),

which exist by R2. Let � = f(R), �̄ = f(R̄) and observe that, by anonymity of f ,
� = �̄. If x � y or y � x, then Lemma 3 implies that y �̄ x or x �̄ y, respectively,
which contradicts � = �̄. Hence, x ∼ y.

Lastly, let �1,�2 ∈ D such that a �1 b �1 c and c �2 a �2 b, which exist since
�0 ∈ D and R1, and consider the preference profile

R̂ = (�1,�2, ∅, . . . , ∅),

which exists by R2. Let �̂ = f(R̂). Since f satisfies IIA, it follows from what we
have shown above that a ∼̂ c and b ∼̂ c. Together with the fact that �̂ ∈ RvNM , this
implies a ∼̂ b. However, since f satisfies Pareto optimality, we have a �̂ b, which is a
contradiction.

Secondly, we characterize the class of Arrovian SWFs on domains of dichotomous
preferences. To this end, we need to make a richness assumption for domains D ⊆ Rdich ,
which prescribes that all dichotomous preferences relations on any set of up to four
alternatives are possible.

For all �̂ ∈ Rdich and X ⊆ U , |X| ≤ 4, there is � ∈ D such that �|X = �̂|X . (R5)

We show that every Arrovian SWF on subdomains of Rdich satisfying R5 is affine
utilitarian with positive weights. Similar to Lemma 9, we first prove that affine utilitarian
SWFs are the only SWFs satisfying Pareto indifference and IIA.

Lemma 10. Let f be an SWF satisfying Pareto indifference and IIA with range RvNM

on some domain D ⊆ Rdich satisfying R5 with |U| ≥ 4. Then, f is affine utilitarian.
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Proof. The proof is structured as follows. We start by defining a function w that assigns
a weight to every set of agents based on the output of f for specific profiles. It will
turn out that f is affine utilitarian for the weights that w assigns to singleton sets. To
prove this, we show that w is additive, i.e., the weight of the union of two disjoint sets
of agents is equal to the sum of the weights of both sets.
First observe that for all R ∈ DN , f(R) ≡ φ, and x, y, z ∈ U , we have

φ(x, z) = φ(x, y) + φ(y, z), (3)

since φ ∈ RvNM by assumption. If f(R) ≡ 0 for all R ∈ DN , we can choose wi = 0 for
all i ∈ N . Otherwise, there is R̂ ∈ DN such that f(R̂) ≡ φ̂ 6= 0. Let a, b, c, d ∈ U be
four distinct alternatives. We may assume without loss of generality that φ̂(a, b) 6= 0.
Let R̄ ∈ DN , f(R̄) ≡ φ̄, such that the preferences between a and b are as in R̂ and both
a and b are weakly preferred to c by all agents. Formally, R̄|{a,b} = R̂|{a,b}, N̄ac = N̂ab,
N̄bc = N̂ba, and N̄ca = N̄cb = ∅, i.e.,

R̄|{a,b,c} =

( [
a
b, c

]
, . . .︸ ︷︷ ︸

N̂ab

,

[
b
a, c

]
, . . .︸ ︷︷ ︸

N̂ba

,
[
a, b, c

]
, . . .

)
.

The profile R̄ exists by R5. Since f satisfies IIA, it follows that φ̄(a, b) 6= 0. By (3),
we have that φ̄(a, b) = φ̄(a, c) + φ̄(c, b) 6= 0. Hence, by skew-symmetry of φ̄, either
φ̄(a, c) 6= 0 or φ̄(b, c) 6= 0. Without loss of generality, we may assume that φ̄(a, c) 6= 0.
Let G∗ = N̄ac 6= ∅ and note that Īac = N \G∗, since N̄ca = ∅. The set of agents G∗ will
remain fixed for the rest of this proof. Since φ̄(a, c) 6= 0 and f satisfies IIA, G∗ can be
used to calibrate the utility values across different profiles. Based on G∗, we will now
construct a function w that assigns a weight to every set of agents. For every G ⊆ N , let
RG ∈ DN , f(RG) ≡ φG such that RG|{a,c} = R̄|{a,c}, NG

bc = G, and IGbc = N \G. Hence,

RG|{a,b,c} =

(
︸ ︷︷ ︸

G∗

[
a
b, c

]
, . . . ,

G︷ ︸︸ ︷[
a, b
c

]
, . . . ,

[
b
a, c

]
, . . . ,

[
a, b, c

]
, . . .

)
.

The profiles RG exist by R5. Let

wG =
φG(b, c)

φG(a, c)
. (4)

Since RG|{a,c} = R̄|{a,c} and f satisfies IIA, we have that φG(a, c) 6= 0 and hence, wG
is well-defined. Intuitively, wG is the weight of the agents in G relative to the weight of
the agents in G∗.
We will first show that wG is independent of the choice of a, b, c and RG. To this end,

let R ∈ DN , f(R) ≡ φ, and x, y, z ∈ U (not necessarily distinct from a, b, c) such that
R(xa)(yb)(zc)|{a,b,c} = RG|{a,b,c}, where (xa)(yb)(zc) is the permutation that swaps x with
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a, y with b, and z with c. We first consider the case that x = a, y = b, and z ∈ U\{a, b, c}.
Let R′ ∈ DN , f(R′) ≡ φ′, such that R′|{a,b,c} = RG|{a,b,c} and R′|{a,b,z} = R|{a,b,z}, which
exists by R5. Since f satisfies IIA, we have that φ′|{a,b,c} ≡ φG|{a,b,c} and φ′|{a,b,z} ≡
φ|{a,b,z}. Note that, by the choice of R and RG, we have that I ′cz = N . Since f satisfies
Pareto indifference, it follows that φ′(c, z) = 0. Using the definition of φ′ for the first
and the third equality and (3) for the second equality, we get

φ(b, z)

φ(a, z)
=
φ′(b, z)

φ′(a, z)
=
φ′(b, c)

φ′(a, c)
=
φG(b, c)

φG(a, c)
= wG.

Repeated application of this case yields the desired statement for arbitrary x, y, z.
Next we show that w is additive, i.e., for all G, Ĝ ⊆ N with G ∩ Ĝ = ∅,

wG + wĜ = wG∪Ĝ. (5)

To this end, let R ∈ DN , f(R) ≡ φ, such that Nbd = G, Ncd = Ĝ, Nad = G∗, and
Nda = Ndb = Ndc = ∅, i.e., d is least preferred among {a, b, c, d} by all agents. The
profile R exists by R5. By (4), we have that φ(b, d) = wGφ(a, d) and φ(c, d) = wĜφ(a, d).
Moreover, let R̄ ∈ DN , f(R̄) ≡ φ̄, such that N̄bd = G, N̄ad = G ∪ Ĝ, N̄cd = G∗, and
N̄da = N̄db = N̄dc = ∅, which exists by R5. By (4), we have that φ̄(b, d) = wGφ̄(c, d)
and φ̄(a, d) = wG∪Ĝφ̄(c, d). Let R̃ ∈ DN , f(R̃) ≡ φ̃, such that R̃|{b,c,d} = R|{b,c,d}
and R̃|{a,b,d} = R̄|{a,b,d}, which completely determines R̃|{a,b,c,d}, since D ⊆ Rdich . The
profile R̃ exists by R5 and since Nbd = N̄bd = G. It is depicted below.

R̃|{a,b,c,d} =

( [
a, b
c, d

]
, . . .︸ ︷︷ ︸

G

,

[
a, c
b, d

]
, . . .︸ ︷︷ ︸

Ĝ

,
[
a, b, c, d

]
, . . .

)

Since f satisfies IIA, we have that φ̃|{b,c,d} ≡ φ|{b,c,d}. Hence, there is α > 0 such
that φ̃(b, d) = αwG and φ̃(c, d) = αwĜ. Again, since f satisfies IIA, we have that
φ̃|{a,b,d} ≡ φ̄|{a,b,d}. Hence, there is β > 0 such that φ̃(b, d) = βwG and φ̃(a, d) = βwG∪Ĝ.
Since D ⊆ Rdich ⊆ RvNM , f(R̃) ∈ RvNM , and f satisfies Pareto indifference, Harsanyi’s
Social Aggregation Theorem (1955) implies that there are vi ∈ R for all i ∈ N such that
φ̃ ≡

∑
i∈N viφ̃i where (φ̃i)i∈N ≡ R̃. Thus,

φ̃(a, d) =
∑

i∈G∪Ĝ

vi =
∑
i∈G

vi +
∑
i∈Ĝ

vi = φ̃(b, d) + φ̃(c, d).

If φ̃(b, d) = φ̃(c, d) = 0, then φ̃(a, d) = 0 and wG = wĜ = wG∪Ĝ = 0. In particular,
wG∪Ĝ = wG+wĜ and we are done. Otherwise, we may assume without loss of generality
that φ̃(b, d) 6= 0. This implies that α = β. Hence, we have that

αwG∪Ĝ = φ̃(a, d) = φ̃(b, d) + φ̃(c, d) = α(wG + wĜ),

which proves the desired statement.
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Hence, to prove that f is affine utilitarian with weights wi = w{i} for all i ∈ N , it
suffices to show that for all R ∈ DN , f(R) ≡ φ, there is α > 0 such that φ(x, y) =
α(wNxy − wNyx) for all x, y ∈ U . To this end, we first show that φ(x, y) = 0 if and only
if wNxy − wNyx = 0. Without loss of generality, assume that {x, y} ∩ {a, b} = ∅ and let
R̄ ∈ DN such that N̄xb = Nxy, N̄yb = Nyx, N̄ab = G∗, and N̄ba = N̄bx = N̄by = ∅, which
exists by R5. Note that this implies R̄{x,y} = R{x,y} since D ⊆ Rdich . Applying (4) and
(3) for the first and second equality, respectively, we have that

wNxy − wNyx =
φ̄(x, b)

φ̄(a, b)
− φ̄(y, b)

φ̄(a, b)
=
φ̄(x, y)

φ̄(a, b)
.

Since f satisfies IIA, φ(x, y) is a positive multiple of φ̄(x, y) from which the desired
relationship follows.
Now if φ = 0, it follows that for all x, y ∈ U , φ(x, y) = wNxy − wNyx = 0 and we

can choose α > 0 arbitrarily. Otherwise, we may assume without loss of generality
that φ(a, b) 6= 0, which implies that wNab

− wNba
6= 0. Let α ∈ R such that φ(a, b) =

α(wNab
−wNba

). We aim to show that for all x, y ∈ U , φ(x, y) = α(wNxy−wNyx). To this
end, let x, y ∈ U . If {x, y} = {a, b}, this is clear by skew-symmetry of φ. Otherwise we
may assume without loss of generality that x ∈ U \ {a, b} and, by (3), that φ(a, x) 6= 0.
Let R̂ ∈ DN , f(R̂) ≡ φ̂, such that R|{a,b,x} = R̂|{a,b,x} and, N̂ya = N̂yb = N̂yc = ∅, which
exists by R5. Note that N̂ya = ∅ implies that N̂by∩ N̂ba = N̂ba, since D ⊆ Rdich ⊆ RvNM

only contains transitive preference relations; likewise, N̂ay ∩ N̂ab = N̂ab. From before,
we have that there is γ > 0 such that φ̂(a, y) = γwN̂ay

, φ̂(b, y) = γwN̂by
, and φ̂(x, y) =

γwN̂xy
. Hence, we have that

φ̂(a, b) = φ̂(a, y)− φ̂(b, y) = γ(wN̂ay
− wN̂by

)

= γ((w
N̂ay ∩ N̂ab︸ ︷︷ ︸

N̂ab

+ wN̂ay∩Îab)− (w
N̂by ∩ N̂ba︸ ︷︷ ︸

N̂ba

+ w
N̂by ∩ Îab︸ ︷︷ ︸

N̂ay∩Îab

)) = γ(wN̂ab
− wN̂ba

),

where the first equality follows from (3) and skew-symmetry of φ̂ and the third equality
follows from (5). Similarly, we get that φ̂(a, x) = γ(wN̂ax

−wN̂xa
). Since f satisfies IIA,

it follows that φ|{a,b,x} ≡ φ̂|{a,b,x}. Hence, φ(a, x) = α(wNax − wNxa), and, by a similar
argument, φ(a, y) = α(wNay − wNya). Observe that by (5) and D ⊆ Rdich ,

wNxy = wNxa∩Nxy + wNay∩Nxy = wNxa − wNya∩Nxa + wNay − wNax∩Nay

and
wNyx = wNya∩Nyx + wNax∩Nyx = wNya − wNxa∩Nya + wNax − wNay∩Nax .

Note that the minus terms are the same in both of the above equalities. Then, we have
that

φ(x, y) = φ(x, a)− φ(y, a) = α(wNxa − wNax − wNya + wNay) = α(wNxy − wNyx),
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where the first equality follows from (3) and skew-symmetry of φ, the second equality
follows from skew-symmetry of φ, and the third equality follows from the statements
about wNxy and wNyx derived above. This proves the desired equation.

When assuming that f satisfies full Pareto optimality instead of Pareto indifference,
the weights of all agents have to be positive and we obtain the following theorem.

Theorem 4. Let f be an Arrovian SWF with range RvNM on some domain D ⊆ Rdich

satisfying R5 with |U| ≥ 4. Then, f is affine utilitarian with positive weights.

Theorem 4 follows from Lemma 10 in the same way as Theorem 2 follows from
Lemma 9. Its proof is therefore omitted. If we additionally assume that f is anonymous,
the weights of all agents have to be equal, and outcomes are ordered by the vNM utility
function that assigns to each alternative the number of agents who approve it.

Corollary 2. Let |U| ≥ 4 and D ⊆ RvNM be some domain satisfying R5. An anonymous
SWF with range RvNM is Arrovian if and only if it is the utilitarian SWF and D ⊆ Rdich .

Remark 7 (Tightness of Bound). Theorem 4 does not hold if |U | < 4. Let U =
{a, b, c} and consider the SWF f defined as follows. For all R ∈ DN and x, y, z ∈ U ,
f(R) ≡ φ with φ(x, y) = φ(y, z) = 1 and φ(x, z) = 2 if |Nxy| > |Nyx| and |Nyz| > |Nzy|,
and otherwise f(R) ≡

∑
i∈N φi where (φi)i∈N ∈ ΦN such that (φi)i∈N ≡ R. In the

former case, |Nxz| > |Nzx|, since the agents’ preferences are dichotomous. It can be
checked that f satisfies Pareto optimality and IIA. Note that, in line with Maniquet
and Mongin’s 2015 theorem, the collective preferences over pure outcomes returned by
f coincide with the utilitarian SWF (see also Footnote 16).

Remark 8 (SWFs with range R). Theorems 3 and 4 do not hold for SWFs with
range R. To see this for Theorem 3, let N = {1, 2}, U = {a, b, c}, and �0 ∈ RvNM such
that

�0 ≡

 0 1 2
−1 0 1
−2 −1 0

 .

Consider the domain D = {�0
π : π ∈ ΠU} ∪ {∅}, which satisfies R1, R2, and R3. Then,

the following SWF f is an anonymous Arrovian SWF on D. For all R ∈ DN and
x, y, z ∈ U , f(R) ≡ φ with φ(x, y) = 1 and φ(x, z) = φ(y, z) = 0 if x �1 y �1 z and
z �2 x �2 y and f(R) ≡ φ1 + φ2 otherwise. Note that φ is not in RvNM . IIA is easy
to verify, since this SWF is consistent with majority rule on pairs of pure outcomes.
Pareto optimality is clearly satisfied for all profiles where f coincides with the utilitarian
rule. In the remaining profiles, Pareto optimality can be verified by simple but tedious
calculations.
A counterexample using two agents and four alternatives can be constructed to show

that Theorem 4 does not hold for SWFs with range R.
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E. Rationalizability via Continuous and Convex Relations

Recall from Section 4 that a choice function is an upper hemi-continuous function
S : F(∆) → F(∆) such that for all X ∈ F(∆), S(X) ⊆ X, and for all p, q ∈ ∆,
S([p, q]) ∈ {{p}, {q}, [p, q]}. To formally define upper hemi-continuity, we need to intro-
duce a notion of convergence for sequences in F(∆). To this end, for all X,Y ∈ F(∆), let
dist(X,Y ) = max{supx∈X infy∈Y |x−y|, supy∈Y infx∈X |x−y|} be the Hausdorff distance
of X and Y . With this definition, dist is a metric on F(∆) and we say that a sequence
(Xi)i∈N ⊆ F(∆) converges to X ∈ F(∆), written Xi → X, if dist(Xi, X) goes to 0 as
i goes to infinity. A choice function S is upper hemi-continuous if for all (Xi)i∈N with
Xi → X ∈ F(∆) and (pi)i∈N with pi ∈ S(Xi) for all i ∈ N and pi → p ∈ ∆, p ∈ S(X).

Proposition 2. A choice function is rationalizable via a continuous and convex relation
if and only if it is consistent.

Proof. Let S be a choice function. First we prove the “only if” part. To this end,
assume that S is rationalizable by a continuous and convex relation �, i.e., for all
X ∈ F(∆), S(X) = max�X. For X,Y ∈ F(∆) with X ∩ Y 6= ∅, S(X) ∩ Y =
(max�X) ∩ Y ⊆ max�(X ∩ Y ) = S(X ∩ Y ), since a maximal element in X is also a
maximal element in any subset of X (without imposing any restrictions on �). Hence,
S satisfies contraction. To see that S satisfies expansion, let X,Y ∈ F(∆) and observe
that S(X) ∩ S(Y ) = max�X ∩max� Y ⊆ max�(conv(X ∪ Y )) = S(X ∪ Y ), where the
set inclusion follows from the fact that, by convexity of �, weak lower contour sets are
convex.
Second we prove the “if part”, i.e., S is rationalizable by a continuous and convex

relation if it satisfies contraction and expansion. To this end, define � as the base
relation of S, i.e., for all p, q ∈ ∆, p % q if and only if p ∈ S([p, q]). Note that % is a
complete relation, since, for all p, q ∈ ∆, {p, q} ∩ S([p, q]) 6= ∅ by our definition of choice
functions.
First we show that � rationalizes S, i.e., for all X ∈ F(∆), S(X) = max�X. To see

that S(X) ⊆ max�X, let p ∈ S(X). Since S satisfies contraction, it follows that for all
q ∈ X, p ∈ S([p, q]) and hence, by definition of �, p % q. This implies that p ∈ max�X.
To prove that max�X ⊆ S(X), let p ∈ max�X and (Xk)k∈N be a sequence of polytopes
in ∆ such that for all k ∈ N, p ∈ Xk, Xk = conv(pk,1, . . . , pk,lk) ⊆ X, lk ∈ N, and
Xk → X. Since p ∈ max�X, we have that for all k ∈ N and l ∈ {1, . . . , lk}, p % pk,l and
thus, by definition of �, p ∈ S([p, pk,l]). Repeated application of expansion implies that
for all k ∈ N, p ∈ S(conv(pk,1, . . . , pk,lk)) = S(Xk). Then, since Xk → X, continuity of
S implies that p ∈ S(X).

It remains to be shown that � satisfies continuity and convexity. To prove continuity,
let p ∈ ∆. First, assume for contradiction that L(p) is not open at q ∈ L(p). Then, there
is a sequence (qk)k∈N ⊆ ∆ such that qk goes to q as k goes to infinity and qk % p for
all k ∈ N. Since then [p, qk]→ [p, q] and qk ∈ S([p, qk]) for all k ∈ N by definition of �,
continuity of S implies that q ∈ S([p, q]), which contradicts p � q. Second, assume for
contradiction that U(p) is not open at q ∈ U(p). Then, there is a sequence (qk)k∈N ⊆ ∆
such that qk goes to q as k goes to infinity and p % qk for all k ∈ N. Since then
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[p, qk]→ [p, q] and p ∈ S([p, qk]) for all k ∈ N by definition of �, continuity of S implies
that p ∈ S([p, q]), which contradicts q � p. Hence, � is continuous and, by Lemma 1,
also satisfies Archimedean continuity.
Proving convexity of � turns out be rather involved. We first prove three useful

auxiliary statements. We say that a preference relation � is all indifferent on X ∈ F(∆)
if �|X = ∅, i.e., for all p, q ∈ X, p ∼ q.

Claim 1. For all p, q, r ∈ ∆, if p ∼ q, p ∼ r, and q ∼ r, then � is all indifferent on
conv(p, q, r).

Proof of Claim 1. To see this, observe that, by definition of �, p ∼ q and p ∼ r im-
plies that p ∈ S([p, q]) and p ∈ S([p, r]). Since S satisfies expansion, we have that
p ∈ S(conv([p, q] ∪ [p, r])) = S(conv(p, q, r)). Similarly, q, r ∈ S(conv(p, q, r)). Since
S(conv(p, q, r)) ∈ F(∆) is convex, it follows that S(conv(p, q, r)) = conv(p, q, r). Hence,
since S satisfies contraction, for all s, t ∈ conv(p, q, r), [s, t] = S(conv(p, q, r)) ∩ [s, t] ⊆
S([s, t]). By definition of �, we have that s ∼ t, which proves that � is all indifferent
on conv(p, q, r).

We say that � satisfies lower betweenness if for all p, q ∈ ∆ with p % q, there is
λ∗ ∈ [0, 1] such that for all µ, µ′ ∈ [0, 1] with µ > µ′,{

pµq � pµ′q if µ > λ∗,
pµq ∼ pµ′q if µ ≤ λ∗.

(lower betweenness)

If the above holds, we say that � satisfies λ∗-lower betweenness on [p, q]. Intuitively,
λ∗-lower betweenness on [p, q] prescribes that, when moving along the line from p to q,
preference strictly decreases until pλ∗q is reached and then remains constant.

Claim 2. � satisfies lower betweenness.

Proof of Claim 2. Let p, q ∈ ∆ with p % q. We distinguish two cases. If S([p, q]) = [p, q],
then p ∼ q by definition of �. From Claim 1 (with r = p), it follows that � is all
indifferent on [p, q] and we may choose λ∗ = 1.

If S([p, q]) 6= [p, q], we have that p 6∼ q by definition of �. Since p % q by assumption,
it follows that p � q. Let λ∗ = supλ∈[0,1]{q ∈ S([pλq, q])}. Note that, since p � q and S
satisfies continuity, λ∗ < 1. By continuity of S and definition of λ∗, q ∈ S([pλ∗q, q]) and,
since pλ′q ∈ S([pλ′q, q]) for all λ′ > λ∗, pλ∗q ∈ S([pλ∗q, q]). Together this yields that
S([pλ∗q, q]) = [pλ∗q, q] and hence, by Claim 1, � is all indifferent on [pλ∗q, q]. Now we
show that for all λ ∈ [0, 1], pλq % q. If λ > λ∗, this follows from the definition of λ∗. If
λ ≤ λ∗, it follows from the fact that � is all indifferent on [pλ∗q, q] that pλq ∼ q. Now
let µ, µ′ ∈ [0, 1] such that µ > µ′. If µ > λ∗, assume for contradiction that pµ′q % pµq.
By definition of �, this implies that pµ′q ∈ S([pµq, pµ′q]). From pµ′q % q, it follows that
pµ′q ∈ S([pµ′q, q]). Then, expansion implies that pµ′q ∈ S(conv([pµq, pµ′q]∪[pµ′q, q])) =
S([pµq, q]). By our definition of choice functions, pµ′q ∈ S([pµq, q]) implies S([pµq, q]) =
[pµq, q]. Hence, in particular, q ∈ S([pµq, q]), which contradicts the assumption that
µ > λ∗. If µ ≤ λ∗, pµq ∼ pµ′q follows from the fact that � is all indifferent on
[pλ∗q, q].
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Claim 3. For all p ∈ ∆, I(p) is convex.

Proof of Claim 3. Let p, q, r ∈ ∆ and λ ∈ [0, 1] such that p ∼ q and p ∼ r. We show that
p ∼ qλr. The proof proceeds as follows. It is straightforward to show that p is weakly
preferred to qλr. So we assume for contradiction that p is strictly preferred to qλr. By
Claim 2, there is some λ∗ between 0 and 1 such that preference strictly decreases when
moving along a straight line from p to pλ∗(qλr). In particular, � is not all indifferent
on any non-trivial subinterval of this line segment. In the remainder of the proof, we
construct a subset of conv(p, q, r) (which will turn out to be conv(pµ̄r∗, pµ̂r∗, t)) on which
� is all indifferent that contains a non-trivial subinterval of the line segment from p to
pλ∗(qλr), which is a contradiction. The proof of this claim is illustrated in Figure 5a.
If q ∼ r, it follows from Claim 1 that � is all indifferent on conv(p, q, r), which implies

that p ∼ qλr. Otherwise, we may assume without loss of generality that q � r. Since
p ∼ q, p ∼ r, and S satisfies expansion, it follows that p ∈ S(conv(p, q, r)). Hence, since
S satisfies contraction, for all λ ∈ [0, 1], p ∈ S(conv(p, qλr)), i.e., p % qλr. Assume
for contradiction that p � qλr for some λ ∈ [0, 1]. Let λ+ = supλ∈[0,1]{p � qλr},
λ− = infλ∈[0,1]{p � qλr}, q∗ = qλ+r, and r∗ = qλ−r. Since, by continuity of �,
L(p) ∩ [q, r] is open in [q, r], it follows that λ+ > λ > λ− and p ∼ q∗ and p ∼ r∗.
Moreover, since q � r it follows from Claim 2 that q∗ ∼ r∗ or q∗ � r∗. If q∗ ∼ r∗, � is
all indifferent on conv(p, q∗, r∗) by Claim 1, which contradicts p � qλr.

So in the remainder of the proof of Claim 3, we will consider the case q∗ � r∗. First
we show that for all µ ∈ [0, 1), q∗ � pµr∗. Since p ∼ q∗ and q∗ � r∗, the fact that S
satisfies expansion implies that q∗ ∈ S(conv(p, q∗, r∗)). Thus, the fact that S satisfies
contraction implies that q∗ ∈ S([q∗, s]) for all s ∈ conv(p, q∗, r∗). If q∗ ∼ pµr∗ for some
µ ∈ [0, 1), then we have that p ∼ q∗, p ∼ pµr∗, and q∗ ∼ pµr∗, which, by Claim 1, implies
� is all indifferent on conv(p, q∗, pµr∗). By Claim 2, there is λ∗ ∈ [0, 1) such that �
satisfies λ∗-lower betweenness on [p, qλr]. Hence, for µ, µ′ close to 1, pµ(qλr) � pµ′(qλr)
and pµ(qλr), pµ′(qλr) ∈ conv(p, q∗, pµr∗), which is a contradiction to the fact that � is
all indifferent on conv(p, q∗, pµr∗). Hence, for all µ ∈ [0, 1), q∗ � pµr∗. Then it follows
from Claim 2 that for all s ∈ conv(p, q∗, r∗) \ [p, q∗], q∗ � s.
We now show that there are λ̄, λ̂, µ̄, µ̂ ∈ [0, 1] such that λ̄ > λ̂, µ̄ > µ̂, and qλr ∈

(q∗λ̂r∗, r∗), q∗λ̄r∗ ∼ pµ̄r∗ and q∗λ̂r∗ ∼ pµ̂r∗, and pλ∗(qλr) is in the relative interior of
conv(pµ̄r, q∗λ̄r∗, r∗). By definition of q∗, there is a sequence (λk)k∈N such that λk goes
to 1 and, for all k ∈ N, p � q∗λkr

∗. Observe that for all k ∈ N, p � q∗λkr
∗ % r∗.

Using the fact that � satisfies Archimedean continuity by Lemma 1 it follows that for
all k ∈ N, there is µk ∈ [0, 1) such that q∗λkr∗ ∼ pµkr

∗. By definition of �, for all
k ∈ N, pµkr∗ ∈ S([q∗λkr

∗, pµkr
∗]). Since q∗λkr∗ → q∗, it follows from continuity of

S that pµ∗r∗ ∈ S([pµ∗r∗, q∗]), where µ∗ is an accumulation point of (µk)k∈N. Since
q∗ � s for all s ∈ conv(p, q∗, r∗) \ [p, q∗], it follows that µ∗ = 1. So 1 is the only possible
accumulation point of (µk)k∈N, which means that µk goes to 1 as λk goes to 1. Now let
k̄, k̂ ∈ N such that λ̄ = λk̄ > λ̂ = λk̂, µ̄ = µk̄ > µ̂ = µk̂, qλr ∈ (q∗λ̂r∗, r∗), and pλ∗(qλr)
is in the relative interior of conv(pµ̄r, q∗λ̄r∗, r∗). Such k̄, k̂ exist, since λk and µk go to
1 as k goes to infinity.
Lastly, we show that � is all indifferent on a line segment that properly intersects
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the line segment from p to pλ∗(qλr), which is a contradiction. Let t ∈ [pµ̄r∗, q∗λ̄r∗] ∩
[p, q∗λ̂r∗], which exists, since λ̄ > λ̂. Since pµ̂r∗ ∼ p, pµ̂r∗ ∼ q∗λ̂r∗, and S satisfies
expansion, we have that pµ̂r∗ ∈ S(conv(p, pµ̂r∗, q∗λ̂r∗)). As S satisfies contraction, it
follows that pµ̂r∗ % t.
Conversely, from p ∼ q∗, p ∼ r∗, and q∗ � r∗, it follows that p, q∗ ∈ S(conv(p, q∗, r∗))

and hence, [p, q∗] ⊆ S(conv(p, q∗, r∗)), since choice sets have to be convex. Let σ ∈ (0, 1)
such that t ∈ [pσq∗, pµ̂r∗]. Since pσq∗ ∈ [p, q∗] and S satisfies contraction, pσq∗ ∈
S([pσq∗, pµ̂r∗]) and hence pσq∗ % pµ̂r∗ by definition of �. Assuming that pµ̂r∗ � t
would, by Claim 2, imply that pµ̂r∗ � pσq∗ and thus a contradiction. So t % pµ̂r∗.

p
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r∗
pλ∗(qλr)
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Figure 5: Illustration of the proof of Proposition 2. A solid line between two outcomes u
and v denotes that u ∼ v. A solid line with an arrowhead from u to v denotes
that u � v. A dashed line with an arrowhead from u to v denotes that u % v.
The dotted line indicates an indeterminate preference.

In summary, we have pµ̂r∗ ∼ t. Additionally, it holds that pµ̄r∗ ∼ pµ̂r∗ (since p ∼ r∗)
and pµ̄r∗ ∼ t (since pµ̄r∗ ∼ q∗λ̄r∗). Hence, � is all indifferent on conv(pµ̄r, pµ̂r∗, t)
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by Claim 1. Since qλr ∈ (q∗λ̂r∗, r∗) and pλ∗(qλr) is in the relative interior of
conv(pµ̄r, q∗λ̄r∗, r∗) by construction, the line segment from p to pλ∗(qλr) intersects the
relative interior of conv(pµ̄r∗, pµ̂r∗, t). Thus, there are λ′, λ′′ ∈ (0, 1) such that λ′′ > λ′ ≥
λ∗ and pλ′(qλr), pλ′′(qλr) ∈ conv(pµ̄r∗, pµ̂r∗, t), i.e., pλ′(qλr), pλ′′(qλr) are contained in
the intersection of the line segment from p to pλ∗(qλr) and conv(pµ̄r∗, pµ̂r∗, t). Since �
satisfies λ∗-lower betweenness on [p, qλr], it holds that pλ′(qλr) � pλ′′(qλr), which con-
tradicts the fact that � is all indifferent on conv(pµ̄r∗, pµ̂r∗, t). Hence, for all λ ∈ [0, 1],
p ∼ qλr, which proves the claim.

Now we are in a position to show that � satisfies convexity. This requires to show
that for all p ∈ ∆, L(p), U(p), L(p) ∪ I(p), and U(p) ∪ I(p) are convex.

(i) L(p)∪ I(p) is convex: Let q, r ∈ L(p)∪ I(p) and λ ∈ [0, 1]. By definition of �, p ∈
S([p, q])∩S([p, r]). Since S satisfies expansion, it follows that p ∈ S(conv(p, q, r)).
Then, S satisfying contraction implies that p ∈ S([p, qλr]), i.e., p % qλr.

(ii) L(p) is convex: Let q, r ∈ L(p) and λ ∈ [0, 1]. The proof for this case is illustrated
in Figure 5b. By (i), we know that p % qλr. Assume for contradiction that
p ∼ qλr. Let µ∗ ∈ (0, 1) such that for all µ ∈ (µ∗, 1), pµr � q, which exists since,
by continuity of �, U(q) is open. Similarly, there is σ∗ ∈ (0, 1) such that for all
σ ∈ (σ∗, 1), pσq � r. For all σ ∈ (σ∗, 1), let µσ ∈ (0, 1) such that pσq ∼ pµσr, which
exists since, by lower betweenness, p � pσq, pσq � r, and � satisfies Archimedean
continuity by Lemma 1. Hence, for all σ ∈ (σ∗, 1), pµσr ∈ S([pσq, pµσr]). Since
pσq goes to p as σ goes to 1 and, by lower betweenness, p � pµr for all µ ∈
(0, 1), continuity of S implies that µσ goes to 1 as σ goes to 1. Thus, there is
σ ∈ (σ∗, 1) such that µσ > µ∗. By construction of σ, [pσq, pµσr]∩ [p, qλr] 6= ∅. Let
s ∈ [pσq, pµσr] ∩ [p, qλr] and µ′ ∈ (µσ, 1) such that s ∈ [pµ′r, q]. Since p ∼ qλr,
we have that p ∼ s and since pσq ∼ pµσr, we have that s ∼ pµσr. Since I(s)
is convex, it follows that s ∼ pµ′q. However, by construction of µ′, we have that
pµ′r � q. Then, lower betweenness implies that pµ′r � s, which is a contradiction.
Hence, p � qλr.

(iii) U(p) is convex: Let q, r ∈ U(p) and λ ∈ [0, 1]. If p � qλr, then since � satisfies
Archimedean continuity by Lemma 1, there is λ′ ∈ (λ, 1) such that p ∼ qλ′r.
Hence, we may assume without loss of generality that p ∼ qλr.
First consider the case that q ∼ r. The proof for this case is illustrated in Figure 5c.
Since, by continuity of �, L(q) is open, there is µ ∈ (0, 1) such that q � pµr. Since
qλr ∼ p, qλr ∼ r, and I(qλr) is convex by Claim 3, it follows that pµr ∼ qλr. As
� satisfies lower betweenness by Claim 2, r � p implies that pµr % p. If pµr � p,
Archimedean continuity of � implies that pµr ∼ pσq for some σ ∈ (0, 1). Then,
for s ∈ [p, qλr] ∩ [pµr, pσq], we have that pµr ∼ s. Otherwise pµr ∼ p. In any
case, there is s ∈ [p, qλr) such that pµr ∼ qλr, pµr ∼ s, and qλr ∼ s. Hence, by
Claim 1, � is all indifferent on conv(pµr, qλr, s). Since by continuity of �, L(r) is
open, there is σ′ ∈ (0, 1) such that r � pσ′q. Let µ∗ ∈ [0, 1) such that � satisfies
µ∗-lower betweenness on [r, pσ′q], which exists by Claim 2. Moreover, let t ∈ (p, r)
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such that [q, t]∩ [r, rµ∗(pσ′q)] 6= ∅ and [q, t]∩ [s, qλr] 6= ∅, which exists since µ∗ < 1
and s ∈ [p, qλr). Since we have that qλr ∼ p and qλr ∼ r and I(qλr) is convex by
Claim 3, we have that qλr ∼ t.
Let t′ ∈ [p, qλr] ∩ [q, t]. Since � is all indifferent on conv(pµr, qλr, s) as shown
before, in particular, � is all indifferent on conv(pµr, qλr, s) ∩ [t, t′] 6= ∅. From (i),
we know that L(q) ∪ I(q) is convex. Hence, q % t. By Claim 2, this implies that
t′ % t. If t′ � t then again Claim 2 implies that t′ � t′′ for all t′′ ∈ [t, t′), which
contradicts that � is all indifferent on conv(pµr, qλr, s) ∩ [t, t′]. Hence, t ∼ t′.
Moreover, since p ∼ qλr, qλr ∼ t′. Hence, by Claim 1, � is all indifferent on
conv(qλr, t, t′). This is a contradiction, since conv(qλr, t, t′)∩[r, rµ∗(pσ′q)] contains
a sub-interval of [r, rµ∗(pσ′q)] by the choice of t.

In the remaining case, we may assume without loss of generality that q � r.
Archimedean continuity of � implies that there is σ ∈ (0, 1) such that pσq ∼ r.
The fact that p ∼ qλr implies that p ∼ s for s ∈ [p, qλr] ∩ [pσq, r]. By Claim 2, it
follows from q � p that pσq % p. If pσq � p, we get a contradiction by applying
the previous case to p, pσq, and r. So assume that p ∼ pσq. The proof for this
case is illustrated in Figure 5d. Observe that, since pσq ∼ p and pσq ∼ r and
I(pσq) is convex by Claim 3, it holds that for all s′ ∈ conv(p, pσq, r), pσq ∼ s′.
Similarly, since s ∼ p, s ∼ pσq, and s ∼ r and I(s) is convex, it holds that for all
s′ ∈ conv(p, pσq, s) ∪ conv(p, r, s) = conv(p, pσq, r), s ∼ s′. Since, by continuity of
�, L(r) is open, there is σ′ ∈ (σ, 1) such that r � pσ′q. Let µ∗ ∈ [0, 1) such that
� satisfies µ∗-lower betweenness on [r, pσ′q], which exists by Claim 2. Moreover,
let t ∈ [p, r] such that [pσq, t] ∩ [r, rµ∗(pσ′q)] 6= ∅, which exists since µ∗ < 1. As
shown above, we have that pσq ∼ s, pσq ∼ t, and s ∼ t. Thus, by Claim 1,
� is all indifferent on conv(pσq, s, t). By the choice of t, there are µ, µ′ ∈ [µ∗, 1]
such that rµ(pσ′q), rµ′(pσ′q) ∈ conv(pσq, s, t) and rµ(pσ′q) � rµ′(pσ′q), which is
a contradiction to the fact that � is all indifferent on conv(pσq, s, t). Hence, in
any case, we have that qλr � p.

(iv) U(p) ∪ I(p) is convex: Let q, r ∈ U(p) ∪ I(p) and λ ∈ [0, 1]. The cases that
q, r ∈ U(p) and q, r ∈ I(p) are covered by (iii) and the fact that I(p) is convex,
respectively. Hence, we may assume without loss of generality that q ∈ U(p)
and r ∈ I(p). Assume for contradiction that qλr 6∈ U(p) ∪ I(p), i.e., p � qλr.
Archimedean continuity of � implies that p ∼ qλ′r for some λ′ ∈ (λ, 1). But
then, since I(p) is convex, p ∼ qλ′r and p ∼ r imply that p ∼ qλr, which is a
contradiction.

F. SSB Utility Representation Theorem

In this section, we show that every preference relation in R admits a representation
through an SSB function. We prove this by reduction to Fishburn’s (1982) SSB repre-
sentation theorem, which states that every relation satisfying Archimedean continuity,
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dominance, and symmetry can be represented by an SSB function. A preference relation
� satisfies dominance if for all p, q, r ∈ ∆ and λ ∈ (0, 1),

p � q and p % r imply p � qλr,
q � p and r % p imply qλr � p, and
p ∼ q and p ∼ r imply p ∼ qλr.

(Dominance)

Informally, dominance requires that for every outcome p, I(p) is a hyperplane through
p separating U(p) and L(p).

Proposition 3. A preference relation � can be represented by an SSB function if and
only if it satisfies continuity, convexity, and symmetry.

Proof. It is easy to see that every preference relation that admits a representation
through an SSB function satisfies continuity, convexity, and symmetry. So we only
prove the “if part” here. Let � be a preference relation satisfying continuity, convexity,
and symmetry. Fishburn (1982, Theorem 1) has shown that every preference relation
satisfying Archimedean continuity, dominance, and symmetry can be represented by an
SSB function. By Lemma 1, � satisfies Archimedean continuity. Hence, it suffices to
show that � satisfies dominance.
First observe that, by convexity of �, U(p)∪ I(p) and L(p)∪ I(p) are convex. As the

intersection of convex sets, (U(p) ∪ I(p)) ∩ (L(p) ∪ I(p)) = I(p) is convex, too. Hence,
for all p, q, r ∈ ∆ with p ∼ q and p ∼ r and λ ∈ (0, 1), we have that p ∼ qλr. This
establishes the indifference part of dominance.
Before showing the missing parts of dominance, we prove two auxiliary statements.

Claim 1. For all p, q ∈ ∆ with p � q and λ ∈ (0, 1), p � pλq � q.

This condition is known as betweenness (see, e.g., Chew, 1989).

Proof of Claim 1. Assume for contradiction that betweenness is not satisfied. Then,
there are p, q ∈ ∆ with p � q and λ ∈ (0, 1) such that either p 6� pλq or pλq 6� q. In
the first case, convexity of L(p) ∪ I(p) implies that p % pλq, since p ∼ p and p � q
by assumption. Hence, p ∼ pλq. Let λ∗ = infλ∈[0,1]{p ∼ pλq}. By continuity of
�, L(p) ∩ [p, q] is open in [p, q] and hence, I(p) ∩ [p, q] = [p, q] \ L(p) is closed in [p, q].
Hence, p ∼ pλ∗q. In particular, λ∗ ∈ (0, 1). Moreover, by convexity of �, I(p)∩ [p, q] and
L(p)∩ [p, q] are convex. Hence, I(p)∩ [p, q] = [p, pλ∗q] and L(p)∩ [p, q] = (pλ∗q, q]. Note
that, since indifference sets are convex, it follows that pλ′q ∼ pλ′′q for all λ′, λ′′ ∈ [λ∗, 1].
Let λ̄ ∈ (max{0, 2λ∗−1}, λ∗) and q̄ = pλ̄q. So λ̄ is chosen such that q̄ is closer to pλ∗q

than pλ∗q is to p. Since λ̄ < λ∗, p � q̄. Now let r = p. Since 2λ∗ < 1+ λ̄ by construction,
we have 1/2 p + 1/2 q̄ = 1/2 (p1q) + 1/2 (pλ̄q) = p((1 + λ̄)/2)q ∈ [p, pλ∗q] ⊆ I(p). Thus,
r ∼ 1/2 p + 1/2 q̄. Moreover, let λ̂ > 0 be small enough so that q̄λ̂p ∈ (p, pλ∗q) and
pλ̂q̄ ∈ (pλ∗q, q̄). Then q̄λ̂p ∼ 1/2 q̄ + 1/2 r ∈ [p, pλ∗q] but 1/2 p + 1/2 r = p � pλ̂q̄, which
contradicts symmetry. An analogous argument takes care of the case pλq 6� q.
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Figure 6: Illustration of the proof of Proposition 3. A solid line with or without arrow-
head from one outcome u to another outcome v denotes that u � v or u ∼ v,
respectively.

Claim 2. For all p, q, r ∈ ∆, if there are p̄, q̄, r̄ ∈ conv(p, q, r) such that the affine hull
of p̄, q̄, and r̄ is equal to the affine hull of p, q, and r, and p̄ ∼ q̄, p̄ ∼ r̄, and q̄ ∼ r̄, then
p ∼ q, p ∼ r, and q ∼ r.

Proof of Claim 2. For contradiction, assume without loss of generality that p � q. First,
observe that the indifference part of dominance implies that for all s, t ∈ conv(p̄, q̄, r̄),
s ∼ t. Let x be in the relative interior of conv(p̄, q̄, r̄). For y ∈ conv(p, q, r), let λ ∈
(0, 1) such that yλx ∈ conv(p̄, q̄, r̄). If y 6∼ x, then by Claim 1, yλx 6∼ x, which is a
contradiction. Hence, x ∼ y, i.e., every outcome in the relative interior of conv(p̄, q̄, r̄)
is indifferent to every outcome in conv(p, q, r). Now let µ ∈ (0, 1) such that q∗ = qµx
is in the relative interior of conv(p̄, q̄, r̄). Then, p ∼ q∗, p ∼ x, and q∗ ∼ x by what we
have shown before. This implies that for all s, t ∈ conv(p, q∗, x), s ∼ t. Since � satisfies
continuity, U(q) is open and hence, U(q)∩[p, x] is open in [p, x]. Thus, there is p∗ ∈ (p, x)
such that p∗ � q. For σ ∈ (0, 1) close to one, we have that p∗σq ∈ conv(p, q∗, x), which
implies that p∗ ∼ p∗σq. However, by Claim 1, we have that p∗ � p∗σq, which is a
contradiction.

Now we are ready to show the missing parts of dominance. To this end, let p, q, r ∈ ∆
and λ ∈ (0, 1). We first show that p � q and p % r imply p � qλr. If p � q and p � r, it
follows from convexity of L(p) that p � qλr. If p � q and p ∼ r, it follows from convexity
of L(p) ∪ I(p) that p % qλr. Assume for contradiction that p ∼ qλr. We distinguish
three cases, illustrated in Figure 6.

(i) q ∼ r: The indifference part of dominance implies that qλr ∼ r. Hence, we have
that p ∼ r, p ∼ qλr, and qλr ∼ r. By Claim 2, we have p ∼ q, which contradicts
p � q.

(ii) q � r: Since by assumption p � q and q � r and since, by Lemma 1, � satisfies
Archimedean continuity, there is µ ∈ (0, 1) such that q ∼ pµr. Let q̄ ∈ [p, qλr] ∩
[q, pµr]. Then, by the indifference part of dominance, p ∼ q̄, p ∼ pµr, and q̄ ∼ pµr.
By Claim 2, we have p ∼ q, which contradicts p � q.
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(iii) r � q: Continuity of � implies that L(p)∩ [q, r] is open in [q, r] and I(p)∩ [q, r] =
[q, r]\L(p) is closed in [q, r]. Convexity of � implies that L(p)∩[q, r] and I(p)∩[q, r]
are convex. Hence, there is λ∗ ∈ (0, 1) such that L(p) ∩ [q, r] = [q, qλ∗r) and
I(p) ∩ [q, r] = [qλ∗r, r]. Let q̄ ∈ [q, qλ∗r) and r̄ ∈ (qλ∗r, r] such that qλ∗r =
1/2 q̄+1/2 r̄. Such q̄ and r̄ exist, since λ∗ ∈ (0, 1). By construction, p � q̄ and p ∼ r̄.
Since r ∼ p and r � q̄ by assumption and Claim 1, convexity of L(r)∪ I(r) implies
that r % 1/2 p+ 1/2 q̄.

– If r ∼ 1/2 p+ 1/2 q̄, let p̄ ∈ [p, qλ∗r] ∩ [r, 1/2 p+ 1/2 q̄]. Then, p ∼ p̄, p ∼ r, and
p̄ ∼ r. By Claim 2, this contradicts p � q.

– Now consider the case that r � 1/2 p + 1/2 q̄. From Claim 1, it follows that
1/2 p + 1/2 q̄ � q̄, because p � q̄. By Lemma 1, � satisfies Archimedean
continuity and hence, 1/2 p + 1/2 q̄ ∼ s for some s ∈ [q̄, r]. If s ∈ (qλ∗r, r), let
p̄ ∈ [p, qλ∗r]∩ [1/2 p+1/2 q̄, s], which is non-empty in this case. Then, p̄ ∼ qλ∗r
and p̄ ∼ 1/2 p+ 1/2 q̄. Since I(p̄) is convex, it follows that [qλ∗r, 1/2 p+ 1/2 q̄] ⊆
I(p̄). If p̄ � q, then for q′ ∈ [qλ∗r, 1/2 p + 1/2 q̄] ∩ [p̄, q], we have by Claim 1
that p̄ � q′, which is a contradiction. So p̄ ∼ q. Then, again by Claim 1,
for t ∈ [p, r] such that p̄ ∈ [t, q], t ∼ q. However, since p � q and r � q
by assumption, it follows from convexity of U(q) that t � q, which is a
contradiction.

If s ∈ (q̄, qλ∗r], it follows from symmetry of � that 1/2 p + 1/2 r̄ ∼ t for some
t ∈ [qλ∗r, r̄). Let p̄ ∈ (p, r) such that 1/2 p + 1/2 r̄ ∈ [p̄, t]. It follows from
Claim 1 that p̄ ∼ t. Hence, p ∼ p̄, p ∼ 1/2 p + 1/2 r̄, and p̄ ∼ 1/2 p + 1/2 r̄. By
Claim 2, this contradicts p � q.

The fact that q � p and r % p imply qλr � p can be shown analogously.

Noteworthily, Proposition 3 does not hold if we replace symmetry by the weaker notion
of symmetry considered by Fishburn (1982), which only applies to cases where p, q, and
r as in the definition of symmetry in Section 5 are linearly ordered (cf. Footnote 9).
The preference relation for U = {a, b} given in Section 5 satisfies Fishburn’s notion of
symmetry (since there are no three outcomes that are linearly ordered) but cannot be
represented by an SSB function.
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